1
|
Li S, Triolo RJ, Charkhkar H. Neural sensory stimulation does not interfere with the H-reflex in individuals with lower limb amputation. Front Neurosci 2023; 17:1276308. [PMID: 37817801 PMCID: PMC10560717 DOI: 10.3389/fnins.2023.1276308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Individuals with lower limb loss experience an increased risk of falls partly due to the lack of sensory feedback from their missing foot. It is possible to restore plantar sensation perceived as originating from the missing foot by directly interfacing with the peripheral nerves remaining in the residual limb, which in turn has shown promise in improving gait and balance. However, it is yet unclear how these electrically elicited plantar sensation are integrated into the body's natural sensorimotor control reflexes. Historically, the H-reflex has been used as a model for investigating sensorimotor control. Within the spinal cord, an array of inputs, including plantar cutaneous sensation, are integrated to produce inhibitory and excitatory effects on the H-reflex. Methods In this study, we characterized the interplay between electrically elicited plantar sensations and this intrinsic reflex mechanism. Participants adopted postures mimicking specific phases of the gait cycle. During each posture, we electrically elicited plantar sensation, and subsequently the H-reflex was evoked both in the presence and absence of these sensations. Results Our findings indicated that electrically elicited plantar sensations did not significantly alter the H-reflex excitability across any of the adopted postures. Conclusion This suggests that individuals with lower limb loss can directly benefit from electrically elicited plantar sensation during walking without disrupting the existing sensory signaling pathways that modulate reflex responses.
Collapse
Affiliation(s)
- Suzhou Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH, United States
| | - Ronald J. Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH, United States
| | - Hamid Charkhkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Louis Stokes Cleveland Veteran Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|
2
|
Sun M, Lewis K, Choi JH, Zhang F, Qu F, Li L. The Reduced Adaptability of H-Reflex Parameters to Postural Change With Deficiency of Foot Plantar Sensitivity. Front Physiol 2022; 13:890414. [PMID: 35846020 PMCID: PMC9277460 DOI: 10.3389/fphys.2022.890414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose: The project was to examine the influence of peripheral neuropathy (PN) severity on the relationship between Hoffmann-reflex (H-reflex) and postures. Methods: A total of 34 participants were recruited. H-reflex (H/M ratio and H-index) during prone, standing, and the heel-contact phase of walking was tested, along with foot sole sensitivity. Results: The participants were divided into three groups based on the severity of the foot sole sensitivity deficit: control, less (LA), and more (MA) affected with both feet 5.07 monofilament test scores ranging 10, 0–5, and 6–9, respectively. A significant group by the posture interaction was observed in the H/M ratio (F3.0, 41.9 = 2.904, p = 0.046, ηp2 = 0.172). In the control group, the H/M ratio of prone (22 ± 7%) was greater than that of the standing (13 ± 3%, p = 0.013) and heel-contact phase (10 ± 2%, p = 0.004). In the MA group, the H/M ratio of standing (13 ± 3%) was greater than that of the heel-contact phase (8 ± 2%, p = 0.011). The H-index was significantly different among groups (F2,28 = 5.711, p = 0.008, and ηp2= 0.290). Post hoc analysis showed that the H-index of the control group (80.6 ± 11.3) was greater than that of the LA (69.8 ± 12.1, p = 0.021) and MA groups (62.0 ± 10.6, p = 0.003). Conclusion: In a non-PN population, the plantar sensory input plays an important role in maintaining standing postural control, while as for the PN population with foot sole sensitivity deficiency, type Ⅰ afferent fibers reflex loop (H-reflex) contributes more to the standing postural control. The H-index parameter is an excellent method to recognize the people with and without PN but not to distinguish the severity of PN with impaired foot sole sensitivity.
