1
|
Suputtitada P, Costa V, Fregni F. The role of the contralesional primary motor cortex in upper limb recovery after stroke: a scoping review following PRISMA-ScR guidelines. BMC Neurosci 2025; 26:31. [PMID: 40414854 DOI: 10.1186/s12868-025-00950-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 05/12/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Stroke often results in motor impairments, with recovery involving complex interactions between the lesioned (ipsilesional) and non-lesioned (contralesional) hemispheres. This scoping review investigates the role of the contralesional primary motor cortex (M1) in motor recovery of the paretic upper limb following stroke, examining its structural and functional changes and compensatory roles. METHODS A systematic search for scoping review was conducted in PubMed, Embase, Web of Science, and Google Scholar following PRISMA-ScR guidelines. Studies examining contralesional M1 contributions to upper limb recovery in humans and animal models were included. Data were extracted, synthesized qualitatively, and assessed for risk of bias using SYRCLE and Cochrane tools. RESULTS A total of 38 studies were included in the analysis, consisting of 34 focused on stroke patients and 4 utilizing animal models. The findings revealed the dual and task-specific role of the contralesional primary motor cortex (M1) in upper limb recovery after stroke. In patients with severe motor impairments, contralesional M1 supported recovery through compensatory mechanisms, such as increased neuronal recruitment and functional reorganization. However, in cases with mild impairments, its activation was associated with inhibitory effects on ipsilesional reorganization, potentially delaying optimal recovery. Animal studies provided evidence of structural and functional plasticity, including dendritic remodeling and enhanced neuronal connectivity, which paralleled improvements in motor function. In human studies, contralesional M1 activation was task-dependent, with pronounced engagement during demanding tasks and unimanual movements. Ipsilateral motor deficits, including reduced dexterity, strength, and coordination, were commonly reported and underscored the disrupted interhemispheric dynamics influencing recovery. Neuromodulation techniques showed promise in modulating interhemispheric interactions and enhancing motor outcomes. These results emphasize the complex interplay between compensatory and inhibitory processes mediated by contralesional M1 in stroke recovery. CONCLUSION The contralesional M1 plays a complex, task-specific role in upper limb recovery after stroke, acting as both a compensatory resource and a potential inhibitory factor. Future research should stratify patients by impairment severity to refine therapeutic approaches. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Peerapat Suputtitada
- School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Valton Costa
- Laboratory of Neurosciences and Neurological Rehabilitation, Physical Therapy Department, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Neuromodulation Center, Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Shanks MJ, Byblow WD. Corticomotor pathway function and recovery after stroke: a look back and a way forward. J Physiol 2025; 603:651-662. [PMID: 38814805 PMCID: PMC11782909 DOI: 10.1113/jp285562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Stroke is a leading cause of adult disability that results in motor deficits and reduced independence. Regaining independence relies on motor recovery, particularly regaining function of the hand and arm. This review presents evidence from human studies that have used transcranial magnetic stimulation (TMS) to identify neurophysiological mechanisms underlying upper limb motor recovery early after stroke. TMS studies undertaken at the subacute stage after stroke have identified several neurophysiological factors that can drive motor impairment, including membrane excitability, the recruitment of corticomotor neurons, and glutamatergic and GABAergic neurotransmission. However, the inherent variability and subsequent poor reliability of measures derived from motor evoked potentials (MEPs) limit the use of TMS for prognosis at the individual patient level. Currently, prediction tools that provide the most accurate information about upper limb motor outcomes for individual patients early after stroke combine clinical measures with a simple neurophysiological biomarker based on MEP presence or absence, i.e. MEP status. Here, we propose a new compositional framework to examine MEPs across several upper limb muscles within a threshold matrix. The matrix can provide a more comprehensive view of corticomotor function and recovery after stroke by quantifying the evolution of subthreshold and suprathreshold MEPs through compositional analyses. Our contention is that subthreshold responses might be the most sensitive to reduced output of corticomotor neurons, desynchronized firing of the remaining neurons, and myelination processes that occur early after stroke. Quantifying subthreshold responses might provide new insights into post-stroke neurophysiology and improve the accuracy of prediction of upper limb motor outcomes.
Collapse
Affiliation(s)
- Maxine J. Shanks
- Department of Exercise SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Winston D. Byblow
- Department of Exercise SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Taga M, Hong YNG, Charalambous CC, Raju S, Hayes L, Lin J, Zhang Y, Shao Y, Houston M, Zhang Y, Mazzoni P, Roh J, Schambra HM. Corticospinal and corticoreticulospinal projections have discrete but complementary roles in chronic motor behaviors after stroke. J Neurophysiol 2024; 132:1917-1936. [PMID: 39503588 PMCID: PMC11687835 DOI: 10.1152/jn.00301.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/25/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
After corticospinal tract (CST) stroke, several motor deficits can emerge in the upper extremity (UE), including diminished muscle strength, motor control, and muscle individuation. Both the ipsilesional CST and contralesional corticoreticulospinal tract (CReST) innervate the paretic UE, but their relationship to motor behaviors after stroke remains uncertain. In this cross-sectional study of 14 chronic stroke and 27 healthy subjects, we examined two questions: whether the ipsilesional CST and contralesional CReST differentially relate to chronic motor behaviors in the paretic arm and hand and whether the severity of motor deficits differs by proximal versus distal location. In the paretic biceps and first dorsal interosseous muscles, we used transcranial magnetic stimulation to measure the projection strengths of the ipsilesional CST and contralesional CReST. We also used quantitative testing to measure strength, motor control, and muscle individuation in each muscle. We found that stroke subjects had muscle strength comparable to healthy subjects but poorer motor control and muscle individuation. In both paretic muscles, stronger ipsilesional CST projections related to better motor control, whereas stronger contralesional CReST projections related to better muscle strength. Stronger CST projections related to better individuation in the biceps alone. The severity of motor control and individuation deficits was comparable in the arm and hand. These findings suggest that the ipsilesional CST and contralesional CReST have specialized but complementary roles in motor behaviors of the paretic arm and hand. They also suggest that deficits in motor control and muscle individuation are not segmentally biased, underscoring the functional extent and efficacy of these pathways.NEW & NOTEWORTHY The corticospinal (CST) and corticoreticulospinal (CReST) tracts are two major descending motor pathways. We examined their relationships to motor behaviors in paretic arm and hand muscles in chronic stroke. Stronger ipsilesional CST projections related to better motor control, whereas stronger contralesional CReST projections related to better muscle strength. Stronger CST projections are also uniquely related to better biceps individuation. These findings support the notion of specialized but complementary contributions of these pathways to human motor function.
