1
|
Hirata T, Hirata Y, Kawai N. Human estimates of descending objects' motion are more accurate than those of ascending objects regardless of gravity information. J Vis 2024; 24:2. [PMID: 38436983 PMCID: PMC10913939 DOI: 10.1167/jov.24.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024] Open
Abstract
Humans can accurately estimate and track object motion, even if it accelerates. Research shows that humans exhibit superior estimation and tracking performance for descending (falling) than ascending (rising) objects. Previous studies presented ascending and descending targets along the gravitational and body axes in an upright posture. Thus, it is unclear whether humans rely on congruent information between the direction of the target motion and gravity or the direction of the target motion and longitudinal body axes. Two experiments were conducted to explore these possibilities. In Experiment 1, participants estimated the arrival time at a goal for both upward and downward motion of targets along the longitudinal body axis in the upright (both axes of target motion and gravity congruent) and supine (both axes incongruent) postures. In Experiment 2, smooth pursuit eye movements were assessed while tracking both targets in the same postures. Arrival time estimation and smooth pursuit eye movement performance were consistently more accurate for downward target motion than for upward motion, irrespective of posture. These findings suggest that the visual experience of seeing an object moving along an observer's leg side in everyday life may influence the ability to accurately estimate and track the descending object's motion.
Collapse
Affiliation(s)
- Takashi Hirata
- Department of Cognitive and Psychological Sciences, Nagoya University Graduate School of Informatics, Nagoya, Aichi, Japan
- JSPS Research Fellowships for Young Scientists, Tokyo, Japan
| | - Yutaka Hirata
- Department of Artificial Intelligence and Robotics, Chubu University College of Science and Engineering, Kasugai, Aichi, Japan
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi, Japan
- Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai, Aichi, Japan
| | - Nobuyuki Kawai
- Department of Cognitive and Psychological Sciences, Nagoya University Graduate School of Informatics, Nagoya, Aichi, Japan
- Academy of Emerging Sciences, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
2
|
Ono S, Miura K, Kawamura T, Kizuka T. Asymmetric smooth pursuit eye movements and visual motion reaction time. Physiol Rep 2019; 7:e14187. [PMID: 31353820 PMCID: PMC6661271 DOI: 10.14814/phy2.14187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 11/24/2022] Open
Abstract
Smooth pursuit eye movements often show directional asymmetry in pursuit initiation or steady-state pursuit in both humans and monkeys. It has been demonstrated that the initial part of smooth pursuit is driven by visual motion related signals in cortical areas. Parietal cortex such as middle temporal (MT) and medial superior temporal (MST) areas are known to be involved in visual motion perception as well as pursuit initiation. Therefore, the purpose of this study is to determine whether directional asymmetry in pursuit initiation is associated with visual motion perception. We used a step-ramp paradigm to induce horizontal smooth pursuit eye movements and then tested visual motion reaction time (RT). Visual motion RT was measured to the visual motion stimuli that moved leftward or rightward, which is an important parameter of our sensory motor processing based on visual motion perception. Nineteen healthy male subjects participated in the study. We found that some of our subjects showed directional asymmetries in initial pursuit acceleration between the leftward and rightward directions, which were consistent with an asymmetric bias in visual motion RT. Therefore, our results suggest that asymmetric pursuit initiation is associated with, at least in part, a bias of visual motion perception. These results could be due to a common neuronal pathway involved in both pursuit initiation and visual motion RT.