Collapse
Affiliation(s)
- Mengzi Sun
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
| | - Kelsey Lewis
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
| | - Jung Hun Choi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA, United States
| | - Fangtong Zhang
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
| | - Feng Qu
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
| | - Li Li
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
- *Correspondence: Li Li,
| |
Collapse
|
3
|
Akbas T, Kim K, Doyle K, Manella K, Lee R, Spicer P, Knikou M, Sulzer J. Rectus femoris hyperreflexia contributes to Stiff-Knee gait after stroke. J Neuroeng Rehabil 2020; 17:117. [PMID: 32843057 PMCID: PMC7448457 DOI: 10.1186/s12984-020-00724-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background Stiff-Knee gait (SKG) after stroke is often accompanied by decreased knee flexion angle during the swing phase. The decreased knee flexion has been hypothesized to originate from excessive quadriceps activation. However, it is unclear whether hyperreflexia plays a role in this activation. The goal of this study was to establish the relationship between quadriceps hyperreflexia and knee flexion angle during walking in post-stroke SKG. Methods The rectus femoris (RF) H-reflex was recorded in 10 participants with post-stroke SKG and 10 healthy controls during standing and walking at the pre-swing phase. In order to attribute the pathological neuromodulation to quadriceps muscle hyperreflexia and activation, healthy individuals voluntarily increased quadriceps activity using electromyographic (EMG) feedback during standing and pre-swing upon RF H-reflex elicitation. Results We observed a negative correlation (R = − 0.92, p = 0.001) between knee flexion angle and RF H-reflex amplitude in post-stroke SKG. In contrast, H-reflex amplitude in healthy individuals in presence (R = 0.47, p = 0.23) or absence (R = − 0.17, p = 0.46) of increased RF muscle activity was not correlated with knee flexion angle. We observed a body position-dependent RF H-reflex modulation between standing and walking in healthy individuals with voluntarily increased RF activity (d = 2.86, p = 0.007), but such modulation was absent post-stroke (d = 0.73, p = 0.296). Conclusions RF reflex modulation is impaired in post-stroke SKG. The strong correlation between RF hyperreflexia and knee flexion angle indicates a possible regulatory role of spinal reflex excitability in post-stroke SKG. Interventions targeting quadriceps hyperreflexia could help elucidate the causal role of hyperreflexia on knee joint function in post-stroke SKG.
Collapse
Affiliation(s)
- Tunc Akbas
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Kyoungsoon Kim
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kathleen Doyle
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kathleen Manella
- University of St. Augustine for Health Sciences, Austin, TX, USA
| | - Robert Lee
- St. David's Medical Center, Austin, TX, USA
| | - Patrick Spicer
- Seton Brain and Spine Institute, Ascension Texas, University of Texas at Austin, Austin, TX, USA
| | - Maria Knikou
- Graduate Center of the City University of New York and Physical Therapy Department, College of Staten Island, New York, NY, USA
| | - James Sulzer
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
4
|
Akbas T, Sulzer J. Musculoskeletal simulation framework for impairment-based exoskeletal assistance post-stroke. IEEE Int Conf Rehabil Robot 2020; 2019:1185-1190. [PMID: 31374790 DOI: 10.1109/icorr.2019.8779564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assistive technology for the lower extremities has shown great promise towards improving gait function in people following neuromuscular injuries. However, our previous work assisting knee flexion torque in post-stroke Stiff-Knee gait found that augmenting strength can induce secondary complications such as spasticity due to stretching of the rectus femoris. In this work we explore whether we could have obtained improved knee flexion but avoided a spastic response by simulating combinations of hip and knee flexion torques using musculoskeletal modeling and simulation. We explore previously collected data on a case-by-case basis to determine individual-specific quadriceps reflex thresholds based on estimated rectus femoris muscle fiber stretch velocities. We then implemented a forward simulation framework to identify the subject-specific hip-knee assistance prescription to improve knee range of motion without initiating a spastic response. The obtained subject-specific assistive prescription informs the development of new gait assistance strategies for post-stroke gait and could be extended to other neuromuscular gait impairments.
Collapse
|
5
|
Huang TH, Chou LW, Huang CY, Wei SW, Tsai YJ, Chen YJ. H-reflex in abductor hallucis and postural performance between flexible flatfoot and normal foot. Phys Ther Sport 2019; 37:27-33. [PMID: 30818085 DOI: 10.1016/j.ptsp.2019.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Morphological changes of the abductor hallucis muscle (AbH) in flexible flatfoot (FF) individuals influence regulations of the medial longitudinal arch (MLA). Prolonged and repeated stretching of AbH in flexible flatfoot may cause changes in muscle reflex properties and further influence postural performance. However, AbH muscle reflex under different postural conditions have never been examined. The purpose of this study was to investigate differences in AbH H-reflex and postural performance between individuals with normal foot (NF) alignment and FF under prone, double-leg stance (DLS), and single-leg stance (SLS) conditions. DESIGN Cross-sectional study. SETTING University laboratory. PARTICIPANTS Individuals with FF (n = 12) and NF (n = 12). MAIN OUTCOME MEASURES AbH H-reflex, AbH EMG and center of pressure (CoP) displacement. RESULTS Under all postural conditions, AbH H-reflex was significantly lower in the FF group (P < .05). Under the SLS condition, AbH EMG was significantly higher in the FF group (P < .05), and CoP displacement for the medial-lateral and anterior-posterior directions were significantly higher in the FF group (P < .05). CONCLUSIONS With increased postural demand, FF individuals maintained their postural stability by recruiting greater AbH activities than through automatic stretch reflex, but FF individuals still showed inferior posture stability.