Collapse
Affiliation(s)
- Myriam Taga
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Yoon N G Hong
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Charalambos C Charalambous
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sharmila Raju
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Leticia Hayes
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Jing Lin
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
| | - Yian Zhang
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Yongzhao Shao
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
| | - Michael Houston
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Pietro Mazzoni
- Department of Neurology, Ohio State University, Columbus, Ohio, United States
| | - Jinsook Roh
- Department of Biomedical Engineering, University of Houston, Houston, Texas, United States
| | - Heidi M Schambra
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, United States
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine, New York, New York, United States
| |
Collapse
|
4
|
Mooney RA, Anaya MA, Stilling JM, Celnik PA. Heightened Reticulospinal Excitability after Severe Corticospinal Damage in Chronic Stroke. Ann Neurol 2024. [PMID: 39387284 DOI: 10.1002/ana.27103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE After severe corticospinal tract damage poststroke in humans, some recovery of strength and movement proximally is evident. It is possible that alternate motor pathways, such as the reticulospinal tract, may be upregulated to compensate for the loss of corticospinal tract input. We investigated the extent of reticulospinal tract excitability modulation and its inter-dependence on the severity of corticospinal tract damage after stroke in humans. METHODS We used a novel startle conditioned transcranial magnetic stimulation paradigm to elicit ipsilateral motor evoked potentials, an index of reticulospinal tract excitability, in 22 chronic stroke participants with mild to severe corticospinal tract damage and 14 neurotypical age-matched controls. RESULTS We found that ipsilateral motor evoked potential presence was higher in the paretic arm of people with severe corticospinal tract damage compared to their non-paretic arm, people with mild corticospinal tract damage, and age-matched controls. Interestingly, ipsilateral motor evoked potential presence was correlated with motor impairment across the entire stroke cohort, whereby individuals with worse impairment exhibited more frequent ipsilateral motor evoked potentials (ie, higher reticulospinal tract excitability). INTERPRETATION Following severe corticospinal tract damage, upregulated reticulospinal tract activity may compensate for a loss of corticospinal tract input, providing some proximal recovery of isolated and within-synergy movements, but deficits in performing out of synergy movements and finger fractionation remain. Interventions aimed at modulating the reticulospinal tract could be beneficial or detrimental to ameliorating motor impairment depending on the degree of reliance on this pathway for residual motor output. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Manuel A Anaya
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Joan M Stilling
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
5
|
Kim J, Yeo SH, Punt TD. Through the looking-glass: Mirror feedback modulates temporal and spatial aspects of bimanual coordination. Hum Mov Sci 2024; 96:103237. [PMID: 38810410 DOI: 10.1016/j.humov.2024.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Mirror therapy has become an effective and recommended intervention for a range of conditions affecting the upper limb (e.g. hemiparesis following stroke). However, little is known about how mirror feedback affects the control of bimanual movements (as performed during mirror therapy). In this study, in preparation for future clinical investigations, we examined the kinematics of bimanual circle drawing in unimpaired participants both with (Experiment 1) and without (Experiment 2) a visual template to guide movement. In both experiments, 15 unimpaired right-handed participants performed self-paced continuous bimanual circle-drawing movements with a mirror/symmetrical coordination pattern. For the mirror condition, vision was directed towards the mirror in order to monitor the reflected limb. In the no mirror condition, the direction of vision was unchanged, but the mirror was replaced with an opaque screen. Movements of both hands were recorded using motion capture apparatus. In both experiments, the most striking feature of movements was that the hand behind the mirror drifted spatially during the course of individual trials. Participants appeared to be largely unaware of this marked positional change of their unseen hand, which was most pronounced when a template to guide movement was visible (Experiment 1). Temporal asynchrony between the limbs was also affected by mirror feedback in both experiments; in the mirror condition, illusory vision of the unseen hand led to a relative phase lead for that limb. Our data highlight the remarkable impact that the introduction of a simple mirror can have on bimanual coordination. Modulation of spatial and temporal features is consistent with the mirror inducing a rapid and powerful visual illusion, the latter appearing to override proprioceptive signals.
Collapse
Affiliation(s)
- J Kim
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.
| | - S-H Yeo
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - T D Punt
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Williamson JN, James SA, He D, Peng RHT, Mulyana B, Yang Y. Bilateral High-Definition Transcranial Direct Current Stimulation for Upper Extremity Rehabilitation in Stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038978 DOI: 10.1109/embc53108.2024.10782733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Previous research shows that both anodal and cathodal high-definition transcranial direct current stimulation (HD-tDCS) may improve function of the upper extremity post stroke. However, most research has focused on the effects separately, therefore the purpose of this study was to determine the effects of performing simultaneous anodal-cathodal HD-tDCS. Five stroke participants received the stimulations in four visits with a two-week washout period: 1) anodal HD-tDCS to the ipsilesional primary motor cortex, 2) cathodal HD-tDCS to the contralesional dorsal premotor cortex, 3) bilateral anodal-cathodal HD-tDCS, and 4) sham. Active stimulation (anodal, cathodal, and bilateral) increased Fugl-Meyer upper extremity scores and decreased latency of ipsilesional M1-induced MEP. These results suggest that HD-tDCS could improve motor function of the upper extremity post-stroke, however, bilateral stimulation may not have an increased effect compared to anodal and cathodal HD-tDCS separately. This early phase study improves our understanding of neural circuitry and plasticity post stroke and HD-tDCS methods for improving function of the impaired arm post-stroke.
Collapse
|
7
|
Shemmell J, Falling C, MacKinnon CD, Stapley PJ, Ribeiro DC, Stinear JW. Different descending pathways mediate early and late portions of lower limb responses to transcranial magnetic stimulation. J Neurophysiol 2024; 131:1299-1310. [PMID: 38691532 DOI: 10.1152/jn.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024] Open
Abstract
Although recent studies in nonhuman primates have provided evidence that transcranial magnetic stimulation (TMS) activates cells within the reticular formation, it remains unclear whether descending brain stem projections contribute to the generation of TMS-induced motor evoked potentials (MEPs) in skeletal muscles. We compared MEPs in muscles with extensive direct corticomotoneuronal input (first dorsal interosseous) versus a prominent role in postural control (gastrocnemius) to determine whether the amplitudes of early and late MEPs were differentially modulated by cortical suppression. Suprathreshold TMS was applied with and without a preceding suprathreshold TMS pulse at two interstimulus intervals (50 and 80 ms). H reflexes in target muscles were also tested with and without TMS conditioning. Early and late gastrocnemius MEPs were differentially modulated by cortical inhibition, the amplitude of the early MEP being significantly reduced by cortical suppression and the late MEP facilitated. The amplitude of H reflexes in the gastrocnemius was reduced within the cortical silent period. Early MEPs in the first dorsal interosseous were also reduced during the silent period, but late MEPs were unaffected. Independent modulation of early and late MEPs in the gastrocnemius muscle supports the idea that the MEP is generated by multiple descending pathways. Suppression of the early MEP is consistent with transmission along the fast-conducting corticospinal tract, whereas facilitation of the late MEP suggests transmission along a corticofugal, potentially cortico-reticulospinal, pathway. Accordingly, differences in late MEP modulation between the first dorsal interosseous and gastrocnemius reflect an increased role of corticofugal pathways in the control of postural muscles.NEW & NOTEWORTHY Early and late portions of the response to transcranial magnetic stimulation (TMS) in a lower limb postural muscle are modulated independently by cortical suppression, late motor evoked potentials (MEPs) being facilitated during cortical inhibition. These results suggest a cortico-brain stem transmission pathway for late portions of the TMS-induced MEP.