Collapse
Affiliation(s)
- Seiji Ono
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Kenichiro Miura
- Department of Integrative Brain Science, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Pathology of Mental DiseasesNational Institute of Mental Health, National Center of Neurology and PsychiatryTokyoJapan
| | - Takashi Kawamura
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Tomohiro Kizuka
- Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| |
Collapse
|
3
|
Blazquez PM, Kim G, Yakusheva TA. Searching for an Internal Representation of Stimulus Kinematics in the Response of Ventral Paraflocculus Purkinje Cells. THE CEREBELLUM 2018; 16:817-826. [PMID: 28439779 DOI: 10.1007/s12311-017-0861-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Motor control theories propose that the central nervous system builds internal representations of the motion of both our body and external objects. These representations, called forward models, are essential for accurate motor control. For instance, to produce a precise reaching movement to catch a flying ball, the central nervous system must build predictions of the current and future states of both the arm and the ball. Accumulating evidence suggests that the cerebellar cortex contains a forward model of an individual's body movement. However, little evidence is yet available to suggest that it also contains a forward model of the movement of external objects. We investigated whether Purkinje cell simple spike responses in an oculomotor region of the cerebellar cortex called the ventral paraflocculus contained information related to the kinematics of behaviorally relevant visual stimuli. We used a visuomotor task that obliges animals to track moving targets while keeping their eyes fixated on a stationary target to separate signals related to visual tracking from signals related to eye movement. We found that ventral paraflocculus Purkinje cells do not contain information related to the kinematics of behaviorally relevant visual stimuli; they only contain information related to eye movements. Our data stand in contrast with data obtained from cerebellar Crus I, wherein Purkinje cell discharge contains information related to moving visual stimuli. Together, these findings suggest specialization in the cerebellar cortex, with some areas participating in the computation of our movement kinematics and others computing the kinematics of behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Pablo M Blazquez
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - GyuTae Kim
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Institute for Information and Electronics Research, Inha University, Incheon, South Korea
| | - Tatyana A Yakusheva
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
4
|
Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools. J Neurosci 2017; 37:11353-11365. [PMID: 28972121 PMCID: PMC5700419 DOI: 10.1523/jneurosci.1711-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022] Open
Abstract
Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5–7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without compromising reflexive behavior. SIGNIFICANCE STATEMENT Interneuron populations use specific anatomical projections to transform sensations into reflexive actions. Here we examined how the anatomical composition of a genetically defined population of balance interneurons in the larval zebrafish relates to the computations it performs. First, we found that the population of interneurons that stabilize gaze preferentially project to motoneurons that move the eyes downward. Next, we discovered through modeling that such projection patterns can enhance the encoding of nose-up sensations without compromising gaze stabilization. Finally, we found that loss of these interneurons impairs a vital behavior, swim bladder inflation, that relies on maintaining a nose-up posture. These observations suggest that anatomical specialization permits neural circuits to represent relevant features of the environment without compromising behavior.
Collapse
|
5
|
Voges K, Wu B, Post L, Schonewille M, De Zeeuw CI. Mechanisms underlying vestibulo-cerebellar motor learning in mice depend on movement direction. J Physiol 2017; 595:5301-5326. [PMID: 28586131 PMCID: PMC5538199 DOI: 10.1113/jp274346] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Directionality, inherent to movements, has behavioural and neuronal correlates. Direction of vestibular stimulation determines motor learning efficiency. Vestibulo-ocular reflex gain-increase correlates with Purkinje cell simple spike potentiation. The locus of neural correlates for vestibulo-ocular reflex adaptation is paradigm specific. ABSTRACT Compensatory eye movements elicited by head rotation, also known as vestibulo-ocular reflex (VOR), can be adapted with the use of visual feedback. The cerebellum is essential for this type of movement adaptation, although its neuronal correlates remain to be clarified. In the present study, we show that the direction of vestibular input determines the magnitude of eye movement adaptation induced by mismatched visual input in mice, with larger changes during contraversive head rotation. Moreover, the location of the neural correlate of this changed behaviour depends on the type of paradigm. Gain-increase paradigms induce increased simple spike (SS) activity in ipsilateral cerebellar Purkinje cells (PC), which is in line with eye movements triggered by optogenetic PC activation. By contrast, gain-decrease paradigms do not induce changes in SS activity, indicating that the murine vestibulo-cerebellar cortical circuitry is optimally designed to enhance ipsiversive eye movements.
Collapse
Affiliation(s)
- Kai Voges
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,SINAPSE, Singapore National University, Singapore
| | - Bin Wu
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ito N, Takei H, Chiba S, Inoue K, Fukushima K. [Visual tracking with/without passive whole-body rotation in Parkinson's disease (PD): Dissociation of smooth-pursuit and cancellation of vestibulo-ocular reflex (VOR)]. Rinsho Shinkeigaku 2016; 56:158-64. [PMID: 26912226 DOI: 10.5692/clinicalneurol.cn-000766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although impaired smooth-pursuit in Parkinson's disease (PD) is well known, reports are conflicting on the ability to cancel vestibulo-ocular reflex (VOR) when the target moves with head, requiring gaze-pursuit. To compare visual tracking performance with or without passive whole-body rotation, we examined eye movements of 10 PD patients and 6 age-matched controls during sinusoidal horizontal smooth-pursuit and passive whole-body rotation (0.3 Hz, ± 10°). Three tasks were tested: smooth-pursuit, VOR cancellation, and VORx1 while subjects fixated an earth-stationary spot during whole-body rotation. Mean ± SD eye velocity gains (eye velocities/stimulus velocities) of PD patients during the 3 tasks were 0.32 ± 0.24 0.25 ± 0.22, 0.85 ± 0.20, whereas those of controls were 0.91 ± 0.06, 0.14 ± 0.07, 0.94 ± 0.05, respectively. Difference was significant between the two subject groups only during smooth-pursuit. Plotting eye-velocity gains of individual subjects during VOR cancellation against those during smooth-pursuit revealed significant negative linear correlation between the two parameters in the controls, but no correlation was found in PD patients. Based on the regression equation of the controls, we estimated expected eye velocity gains of individual subjects during VOR cancellation from their smooth-pursuit gains. Estimated gains of PD patients during VOR cancellation were significantly different from their actual gains, suggesting that different neural mechanisms operate during VOR cancellation in the controls and PD.