Collapse
Affiliation(s)
- Tzu-Hui Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Floor 3, No.17, Xuzhou Rd., Zhongzheng District, Taipei City, 100, Taiwan, ROC.
| | - Li-Wei Chou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, ROC.
| | - Cheng-Ya Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Floor 3, No.17, Xuzhou Rd., Zhongzheng District, Taipei City, 100, Taiwan, ROC.
| | - Shun-Wa Wei
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, ROC.
| | - Yi-Ju Tsai
- Department of Physical Therapy, National Cheng-Kung University, No.1, Ta-Hsueh Road, Tainan, 701, Taiwan, ROC.
| | - Yu-Jen Chen
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Floor 3, No.17, Xuzhou Rd., Zhongzheng District, Taipei City, 100, Taiwan, ROC; Department of Physical Education, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan, ROC.
| |
Collapse
|
6
|
Côté MP, Murray LM, Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front Physiol 2018; 9:784. [PMID: 29988534 PMCID: PMC6026662 DOI: 10.3389/fphys.2018.00784] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
Systematic research on the physiological and anatomical characteristics of spinal cord interneurons along with their functional output has evolved for more than one century. Despite significant progress in our understanding of these networks and their role in generating and modulating movement, it has remained a challenge to elucidate the properties of the locomotor rhythm across species. Neurophysiological experimental evidence indicates similarities in the function of interneurons mediating afferent information regarding muscle stretch and loading, being affected by motor axon collaterals and those mediating presynaptic inhibition in animals and humans when their function is assessed at rest. However, significantly different muscle activation profiles are observed during locomotion across species. This difference may potentially be driven by a modified distribution of muscle afferents at multiple segmental levels in humans, resulting in an altered interaction between different classes of spinal interneurons. Further, different classes of spinal interneurons are likely activated or silent to some extent simultaneously in all species. Regardless of these limitations, continuous efforts on the function of spinal interneuronal circuits during mammalian locomotion will assist in delineating the neural mechanisms underlying locomotor control, and help develop novel targeted rehabilitation strategies in cases of impaired bipedal gait in humans. These rehabilitation strategies will include activity-based therapies and targeted neuromodulation of spinal interneuronal circuits via repetitive stimulation delivered to the brain and/or spinal cord.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- CÔTÉ Lab, Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lynda M. Murray
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| | - Maria Knikou
- Motor Control and NeuroRecovery Research Laboratory (Klab4Recovery), Department of Physical Therapy, College of Staten Island, City University of New York, New York, NY, United States
- Graduate Center, Ph.D. Program in Biology, City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Río-Rodríguez D, Iglesias-Soler E, Fernandez-Del-Olmo M. Modulation of quadriceps corticospinal excitability by femoral nerve stimulation. Neurosci Lett 2017; 637:148-153. [PMID: 27865881 DOI: 10.1016/j.neulet.2016.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION We explored the conditioning effect of a percutaneous electrical pulse of the femoral nerve on cortical motor evoked responses in the rectus femoris muscle. METHODS Corticospinal excitability of rectus femoris muscle was measured in sixteen healthy subjects, when a single transcranial magnetic pulse was preceded by an electrical femoral nerve stimulus, using twelve inter-stimulus intervals (from 10 to 275ms). We also evaluated the effects of the intensities of the transcranial magnetic and of the electrical pulses. RESULTS Quadriceps motor evoked potentials were inhibited and facilitated when a single femoral nerve electrical stimulus was delivered at inter-stimulus intervals of 25ms and 150ms, respectively. The facilitation was reduced when low electrical intensity was used, while the inhibition decreased with high intensity transcranial magnetic pulse. CONCLUSION Afferent inputs of a femoral stimulation modulate the responses elicited by transcranial magnetic pulses of the contralateral quadriceps motor cortex. This modulation indicates a sensorimotor integration of proximal lower limb muscles that may be mediated via different types of afferents. This could be of relevance for studies that explore the role of lower limb muscles in postural control and balance.