Collapse
Affiliation(s)
- Jonathan Shemmell
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Carrie Falling
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
- School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Paul J Stapley
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - James W Stinear
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Taga M, Hong YNG, Charalambous CC, Raju S, Hayes L, Lin J, Zhang Y, Shao Y, Houston M, Zhang Y, Mazzoni P, Roh J, Schambra HM. Corticospinal and corticoreticulospinal projections benefit motor behaviors in chronic stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588112. [PMID: 38645144 PMCID: PMC11030245 DOI: 10.1101/2024.04.04.588112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
After corticospinal tract (CST) stroke, several motor deficits in the upper extremity (UE) emerge, including diminished muscle strength, motor control, and muscle individuation. Both the ipsilesional CST and contralesional corticoreticulospinal tract (CReST) innervate the paretic UE and may have different innervation patterns for the proximal and distal UE segments. These patterns may underpin distinct pathway relationships to separable motor behaviors. In this cross-sectional study of 15 chronic stroke patients and 28 healthy subjects, we examined two key questions: (1) whether segmental motor behaviors differentially relate to ipsilesional CST and contralesional CReST projection strengths, and (2) whether motor behaviors segmentally differ in the paretic UE. We measured strength, motor control, and muscle individuation in a proximal (biceps, BIC) and distal muscle (first dorsal interosseous, FDI) of the paretic UE. We measured the projection strengths of the ipsilesional CST and contralesional CReST to these muscles using transcranial magnetic stimulation (TMS). Stroke subjects had abnormal motor control and muscle individuation despite strength comparable to healthy subjects. In stroke subjects, stronger ipsilesional CST projections were linked to superior motor control in both UE segments, whereas stronger contralesional CReST projections were linked to superior muscle strength and individuation in both UE segments. Notably, both pathways also shared associations with behaviors in the proximal segment. Motor control deficits were segmentally comparable, but muscle individuation was worse for distal motor performance. These results suggest that each pathway has specialized contributions to chronic motor behaviors but also work together, with varying levels of success in supporting chronic deficits. Key points summary Individuals with chronic stroke typically have deficits in strength, motor control, and muscle individuation in their paretic upper extremity (UE). It remains unclear how these altered behaviors relate to descending motor pathways and whether they differ by proximal and distal UE segment.In this study, we used transcranial magnetic stimulation (TMS) to examine projection strengths of the ipsilesional corticospinal tract (CST) and contralesional corticoreticulospinal tract (CReST) with respect to quantitated motor behaviors in chronic stroke.We found that stronger ipsilesional CST projections were associated with better motor control in both UE segments, whereas stronger contralesional CReST projections were associated with better strength and individuation in both UE segments. In addition, projections of both pathways shared associations with motor behaviors in the proximal UE segment.We also found that deficits in strength and motor control were comparable across UE segments, but muscle individuation was worse with controlled movement in the distal UE segment.These results suggest that the CST and CReST have specialized contributions to chronic motor behaviors and also work together, although with different degrees of efficacy.
Collapse
|
9
|
Ti CHE, Hu C, Yuan K, Chu WCW, Tong RKY. Uncovering the Neural Mechanisms of Inter-Hemispheric Balance Restoration in Chronic Stroke Through EMG-Driven Robot Hand Training: Insights From Dynamic Causal Modeling. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1-11. [PMID: 38051622 DOI: 10.1109/tnsre.2023.3339756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
EMG-driven robot hand training can facilitate motor recovery in chronic stroke patients by restoring the interhemispheric balance between motor networks. However, the underlying mechanisms of reorganization between interhemispheric regions remain unclear. This study investigated the effective connectivity (EC) between the ventral premotor cortex (PMv), supplementary motor area (SMA), and primary motor cortex (M1) using Dynamic Causal Modeling (DCM) during motor tasks with the paretic hand. Nineteen chronic stroke subjects underwent 20 sessions of EMG-driven robot hand training, and their Action Reach Arm Test (ARAT) showed significant improvement ( β =3.56, [Formula: see text]). The improvement was correlated with the reduction of inhibitory coupling from the contralesional M1 to the ipsilesional M1 (r=0.58, p=0.014). An increase in the laterality index was only observed in homotopic M1, but not in the premotor area. Additionally, we identified an increase in resting-state functional connectivity (FC) between bilateral M1 ( β =0.11, p=0.01). Inter-M1 FC demonstrated marginal positive relationships with ARAT scores (r=0.402, p=0.110), but its changes did not correlate with ARAT improvements. These findings suggest that the improvement of hand functions brought about by EMG-driven robot hand training was driven explicitly by task-specific reorganization of motor networks. Particularly, the restoration of interhemispheric balance was induced by a reduction in interhemispheric inhibition from the contralesional M1 during motor tasks of the paretic hand. This finding sheds light on the mechanistic understanding of interhemispheric balance and functional recovery induced by EMG-driven robot training.
Collapse
|
10
|
Peng RHT, He D, James SA, Williamson JN, Skadden C, Jain S, Hassaneen W, Miranpuri A, Kaur A, Sarol JN, Yang Y. Determining the effects of targeted high-definition transcranial direct current stimulation on reducing post-stroke upper limb motor impairments-a randomized cross-over study. Trials 2024; 25:34. [PMID: 38195605 PMCID: PMC10775560 DOI: 10.1186/s13063-023-07886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Stroke is one of the leading causes of death in the USA and is a major cause of serious disability for adults. This randomized crossover study examines the effect of targeted high-definition transcranial direct current transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post-acute phase of stroke recovery. METHODS This randomized double-blinded cross-over study includes four intervention arms: anodal, cathodal, and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized order, with a 2-week washout period between each intervention. The primary outcome measure is change in Motor Evoked Potential. Secondary outcome measures include the Fugl-Meyer Upper Extremity (FM-UE) score, a subset of FM-UE (A), related to the muscle synergies, and the Modified Ashworth Scale. DISCUSSION We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excitability of the damaged cortico-spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation of the cortico-reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spasticity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the targeting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, and medicine. TRIAL REGISTRATION ClinicalTrials.gov NCT05479006 . Registered on 26 July 2022.
Collapse
Affiliation(s)
- Rita Huan-Ting Peng
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Foundation Hospital, Urbana, IL, USA
| | - Dorothy He
- The University of Oklahoma College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shirley A James
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jordan N Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Sanjiv Jain
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Wael Hassaneen
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amrendra Miranpuri
- Carle Foundation Hospital, Urbana, IL, USA
- Carle Illinois College of Medicine, Urbana, IL, USA
| | - Amandeep Kaur
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jesus N Sarol
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Foundation Hospital, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
11
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Corticospinal excitability during motor preparation of upper extremity reaches reflects flexor muscle synergies: A novel principal component-based motor evoked potential analyses. Restor Neurol Neurosci 2024; 42:121-138. [PMID: 38607772 DOI: 10.3233/rnn-231367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Background Previous research has shown that noninvasive brain stimulation can be used to study how the central nervous system (CNS) prepares the execution of a motor task. However, these previous studies have been limited to a single muscle or single degree of freedom movements (e.g., wrist flexion). It is currently unclear if the findings of these studies generalize to multi-joint movements involving multiple muscles, which may be influenced by kinematic redundancy and muscle synergies. Objective The objective of this study was to characterize corticospinal excitability during motor preparation in the cortex prior to functional upper extremity reaches. Methods 20 participants without neurological impairments volunteered for this study. During the experiment, the participants reached for a cup in response to a visual "Go Cue". Prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in motor evoked potentials (MEPs) in several upper extremity muscles. We varied each participant's initial arm posture and used a novel synergy-based MEP analysis to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the Go Cue and movement onset to examine the time course of motor preparation. Results We found that synergies with strong proximal muscle (shoulder and elbow) components emerged as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated. We also found that synergies varied with arm posture in a manner that reflected the muscle coordination of the reach. Conclusions We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
Affiliation(s)
- Thomas E Augenstein
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
| | - Seonga Oh
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | - Trevor A Norris
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandramouli Krishnan
- Department of Physical Medicine and Rehabilitation, NeuRRo Lab, Michigan Medicine, Ann Arbor, MI, USA
- Department of Robotics, University of Michigan, Ann Arbor, MI, USA
- Physical Medicine and Rehabilitation, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Williamson JN, James SA, He D, Li S, Sidorov EV, Yang Y. High-definition transcranial direct current stimulation for upper extremity rehabilitation in moderate-to-severe ischemic stroke: a pilot study. Front Hum Neurosci 2023; 17:1286238. [PMID: 37900725 PMCID: PMC10602806 DOI: 10.3389/fnhum.2023.1286238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract (CST) and hyperexcitability of the contralesional cortico-reticulospinal tract (CRST). This proof-of-concept study aims to develop a non-invasive brain stimulation protocol that facilitates the lesioned CST and inhibits the contralesional CRST to improve upper extremity rehabilitation in individuals with moderate-to-severe motor impairments post-stroke. Methods Fourteen individuals (minimum 3 months post ischemic stroke) consented. Physician decision of the participants baseline assessment qualified eight to continue in a randomized, double-blind cross-over pilot trial (ClinicalTrials.gov Identifier: NCT05174949) with: (1) anodal high-definition transcranial direct stimulation (HD-tDCS) over the ipsilesional primary motor cortex (M1), (2) cathodal HD-tDCS over contralesional dorsal premotor cortex (PMd), (3) sham stimulation, with a two-week washout period in-between. Subject-specific MR images and computer simulation were used to guide HD-tDCS and verified by Transcranial Magnetic Stimulation (TMS) induced Motor Evoked Potential (MEP). The motor behavior outcome was evaluated by an Fugl-Meyer Upper Extremity score (primary outcome measure) and the excitability of the ipslesoinal CST and contralesional CRST was determined by the change of MEP latencies and amplitude (secondary outcome measures). Results The baseline ipsilesional M1 MEP latency and amplitude were correlated with FM-UE. FM-UE scores were improved post HD-tDCS, in comparison to sham stimulation. Both anodal and cathodal HD-tDCS reduced the latency of the ipsilesional M1 MEP. The contralesional PMd MEP disappeared/delayed after HD-tDCS. Discussion These results suggest that HD-tDCS could improve the function of the lesioned corticospinal tract and reduce the excitability of the contralesional cortico-reticulospinal tract, thus, improving motor function of the upper extremity in more severely impaired individuals.