Collapse
Affiliation(s)
- Norie Ito
- Department of Neurology, Sapporo Yamanoue Hospital
| | | | | | | | | |
Collapse
|
7
|
Fukushima K, Fukushima J, Warabi T. Vestibular-related frontal cortical areas and their roles in smooth-pursuit eye movements: representation of neck velocity, neck-vestibular interactions, and memory-based smooth-pursuit. Front Neurol 2011; 2:78. [PMID: 22174706 PMCID: PMC3237097 DOI: 10.3389/fneur.2011.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/20/2011] [Indexed: 11/13/2022] Open
Abstract
Smooth-pursuit eye movements are voluntary responses to small slow-moving objects in the fronto-parallel plane. They evolved in primates, who possess high-acuity foveae, to ensure clear vision about the moving target. The primate frontal cortex contains two smooth-pursuit related areas; the caudal part of the frontal eye fields (FEF) and the supplementary eye fields (SEF). Both areas receive vestibular inputs. We review functional differences between the two areas in smooth-pursuit. Most FEF pursuit neurons signal pursuit parameters such as eye velocity and gaze-velocity, and are involved in canceling the vestibulo-ocular reflex by linear addition of vestibular and smooth-pursuit responses. In contrast, gaze-velocity signals are rarely represented in the SEF. Most FEF pursuit neurons receive neck velocity inputs, while discharge modulation during pursuit and trunk-on-head rotation adds linearly. Linear addition also occurs between neck velocity responses and vestibular responses during head-on-trunk rotation in a task-dependent manner. During cross-axis pursuit-vestibular interactions, vestibular signals effectively initiate predictive pursuit eye movements. Most FEF pursuit neurons discharge during the interaction training after the onset of pursuit eye velocity, making their involvement unlikely in the initial stages of generating predictive pursuit. Comparison of representative signals in the two areas and the results of chemical inactivation during a memory-based smooth-pursuit task indicate they have different roles; the SEF plans smooth-pursuit including working memory of motion-direction, whereas the caudal FEF generates motor commands for pursuit eye movements. Patients with idiopathic Parkinson's disease were asked to perform this task, since impaired smooth-pursuit and visual working memory deficit during cognitive tasks have been reported in most patients. Preliminary results suggested specific roles of the basal ganglia in memory-based smooth-pursuit.
Collapse
|
8
|
Karmali F, Shelhamer M. Neurovestibular considerations for sub-orbital space flight: A framework for future investigation. J Vestib Res 2010; 20:31-43. [PMID: 20555165 DOI: 10.3233/ves-2010-0349] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Commercial sub-orbital operators will soon offer the excitement of traveling to space to thousands of people. Based on previous experience in space flight and parabolic flight, sensorimotor disruptions in eye movements, postural stability, and motor coordination are likely in these travelers. Here we propose a framework for developing strategies to overcome these sensorimotor disruptions. We delineate how approaches should differ from those applied to orbital flight and between sub-orbital passengers and pilots based on differing frequency of flights and mission objectives. Sensorimotor adaptation is one strategy for overcoming disruptions; an important question is whether it occurs quickly enough to be of use during periods of reduced and enhanced gravity lasting less than five minutes. Data are presented showing that sensorimotor adaptation of the pitch vestibulo-ocular reflex during parabolic flight takes a few consecutive days of flying to overcome an initial disruption. We conclude with recommendations for operators and researchers to improve safety and comfort during sub-orbital operations. We recommend using parabolic flight as a tool for pre-adapting sub-orbital passengers, along with further research into the required quantity and timing of these pre-adaptation flights and the tasks conducted during these flights. Likewise, for sub-orbital pilots, we recommend emphasizing recency of experience.