Collapse
Affiliation(s)
- Dan Río-Rodríguez
- Learning and Human Movement Control Group, INEF Galicia, University of A Coruña, Spain
| | - Eliseo Iglesias-Soler
- Performance and Health Group, Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, Spain
| | | |
Collapse
|
8
|
Saito A, Akima H. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion. PLoS One 2015; 10:e0141146. [PMID: 26488742 PMCID: PMC4619471 DOI: 10.1371/journal.pone.0141146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022] Open
Abstract
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.
Collapse
Affiliation(s)
- Akira Saito
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Aichi, Japan
- Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
- * E-mail:
| | - Hiroshi Akima
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Aichi, Japan
- Research Center of Health, Physical Fitness & Sports, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Reliability of H-reflex in vastus lateralis and vastus medialis muscles during passive and active isometric conditions. Eur J Appl Physiol 2014; 114:2509-19. [DOI: 10.1007/s00421-014-2969-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
|
10
|
Knikou M, Hajela N, Mummidisetty CK. Corticospinal excitability during walking in humans with absent and partial body weight support. Clin Neurophysiol 2013; 124:2431-8. [DOI: 10.1016/j.clinph.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 12/31/2022]
|
11
|
Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord. Neural Plast 2012; 2012:964843. [PMID: 22900208 PMCID: PMC3415235 DOI: 10.1155/2012/964843] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023] Open
Abstract
Part of the development and maturation of the central nervous system (CNS) occurs through interactions with the environment. Through physical activities and interactions with the world, an animal receives considerable sensory information from various sources. These sources can be internally (proprioceptive) or externally (such as touch and pressure) generated senses. Ample evidence exists to demonstrate that the sensory information originating from large diameter afferents (Ia fibers) have an important role in inducing essential functional and morphological changes for the maturation of both the brain and the spinal cord. The Ia fibers transmit sensory information generated by muscle activity and movement. Such use or activity-dependent plastic changes occur throughout life and are one reason for the ability to acquire new skills and learn new movements. However, the extent and particularly the mechanisms of activity-dependent changes are markedly different between a developing nervous system and a mature nervous system. Understanding these mechanisms is an important step to develop strategies for regaining motor function after different injuries to the CNS. Plastic changes induced by activity occur both in the brain and spinal cord. This paper reviews the activity-dependent changes in the spinal cord neural circuits during both the developmental stages of the CNS and in adulthood.
Collapse
|
12
|
Knikou M, Hajela N, Mummidisetty CK, Xiao M, Smith AC. Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton. Clin Neurophysiol 2011; 122:1396-404. [DOI: 10.1016/j.clinph.2010.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/09/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
|
13
|
Naser-ud-Din S, Sowman P, Dang H, Türker K. Modulation of Masseteric Reflexes by Simulated Mastication. J Dent Res 2009; 89:61-5. [DOI: 10.1177/0022034509352842] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is well-known that limb muscle reflexes are modulated during human movements. However, little is known about the existence of equivalent masticatory muscle reflex modulation. We hypothesized that masticatory reflexes would be modulated during chewing so that smooth masticatory movements occur. To examine this hypothesis, we studied the modulation of inhibitory reflexes evoked by periodontal mechanoreceptor activation and of excitatory reflexes evoked by muscle spindle activation during simulated mastication. In 28 participants, 1- and 2-N mechanical taps were delivered to the incisor. Reflex responses to these taps were examined in the average masseteric electromyogram. To differentiate between periodontal mechanoreceptor- and muscle-spindle-mediated reflex components, we performed experiments prior to, and in the presence of, periodontal anesthesia. Both periodontal mechanoreceptor and muscle spindle reflexes were reduced during simulated masticatory movements.