Collapse
Affiliation(s)
- Jordan N. Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Shirley A. James
- University of Oklahoma Health Sciences Center, Hudson College of Public Health, Oklahoma City, OK, United States
| | - Dorothy He
- University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, UT Health Huston, McGovern Medical School, Houston, TX, United States
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Gallogly College of Engineering, Stephenson School of Biomedical Engineering, University of Oklahoma, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Nguyen H, Phan T, Shadmehr R, Lee SW. Impact of unilateral and bilateral impairments on bimanual force production following stroke. J Neurophysiol 2023; 130:608-618. [PMID: 37529847 PMCID: PMC11550873 DOI: 10.1152/jn.00125.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
Large bilateral asymmetry and task deficits are typically observed during bimanual actions of stroke survivors. Do these abnormalities originate from unilateral impairments affecting their more-impaired limb, such as weakness and abnormal synergy, or from bilateral impairments such as incoordination of two limbs? To answer this question, 23 subjects including 10 chronic stroke survivors and 13 neurologically intact subjects participated in an experiment where they produced bimanual forces at different hand locations. The force magnitude and directional deviation of the more-impaired arm were measured for unilateral impairments and bimanual coordination across locations for bilateral impairments. Force asymmetry and task error were used to define task performance. Significant unilateral impairments were observed in subjects with stroke; the maximal force capacity of their more-impaired arm was significantly lower than that of their less-impaired arm, with a higher degree of force deviation. However, its force contribution during submaximal tasks was greater than its relative force capacity. Significant bilateral impairments were also observed, as stroke survivors modulated two forces to a larger degree across hand locations but in a less coordinated manner than control subjects did. But only unilateral, not bilateral, impairments explained a significant amount of between-subject variability in force asymmetry across subjects with stroke. Task error, in contrast, was correlated with neither unilateral nor bilateral impairments. Our results suggest that unilateral impairments of the more-impaired arm of stroke survivors mainly contribute to its reduced recruitment, but that the degree of its participation in bimanual task may be greater than their capacity as they attempt to achieve symmetry.NEW & NOTEWORTHY We studied how unilateral and bilateral impairments in stroke survivors affect their bimanual task performance. Unilateral impairments of the more-impaired limb, both weakness and loss of directional control, mainly contribute to bimanual asymmetry, but stroke survivors generally produce higher force with their more-impaired limb than their relative capacity. Bilateral force coordination was significantly impaired in stroke survivors, but its degree of impairment was not related to their unilateral impairments.
Collapse
Affiliation(s)
- Hien Nguyen
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, United States
- Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital, Washington, District of Columbia, United States
| | - Thanh Phan
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, United States
- Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital, Washington, District of Columbia, United States
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
| | - Sang Wook Lee
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, United States
- Center for Applied Biomechanics and Rehabilitation Research, MedStar National Rehabilitation Hospital, Washington, District of Columbia, United States
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
14
|
Parreira RB, Oliveira CS. Improvement of motor control in neurological patients through motor evoked potential changes induced by transcranial direct current stimulation therapy: A meta-analysis study. Gait Posture 2023; 106:53-64. [PMID: 37660514 DOI: 10.1016/j.gaitpost.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) seems to facilitate and/or inhibit neural activity and improve motor function in neurological patients. However, it is important to confirm such improvements as well as determine the association between neurophysiological changes and the enhancement of motor control. RESEARCH QUESTION Does the improvement of motor control in neurological patients after transcranial direct current stimulation translate into changes in the motor evoked potential? METHODS A systematic electronic search strategy was employed to identify studies indexed in the PubMed, BIREME, and COCHRANE databases using a combination of search terms adapted to each database: transcranial direct current stimulation; evoked potential motor; and motor control. Relevant data was extracted from each selected article and methodological quality was assessed using the PEDro scale. Standard mean differences with 95% confidence intervals were pooled using a random-effects model. Moreover, standard methods were employed for assessment of the heterogeneity of the studies. RESULTS Thirteen articles were included in this review. Anodal tDCS was found to increase the amplitude and diminish the latency of the MEP, which correlated positively with improvements in motor control. However, the improvement in MEP did not persist over time. SIGNIFICANCE Despite the paucity of studies, positive effects are found when combining anodal tDCS and a therapeutic intervention, such as an improvement in MEP and better motor control in neurological patients. Future studies should include neurophysiological measures other than MEP and consider a homogenous analysis.
Collapse
Affiliation(s)
- Rodolfo Borges Parreira
- Health Sciences Program, Faculty of Medical Sciences of Santa Casa de Sao Paulo, Doutor Cesário Motta Júnior st. #61, zip code 01221-020, São Paulo, SP, Brazil; PostureLab, 20 rue du rendez-vous, 75012 Paris, France; Universidade Evangelica de Goias, Universitária av. 3,5 - Cidade Universitária, zip code: 75083-515, Anápolis, GO, Brazil.
| | - Claudia Santos Oliveira
- Health Sciences Program, Faculty of Medical Sciences of Santa Casa de Sao Paulo, Doutor Cesário Motta Júnior st. #61, zip code 01221-020, São Paulo, SP, Brazil; Universidade Evangelica de Goias, Universitária av. 3,5 - Cidade Universitária, zip code: 75083-515, Anápolis, GO, Brazil.