Collapse
Affiliation(s)
- Faisal Karmali
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | |
Collapse
|
9
|
Kurkin S, Akao T, Fukushima J, Fukushima K. Discharge of pursuit-related neurons in the caudal part of the frontal eye fields in juvenile monkeys with up-down pursuit asymmetry. Exp Brain Res 2008; 193:181-8. [PMID: 18936920 DOI: 10.1007/s00221-008-1606-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 10/01/2008] [Indexed: 12/25/2022]
Abstract
The smooth-pursuit system uses retinal image-slip-velocity information of target motion to match eye velocity to actual target velocity. The caudal part of the frontal eye fields (FEF) contains neurons whose activity is related to direction and velocity of smooth-pursuit eye movements (pursuit neurons), and these neurons are thought to issue a pursuit command. During normal pursuit in well-trained adult monkeys, a pursuit command is usually not differentiable from the actual eye velocity. We examined whether FEF pursuit neurons signaled the actual eye velocity during pursuit in juvenile monkeys that exhibited intrinsic differences between upward and downward pursuit capabilities. Two, head-stabilized Japanese monkeys of 4 years of age were tested for sinusoidal vertical pursuit of target motion at 0.2-1.2 Hz (+/-10 degrees, peak target velocity 12.5-75.0 degrees/s). Gains of downward pursuit were 0.8-0.9 at 0.2-1.0 Hz, and peak downward eye velocity increased up to approximately 60 degrees/s linearly with target velocity, whereas peak upward eye velocity saturated at 15-20 degrees/s. The majority of downward FEF pursuit neurons increased the amplitude of their discharge modulation almost linearly up to 1.2 Hz. The majority of upward FEF pursuit neurons also increased amplitude of modulation nearly linearly as target frequency increased, and the regression slope was similar to that of downward pursuit neurons despite the fact that upward peak eye velocity saturated at approximately 0.5 Hz. These results indicate that the responses of the majority of upward FEF pursuit neurons did not signal the actual eye velocity during pursuit. We suggest that their activity reflected primarily the required eye velocity.
Collapse
Affiliation(s)
- Sergei Kurkin
- Department of Physiology, Hokkaido University School of Medicine, West 7, North 15, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
10
|
Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS. Lesions of the cerebellar nodulus and uvula impair downward pursuit. J Neurophysiol 2008; 100:1813-23. [PMID: 18650313 DOI: 10.1152/jn.01193.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied sinusoidal (SIN) and step-ramp (SR) pursuit in two rhesus monkeys, before and after surgical lesions of the cerebellar nodulus and uvula (Nod/Uv). Eye movements were recorded using the magnetic field scleral search coil method. Pursuit targets were generated by an LCD projector and back-projected onto a tangent screen in an otherwise dark room. After the Nod/Uv lesions, both monkeys showed a reduced eye velocity during downward pursuit (SIN: 42% decrease in M1, 91% decrease in M2; SR: 37% decrease in M1, 85% decrease in M2). For SR, the decrease was seen only for the closed-loop response; initial eye acceleration did not change (P>0.05). Upward pursuit gains increased for SIN (M1: 9%, M2: 11%); they decreased for SR (M1: 27%, M2: 18%), but to a lesser degree than for downward pursuit. Horizontal pursuit was little changed in M1 but was reduced in one direction in M2, the animal with the larger lesion. The deficit in downward tracking was limited to foveal pursuit; ocular following of random-dot stimuli was retained, even when the target subtended only several degrees. Our findings support a critical role for the Nod/Uv in vertical pursuit, particularly for sustained downward pursuit. Finally, in both monkeys, the lesion increased spontaneous upward ocular drift in the dark (mean prelesion, 1.43 degrees/s; postlesion, 5.92 degrees/s), suggesting a role for the Nod/Uv in holding the eyes still and in the genesis of downbeat nystagmus.
Collapse
Affiliation(s)
- Mark F Walker
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Fukushima K, Kasahara S, Akao T, Kurkin S, Fukushima J, Peterson BW. Eye-pursuit and reafferent head movement signals carried by pursuit neurons in the caudal part of the frontal eye fields during head-free pursuit. Cereb Cortex 2008; 19:263-75. [PMID: 18483002 PMCID: PMC2638789 DOI: 10.1093/cercor/bhn079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eye and head movements are coordinated during head-free pursuit. To examine whether pursuit neurons in frontal eye fields (FEF) carry gaze-pursuit commands that drive both eye-pursuit and head-pursuit, monkeys whose heads were free to rotate about a vertical axis were trained to pursue a juice feeder with their head and a target with their eyes. Initially the feeder and target moved synchronously with the same visual angle. FEF neurons responding to this gaze-pursuit were tested for eye-pursuit of target motion while the feeder was stationary and for head-pursuit while the target was stationary. The majority of pursuit neurons exhibited modulation during head-pursuit, but their preferred directions during eye-pursuit and head-pursuit were different. Although peak modulation occurred during head movements, the onset of discharge usually was not aligned with the head movement onset. The minority of neurons whose discharge onset was so aligned discharged after the head movement onset. These results do not support the idea that the head-pursuit–related modulation reflects head-pursuit commands. Furthermore, modulation similar to that during head-pursuit was obtained by passive head rotation on stationary trunk. Our results suggest that FEF pursuit neurons issue gaze or eye movement commands during gaze-pursuit and that the head-pursuit–related modulation primarily reflects reafferent signals resulting from head movements.
Collapse
Affiliation(s)
- Kikuro Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|