Collapse
Affiliation(s)
- S. Naser-ud-Din
- Discipline of Physiology & Research Centre for Human Movement Control, School of Molecular and Biomedical Science, University of Adelaide, Australia
- School of Dentistry, University of Adelaide, Australia
- Department of Orthodontics, University of Adelaide, Australia
- Macquarie Centre for Cognitive Science (MACCS), Macquarie University, Sydney, Australia; and
- Center for Brain Research, Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - P.F. Sowman
- Discipline of Physiology & Research Centre for Human Movement Control, School of Molecular and Biomedical Science, University of Adelaide, Australia
- School of Dentistry, University of Adelaide, Australia
- Department of Orthodontics, University of Adelaide, Australia
- Macquarie Centre for Cognitive Science (MACCS), Macquarie University, Sydney, Australia; and
- Center for Brain Research, Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - H. Dang
- Discipline of Physiology & Research Centre for Human Movement Control, School of Molecular and Biomedical Science, University of Adelaide, Australia
- School of Dentistry, University of Adelaide, Australia
- Department of Orthodontics, University of Adelaide, Australia
- Macquarie Centre for Cognitive Science (MACCS), Macquarie University, Sydney, Australia; and
- Center for Brain Research, Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - K.S. Türker
- Discipline of Physiology & Research Centre for Human Movement Control, School of Molecular and Biomedical Science, University of Adelaide, Australia
- School of Dentistry, University of Adelaide, Australia
- Department of Orthodontics, University of Adelaide, Australia
- Macquarie Centre for Cognitive Science (MACCS), Macquarie University, Sydney, Australia; and
- Center for Brain Research, Department of Physiology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
14
|
Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res 2008; 193:397-407. [PMID: 19011843 DOI: 10.1007/s00221-008-1636-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
The soleus H-reflex modulation pattern was investigated in ten spinal cord intact subjects during treadmill walking at varying levels of body weight support (BWS), and nine spinal cord injured (SCI) subjects at a BWS level that promoted the best stepping pattern. The soleus H-reflex was elicited by tibial nerve stimulation with a single 1-ms pulse at an intensity that the M-waves ranged from 4 to 8% of the maximal M-wave (M(max)). During treadmill walking, the H-reflex was elicited every four steps, and stimuli were randomly dispersed across the gait cycle which was divided into 16 equal bins. EMGs were recorded with surface electrodes from major left and right hip, knee, and ankle muscles. M-waves and H-reflexes at each bin were normalized to the M(max) elicited at 60-100 ms after the test reflex stimulus. For every subject, the integrated EMG area of each muscle was established and plotted as a function of the step cycle phase. The H-reflex gain was determined as the slope of the relationship between H-reflex and soleus EMG amplitudes at 60 ms before H-reflex elicitation for each bin. In spinal cord intact subjects, the phase-dependent H-reflex modulation, reflex gain, and EMG modulation pattern were constant across all BWS (0, 25, and 50) levels, while tibialis anterior muscle activity increased with less body loading. In three out of nine SCI subjects, a phase-dependent H-reflex modulation pattern was evident during treadmill walking at BWS that ranged from 35 to 60%. In the remaining SCI subjects, the most striking difference was an absent H-reflex depression during the swing phase. The reflex gain was similar for both subject groups, but the y-intercept was increased in SCI subjects. We conclude that the mechanisms underlying cyclic H-reflex modulation during walking are preserved in some individuals after SCI.
Collapse
|
15
|
Lamontagne A, Stephenson JL, Fung J. Physiological evaluation of gait disturbances post stroke. Clin Neurophysiol 2007; 118:717-29. [PMID: 17307395 DOI: 10.1016/j.clinph.2006.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 12/08/2006] [Accepted: 12/26/2006] [Indexed: 11/16/2022]
Abstract
A large proportion of stroke survivors have to deal with problems in mobility. Proper evaluations must be undertaken to understand the sensorimotor impairments underlying locomotor disorders post stroke, so that evidence-based interventions can be developed. The current electrophysiological, biomechanical, and imagery evaluations that provide insight into locomotor dysfunction post stroke, as well as their advantages and limitations, are reviewed in this paper. In particular, electrophysiological evaluations focus on the contrast of electromyographic patterns and integrity of spinal reflex pathways during perturbed and unperturbed locomotion between persons with stroke and healthy individuals. At a behavioral level, biomechanical evaluations that include temporal distance factors, kinematic and kinetic analyses, as well as the mechanical energy and metabolic cost, are useful when combined with electrophysiological measures for the interpretation of gait disturbances that are related to the control of the central nervous system or secondary to biomechanical constraints. Finally, current methods in imaging and transcranial magnetic stimulation can provide further insight into cortical control of locomotion and the integrity of the corticospinal pathways.
Collapse
Affiliation(s)
- Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|