| |
Collapse
|
15
|
Ko NH, Laine CM, Valero-Cuevas FJ. Task-dependent alteration of beta-band intermuscular coherence is associated with ipsilateral corticospinal tract excitability. Front Sports Act Living 2023; 5:1177004. [PMID: 37576608 PMCID: PMC10416639 DOI: 10.3389/fspor.2023.1177004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Beta-band (15-30 Hz) synchronization between the EMG signals of active limb muscles can serve as a non-invasive assay of corticospinal tract integrity. Tasks engaging a single limb often primarily utilize one corticospinal pathway, although bilateral neural circuits can participate in goal-directed actions involving multi-muscle coordination and utilization of feedback. Suboptimal utilization of such circuits after CNS injury can result in unintended mirror movements and activation of pathological synergies. Accordingly, it is important to understand how the actions of one limb (e.g., a less-affected limb after strokes) influence the opposite corticospinal pathway for the rehabilitation target. Certain unimanual actions decrease the excitability of the "unengaged" corticospinal tract, presumably to prevent mirror movement, but there is no direct way to predict the extent to which this will occur. In this study, we tested the hypothesis that task-dependent changes in beta-band drives to muscles of one hand will inversely correlate with changes in the opposite corticospinal tract excitability. Ten participants completed spring pinching tasks known to induce differential 15-30 Hz drive to muscles. During compressions, transcranial magnetic stimulation single pulses to the ipsilateral M1 were delivered to generate motor-evoked potentials in the unengaged hand. The task-induced changes in ipsilateral corticospinal excitability were inversely correlated with associated changes in EMG-EMG coherence of the task hand. These results demonstrate a novel connection between intermuscular coherence and the excitability of the "unengaged" corticospinal tract and provide a springboard for further mechanistic studies of unimanual tasks of varying difficulty and their effects on neural pathways relevant to rehabilitation.
Collapse
Affiliation(s)
- Na-hyeon Ko
- Department of Physical Therapy, California State University, Fresno, CA, United States
| | - Christopher M. Laine
- Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J. Valero-Cuevas
- Brain Body Dynamics Lab, Division of Biokinesiology and Physical Therapy, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
16
|
Augenstein TE, Oh S, Norris TA, Mekler J, Sethi A, Krishnan C. Muscle Coordination Matters: Insights into Motor Planning using Corticospinal Responses during Functional Reaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540531. [PMID: 37292868 PMCID: PMC10245565 DOI: 10.1101/2023.05.15.540531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The central nervous system (CNS) moves the human body by forming a plan in the primary motor cortex and then executing this plan by activating the relevant muscles. It is possible to study motor planning by using noninvasive brain stimulation techniques to stimulate the motor cortex prior to a movement and examine the evoked responses. Studying the motor planning process can reveal useful information about the CNS, but previous studies have generally been limited to single degree of freedom movements ( e.g., wrist flexion). It is currently unclear if findings in these studies generalize to multi-joint movements, which may be influenced by kinematic redundancy and muscle synergies. Here, our objective was to characterize motor planning in the cortex prior to a functional reach involving the upper extremity. We asked participants to reach for a cup placed in front of them when presented with a visual "Go Cue". Following the go cue, but prior to movement onset, we used transcranial magnetic stimulation (TMS) to stimulate the motor cortex and measured the changes in the magnitudes of evoked responses in several upper extremity muscles (MEPs). We varied each participant's initial arm posture to examine the effect of muscle coordination on MEPs. Additionally, we varied the timing of the stimulation between the go cue and movement onset to examine the time course of changes in the MEPs. We found that the MEPs in all proximal (shoulder and elbow) muscles increased as the stimulation was delivered closer to movement onset, regardless of arm posture, but MEPs in the distal (wrist and finger) muscles were not facilitated or even inhibited. We also found that facilitation varied with arm posture in a manner that reflected the coordination of the subsequent reach. We believe that these findings provide useful insight into the way the CNS plans motor skills.
Collapse
|
17
|
Sherman DA, Baumeister J, Stock MS, Murray AM, Bazett-Jones DM, Norte GE. Weaker Quadriceps Corticomuscular Coherence in Individuals after ACL Reconstruction during Force Tracing. Med Sci Sports Exerc 2023; 55:625-632. [PMID: 36730761 DOI: 10.1249/mss.0000000000003080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE This study aimed to compare quadriceps corticomuscular coherence (CMC) and force steadiness between individuals with anterior cruciate ligament reconstruction (ACLR) and uninjured controls during a force tracing task. METHODS Individuals with ACLR ( n = 20) and controls ( n = 20) performed a knee extension force-control task at 50% of maximal voluntary effort. Electrocortical activity, electromyographic activity, and torque output were recorded concurrently. CMC in beta (13-30 Hz) and gamma (31-80 Hz) frequency bands was assessed using partial directed coherence between the contralateral motor cortex (e.g., C4-C2-Cz electrodes) and the ipsilateral quadriceps muscles (e.g., left vastus medialis and lateralis). Force steadiness was quantified using root-mean-square error and coefficient of variation. Active motor threshold was determined using transcranial magnetic stimulation. Differences between groups (ACLR vs control) and limbs (involved vs uninvolved) were assessed using peak knee extension strength and active motor threshold as a priori covariates. RESULTS Participants with ACLR had lower gamma band connectivity bilaterally when compared with controls (vastus medialis: d = 0.8; vastus lateralis: d = 0.7). Further, the ACLR group demonstrated worse quadriceps force steadiness (root-mean-square error, d = 0.5), lower involved limb quadriceps strength ( d = 1.1), and higher active motor threshold ( d = 1.0) compared with controls. CONCLUSIONS Lower quadriceps gamma band CMC in the ACLR group suggests lower cortical drive (e.g., corticomotor decoupling) to the quadriceps compared with matched controls. Further, the ACLR group demonstrated worse quadriceps force steadiness, suggesting impaired ability to modulate quadriceps neuromuscular control. Notably, CMC differences were present only in the gamma frequency band, suggesting impairments may be specific to multisensory integration and force modulation.
Collapse
Affiliation(s)
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise and Health, Faculty of Science, Paderborn University, Paderborn, GERMANY
| | - Matt S Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL
| | - Amanda M Murray
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| | - David M Bazett-Jones
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| | - Grant E Norte
- School of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, OH
| |
Collapse
|
18
|
Russell C, Difford N, Stamenkovic A, Stapley P, McAndrew D, Arpel C, MacKinnon C, Shemmell J. Postural support requirements preferentially modulate late components of the gastrocnemius response to transcranial magnetic stimulation. Exp Brain Res 2022; 240:2647-2657. [PMID: 36006434 PMCID: PMC9510120 DOI: 10.1007/s00221-022-06440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Mounting evidence suggests that motor evoked potentials (MEPs) recorded in upper limb muscles with postural support roles following transcranial magnetic stimulation receive contributions from both corticospinal and non-corticospinal descending pathways. We tested the hypothesis that neural structures responsible for regulating upright balance are involved in transmitting late portions of TMS-induced MEPs in a lower limb muscle. MEPs were recorded in the medial gastrocnemius muscles of each leg, while participants supported their upright posture in five postural conditions that required different levels of support from the target muscles. We observed that early and late portions of the MEP were modulated independently, with early MEP amplitude being reduced when high levels of postural support were required from a target muscle. Independent modulation of early and late MEPs by altered postural demand suggests largely separable transmission of each part of the MEP. The early component of the MEP is likely generated by fast-conducting corticospinal pathways, whereas the later component may be primarily transmitted along a polysynaptic cortico-reticulospinal pathway.
Collapse
Affiliation(s)
- Cassandra Russell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Nathan Difford
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Alexander Stamenkovic
- Department of Physical Therapy, College of Health Professions, Virgina Commonwealth University, Richmond, USA
| | - Paul Stapley
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Darryl McAndrew
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Caitlin Arpel
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Colum MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Jonathan Shemmell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
19
|
Lee H, Honeycutt C, Perreault E. Influence of task complexity on movement planning and release after stroke: insights from startReact. Exp Brain Res 2022; 240:1765-1774. [PMID: 35445354 DOI: 10.1007/s00221-022-06368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
Abstract
The capacity to plan movement following stroke is diminished when reaching from a standing position. Two mechanisms have been proposed: increased task complexity compared to simpler tasks and inhibition between the pathways controlling whole-body posture and upper extremity reaching. The objective of this study was to determine if task complexity alone can alter planning and release (or involuntary execution) capacity when whole-body postural adjustment is not required. Data were collected from 10 stroke survivors and 8 age-matched controls. Ballistic elbow extension movements were performed with and without voluntary shoulder abduction, adding complexity by anti-gravity arm support that enhanced the expression of abnormal muscle synergies linking elbow and shoulder after stroke. Our primary finding was in support of our hypothesis that startReact (involuntary release of planned movement by a startling stimulus) would be intact but that the increased task complexity would decrease the capacity to plan and release movement. StartReact was intact for both tasks with and without shoulder abduction. Despite the intact startReact response across both conditions following stroke, the incidence of startReact was decreased during the shoulder abduction task similar to prior studies showing a decrease during tasks of higher complexity. Our results suggest that individuals with stroke have a diminished capacity to plan and release movement as task complexity increases. This study highlights the unique potential for startReact to be used as a clinical tool to probe the capacity to plan and release movement following stroke and how that capacity is affected by the complexity of the task being performed. Such a tool may be useful for assessing functional impairments and tracking changes during the rehabilitation process.
Collapse
Affiliation(s)
- Hyunglae Lee
- School for Engineering of Matter, Transport and Energy, 501 E Tyler Mall, ECG 301, Tempe, AZ, 85287, USA.
| | - Claire Honeycutt
- School of Biological and Health Systems Engineering, Tempe, AZ, 85287, USA
| | - Eric Perreault
- Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
20
|
Jo S, Kim H, Song C. A Novel Approach to Increase Attention during Mirror Therapy among Stroke Patients: A Video-Based Behavioral Analysis. Brain Sci 2022; 12:brainsci12030297. [PMID: 35326254 PMCID: PMC8946785 DOI: 10.3390/brainsci12030297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022] Open
Abstract
Stroke is a major cause of disability and an evident rehabilitation strategy is crucial. Mirror therapy (MT) is one of the popular rehabilitation methods that is known to be effective as the patients benefit from the mirror illusion. However, the patient’s attention to the mirror illusion during treatment is unclear. Therefore, the present study assesses the duration and frequency of the mirror gaze, distraction, and preparation of sixteen stroke patients during two MT methods using a behavioral coding software. During the 30 min treatment, the total mirror gaze duration during conventional bilateral MT (BMT) was 564.04 s, while it was 1482.45 s in unilateral MT using a screen (UMT). The total distracted time was 945.61 s in BMT, while it was only 162.03 s in UMT. The total preparatory duration was 290.35 s in BMT and 155.53 s in UMT. The total number of distracted bouts were 136.45 in BMT, while it was 73.38 in UMT. The total number of preparatory bouts were 18.42 in BMT and 9.56 in UMT. The average times of gaze duration per bout were 5.52 s in BMT and 21.81 s in UMT. The average times of distraction per bout were 9.22 s in BMT and 3.00 s in UMT. The total number of mirror gaze bouts and average time of preparation per bout did not present a statistical significance in the comparisons of the two methods. This study assesses two methods of MT using observational coding software to evaluate the duration and frequency of the mirror gaze during treatment. The results suggest that UMT may be an alternative option to provide MT for stroke patients to increase their attention towards the mirror.
Collapse
|
21
|
Ramaswamy D, Parimala S. Role of mirror therapy in management of stroke – Current and future perspectives. ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_182_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
Tavazzi E, Bergsland N, Pirastru A, Cazzoli M, Blasi V, Baglio F. MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: A systematic review. Neuroimage Clin 2021; 33:102931. [PMID: 34995869 PMCID: PMC8741615 DOI: 10.1016/j.nicl.2021.102931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stroke-related disability is a major problem at individual and socio-economic levels. Neuromotor rehabilitation has a key role for its dual action on affected body segment and brain reorganization. Despite its known efficacy in clinical practice, the extent and type of effect at a brain level, mediated by neuroplasticity, are still under question. OBJECTIVE To analyze studies applying MRI markers of functional and structural connectivity in patients affected with stroke undergoing motor rehabilitation, and to evaluate the effect of rehabilitation on brain reorganization. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria were applied to select studies applying quantitative non-conventional MRI techniques on patients undergoing motor rehabilitation, both physical and virtual (virtual reality, mental imagery). Literature search was conducted using MEDLINE (via PubMed), Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE from inception to 30th June 2020. RESULTS Forty-one out of 6983 papers were included in the current review. Selected studies are heterogeneous in terms of patient characteristics as well as type, duration and frequency of rehabilitative approach. Neuromotor rehabilitation promotes neuroplasticity, favoring functional recovery of the ipsilesional hemisphere and activation of anatomically and functionally related brain areas in both hemispheres, to compensate for damaged tissue. CONCLUSIONS The evidence derived from the analyzed studies supports the positive impact of rehabilitation on brain reorganization, despite the high data heterogeneity. Advanced MRI techniques provide reliable markers of structural and functional connectivity that may potentially aid in helping to implement the most appropriate rehabilitation intervention.
Collapse
Affiliation(s)
- E Tavazzi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - N Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - A Pirastru
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - M Cazzoli
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - V Blasi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - F Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| |
Collapse
|
23
|
Taga M, Charalambous CC, Raju S, Lin J, Zhang Y, Stern E, Schambra HM. Corticoreticulospinal tract neurophysiology in an arm and hand muscle in healthy and stroke subjects. J Physiol 2021; 599:3955-3971. [PMID: 34229359 DOI: 10.1113/jp281681] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The corticoreticulospinal tract (CReST) is a descending motor pathway that reorganizes after corticospinal tract (CST) injury in animals. In humans, the pattern of CReST innervation to upper limb muscles has not been carefully examined in healthy individuals or individuals with CST injury. In the present study, we assessed CReST projections to an arm and hand muscle on the same side of the body in healthy and chronic stoke subjects using transcranial magnetic stimulation. We show that CReST connection strength to the muscles differs between healthy and stroke subjects, with stronger connections to the hand than arm in healthy subjects, and stronger connections to the arm than hand in stroke subjects. These results help us better understand CReST innervation patterns in the upper limb, and may point to its role in normal motor function and motor recovery in humans. ABSTRACT The corticoreticulospinal tract (CReST) is a major descending motor pathway in many animals, but little is known about its innervation patterns in proximal and distal upper extremity muscles in humans. The contralesional CReST furthermore reorganizes after corticospinal tract (CST) injury in animals, but it is less clear whether CReST innervation changes after stroke in humans. We thus examined CReST functional connectivity, connection strength, and modulation in an arm and hand muscle of healthy (n = 15) and chronic stroke (n = 16) subjects. We delivered transcranial magnetic stimulation to the contralesional hemisphere (assigned in healthy subjects) to elicit ipsilateral motor evoked potentials (iMEPs) from the paretic biceps (BIC) and first dorsal interosseous (FDI) muscle. We operationalized CReST functional connectivity as iMEP presence/absence, CReST projection strength as iMEP size and CReST modulation as change in iMEP size by head rotation. We found comparable CReST functional connectivity to the BICs and FDIs in both subject groups. However, the pattern of CReST connection strength to the muscles diverged between groups, with stronger connections to FDIs than BICs in healthy subjects and stronger connections to BICs than FDIs in stroke subjects. Head rotation modulated only FDI iMEPs of healthy subjects. Our findings indicate that the healthy CReST does not have a proximal innervation bias, and its strong FDI connections may have functional relevance to finger individuation. The reversed CReST innervation pattern in stroke subjects confirms its reorganization after CST injury, and its strong BIC connections may indicate upregulation for particular upper extremity muscles or their functional actions.
Collapse
Affiliation(s)
- Myriam Taga
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Charalambos C Charalambous
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA.,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.,Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, Nicosia, Cyprus
| | - Sharmila Raju
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Jing Lin
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Yian Zhang
- Division of Biostatistics, Department of Population Health, School of Medicine, New York University, New York, NY, USA
| | - Elisa Stern
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| | - Heidi M Schambra
- Department of Neurology, School of Medicine, NYU Langone, New York, NY, USA
| |
Collapse
|
24
|
Hill NM, Sukal-Moulton T, Dewald JPA. Between Limb Muscle Co-activation Patterns in the Paretic Arm During Non-paretic Arm Tasks in Hemiparetic Cerebral Palsy. Front Neurosci 2021; 15:666697. [PMID: 34393702 PMCID: PMC8358604 DOI: 10.3389/fnins.2021.666697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Tasks of daily life require the independent use of the arms and hands. Individuals with hemiparetic cerebral palsy (HCP) often experience difficulty with fine motor tasks demonstrating mirrored movements between the arms. In this study, bilateral muscle activations were quantified during single arm isometric maximum efforts and submaximal reaching tasks. The magnitude and direction of mirrored activation was examined in 14 individuals with HCP and 9 age-matched controls. Participants generated maximum voluntary torques (MVTs) in five different directions and completed ballistic reaches while producing up to 80% of shoulder abduction MVT. Electromyography (EMG) signals were recorded from six upper extremity muscles bilaterally. Participants with HCP demonstrated more mirrored activation when volitionally contracting the non-paretic (NP) arm than the paretic arm (F = 83.543, p < 0.001) in isometric efforts. Increased EMG activation during reach acceleration resulted in a larger increase in rest arm co-activation when reaching with the NP arm compared to the paretic arm in the HCP group (t = 8.425, p < 0.001). Mirrored activation is more pronounced when driving the NP arm and scales with effort level. This directionality of mirroring is indicative of the use of ipsilaterally terminating projections of the corticospinal tract (CST) originating in the non-lesioned hemisphere. Peripheral measures of muscle activation provide insight into the descending pathways available for control of the upper extremity after early unilateral brain injury.
Collapse
Affiliation(s)
- Nayo M Hill
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Theresa Sukal-Moulton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Pediatrics, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
25
|
Hammerbeck U, Tyson SF, Samraj P, Hollands K, Krakauer JW, Rothwell J. The Strength of the Corticospinal Tract Not the Reticulospinal Tract Determines Upper-Limb Impairment Level and Capacity for Skill-Acquisition in the Sub-Acute Post-Stroke Period. Neurorehabil Neural Repair 2021; 35:812-822. [PMID: 34219510 PMCID: PMC8414832 DOI: 10.1177/15459683211028243] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Upper-limb impairment in patients with
chronic stroke appears to be partly attributable to an
upregulated reticulospinal tract (RST). Here, we assessed whether the impact of
corticospinal (CST) and RST connectivity on motor impairment and
skill-acquisition differs in sub-acute stroke, using
transcranial magnetic stimulation (TMS)–based proxy measures.
Methods. Thirty-eight stroke survivors were randomized to
either reach training 3-6 weeks post-stroke (plus usual care) or usual care
only. At 3, 6 and 12 weeks post-stroke, we measured ipsilesional and
contralesional cortical connectivity (surrogates for CST and RST connectivity,
respectively) to weak pre-activated triceps and deltoid muscles with single
pulse TMS, accuracy of planar reaching movements, muscle strength (Motricity
Index) and synergies (Fugl-Meyer upper-limb score). Results.
Strength and presence of synergies were associated with ipsilesional (CST)
connectivity to the paretic upper-limb at 3 and 12 weeks. Training led to planar
reaching skill beyond that expected from spontaneous recovery and occurred for
both weak and strong ipsilesional tract integrity. Reaching ability, presence of
synergies, skill-acquisition and strength were not affected by either the
presence or absence of contralesional (RST) connectivity.
Conclusion. The degree of ipsilesional CST connectivity is
the main determinant of proximal dexterity, upper-limb strength and synergy
expression in sub-acute stroke. In contrast, there is no evidence for enhanced
contralesional RST connectivity contributing to any of these components of
impairment. In the sub-acute post-stroke period, the balance of activity between
CST and RST may matter more for the paretic phenotype than RST upregulation per
se.
Collapse
Affiliation(s)
- Ulrike Hammerbeck
- Geoffrey Jefferson Brain Research Centre, 158986Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Healthy, 5292University of Manchester, Manchester, UK.,Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Sarah F Tyson
- Department of Health Professions, Faculty of Health, Psychology and Social Care, 5289Manchester Metropolitan University, Manchester, UK
| | - Prawin Samraj
- Department of Medical Physics, Northern Care Alliance NHS Trust, Salford, UK
| | - Kristen Hollands
- Department of Health Sciences, 105168University of Salford, Salford, UK
| | - John W Krakauer
- Departments of Neurology, Neuroscience and Physical Medicine & Rehabilitation, 1500The John Hopkins University School of Medicine, Baltimore, MD, USA.,The Santa Fe Institute, Santa Fe, NM, USA
| | - John Rothwell
- Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Laine CM, Cohn BA, Valero-Cuevas FJ. Temporal control of muscle synergies is linked with alpha-band neural drive. J Physiol 2021; 599:3385-3402. [PMID: 33963545 DOI: 10.1113/jp281232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS It is theorized that the nervous system controls groups of muscles together as functional units, or 'synergies', resulting in correlated electromyographic (EMG) signals among muscles. However, such correlation does not necessarily imply group-level neural control. Oscillatory synchronization (coherence) among EMG signals implies neural coupling, but it is not clear how this relates to control of muscle synergies. EMG was recorded from seven arm muscles of 10 adult participants rotating an upper limb ergometer, and EMG-EMG coherence, EMG amplitude correlations and their relationship with each other were characterized. A novel method to derive multi-muscle synergies from EMG-EMG coherence is presented and these are compared with classically defined synergies. Coherent alpha-band (8-16 Hz) drive was strongest among muscles whose gross activity levels are well correlated within a given task. The cross-muscle distribution and temporal modulation of coherent alpha-band drive suggests a possible role in the neural coordination/monitoring of synergies. ABSTRACT During movement, groups of muscles may be controlled together by the nervous system as an adaptable functional entity, or 'synergy'. The rules governing when (or if) this occurs during voluntary behaviour in humans are not well understood, at least in part because synergies are usually defined by correlated patterns of muscle activity without regard for the underlying structure of their neural control. In this study, we investigated the extent to which comodulation of muscle output (i.e. correlation of electromyographic (EMG) amplitudes) implies that muscles share intermuscular neural input (assessed via EMG-EMG coherence analysis). We first examined this relationship among pairs of upper limb muscles engaged in an arm cycling task. We then applied a novel multidimensional EMG-EMG coherence analysis allowing synergies to be characterized on the basis of shared neural drive. We found that alpha-band coherence (8-16 Hz) is related to the degree to which overall muscle activity levels correlate over time. The extension of this coherence analysis to describe the cross-muscle distribution and temporal modulation of alpha-band drive revealed a close match to the temporal and structural features of traditionally defined muscle synergies. Interestingly, the coherence-derived neural drive was inversely associated with, and preceded, changes in EMG amplitudes by ∼200 ms. Our novel characterization of how alpha-band neural drive is dynamically distributed among muscles is a fundamental step forward in understanding the neural origins and correlates of muscle synergies.
Collapse
Affiliation(s)
- Christopher M Laine
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Brian A Cohn
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Hill NM, Dewald JPA. The Upper Extremity Flexion Synergy Is Minimally Expressed in Young Individuals With Unilateral Cerebral Palsy Following an Early Brain Injury. Front Hum Neurosci 2020; 14:590198. [PMID: 33192425 PMCID: PMC7596321 DOI: 10.3389/fnhum.2020.590198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Hemiparetic stroke in adulthood often results in the grouped movement pattern of the upper extremity flexion synergy thought to arise from an increased reliance on cortico-reticulospinal pathways due to a loss of lateral corticospinal projections. It is well established that the flexion synergy induces reaching constraints in individuals with adult-onset hemiplegia. The expression of the flexion synergy in individuals with brain injuries onset earlier in the lifespan is currently unknown. An early unilateral brain injury occurring prior to six months post full-term may preserve corticospinal projections which can be used for independent joint control and thus minimizing the expression of the flexion synergy. This study uses kinematics of a ballistic reaching task to evaluate the expression of the flexion synergy in individuals with pediatric hemiplegia (PH) ages six to seventeen years. Fifteen individuals with brain injuries before birth (n = 8) and around full-term (n = 7) and nine age-matched controls with no known neurological impairment completed a set of reaches in an admittance controlled robotic device. Descending drive, and the possible expression of the upper extremity flexion synergy, was modulated by increasing shoulder abduction loading. Individuals with early-onset PH achieved lower peak velocities when reaching with the paretic arm compared to controls; however, no differences in reaching distance were found between groups. Relative maintenance in reaching seen in individuals with early brain injuries highlights minimal expression of the flexion synergy. We interpret this conservation of independent control of the paretic shoulder and elbow as the use of more direct corticospinal projections instead of indirect cortico-reticulospinal pathways used in individuals with adult-onset hemiplegia.
Collapse
Affiliation(s)
- Nayo M Hill
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| |
Collapse
|
28
|
Senesh MR, Barragan K, Reinkensmeyer DJ. Rudimentary Dexterity Corresponds With Reduced Ability to Move in Synergy After Stroke: Evidence of Competition Between Corticoreticulospinal and Corticospinal Tracts? Neurorehabil Neural Repair 2020; 34:904-914. [PMID: 32830602 PMCID: PMC7572533 DOI: 10.1177/1545968320943582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE When a stroke damages the corticospinal tract (CST), it has been hypothesized that the motor system switches to using the corticoreticulospinal tract (CRST) resulting in abnormal arm synergies. Is use of these tracts mutually exclusive, or can the motor system spontaneously switch between them depending on the type of movement it wants to make? If the motor system can share control at will, then people with a rudimentary ability to make dexterous movements should be able to perform synergistic arm movements as well. METHODS We analyzed clinical assessments of 319 persons' abilities to perform "out-of-synergy" and "in-synergy" arm movements after chronic stroke using the Upper Extremity Fugl-Meyer (UEFM) scale. RESULTS We identified a moderate range of arm impairment (UEFM = ~30-40) where subjects had a rudimentary ability to make out-of-synergy (~23%-50% on the out-of-synergy score) and dexterous hand movements (~3-10 blocks on Box and Blocks Test). Below this range persons could perform in-synergy but not out-of-synergy or dexterous movements. In the moderate range, however, scoring better on out-of-synergy movements correlated with scoring worse on in-synergy movements (P = .001, r ≈ -0.6). CONCLUSION Rudimentary dexterity corresponded with reduced ability to move the arm in-synergy. This finding supports the idea that CST and CRST compete and has implications for rehabilitation therapy.
Collapse
|
29
|
Neurofeedback of scalp bi-hemispheric EEG sensorimotor rhythm guides hemispheric activation of sensorimotor cortex in the targeted hemisphere. Neuroimage 2020; 223:117298. [PMID: 32828924 DOI: 10.1016/j.neuroimage.2020.117298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 12/26/2022] Open
Abstract
Oscillatory electroencephalographic (EEG) activity is associated with the excitability of cortical regions. Visual feedback of EEG-oscillations may promote sensorimotor cortical activation, but its spatial specificity is not truly guaranteed due to signal interaction among interhemispheric brain regions. Guiding spatially specific activation is important for facilitating neural rehabilitation processes. Here, we tested whether users could explicitly guide sensorimotor cortical activity to the contralateral or ipsilateral hemisphere using a spatially bivariate EEG-based neurofeedback that monitors bi-hemispheric sensorimotor cortical activities for healthy participants. Two different motor imageries (shoulder and hand MIs) were selected to see how differences in intrinsic corticomuscular projection patterns might influence activity lateralization. We showed sensorimotor cortical activities during shoulder, but not hand MI, can be brought under ipsilateral control with guided EEG-based neurofeedback. These results are compatible with neuroanatomy; shoulder muscles are innervated bihemispherically, whereas hand muscles are mostly innervated contralaterally. We demonstrate the neuroanatomically-inspired approach enables us to investigate potent neural remodeling functions that underlie EEG-based neurofeedback via a BCI.
Collapse
|
30
|
Yang CL, Lim SB, Peters S, Eng JJ. Cortical Activation During Shoulder and Finger Movements in Healthy Adults: A Functional Near-Infrared Spectroscopy (fNIRS) Study. Front Hum Neurosci 2020; 14:260. [PMID: 32733221 PMCID: PMC7362764 DOI: 10.3389/fnhum.2020.00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Characterization of cortical activation patterns during movement of the upper extremity in healthy adults is helpful in understanding recovery mechanisms following neurological disorders. This study explores cortical activation patterns associated with movements of the shoulder and fingers in healthy adults using functional near-infrared spectroscopy (fNIRS). Twelve healthy right-handed participants were recruited. Two motor tasks (shoulder abduction and finger extension) with two different trial lengths (10 s and 20 s) were performed in a sitting position at a rate of 0.5 Hz. The hemodynamic response, as indicated by oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR), over both hemispheres was acquired using a 54-channel fNIRS system. We found a generalized bilateral cortical activation during both motor tasks with greater activation in the contralateral compared to the ipsilateral primary motor cortex. Particularly in the more medial part of the contralateral hemisphere, significant higher activation was found during the shoulder compared to finger movements. Furthermore, cortical activation patterns are affected not only by motor tasks but also by trial lengths. HbO is more sensitive to detect cortical activation during finger movements in longer trials, while HbR is a better surrogate to capture active areas during shoulder movement in shorter trials. Based on these findings, reporting both HbO and HbR is strongly recommended for future fNIRS studies, and trial lengths should be taken into account when designing experiments and explaining results. Our findings demonstrating distinct cortical activation patterns associated with shoulder and finger movements in healthy adults provide a foundation for future research to study recovery mechanisms following neurological disorders.
Collapse
Affiliation(s)
- Chieh-Ling Yang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Shannon B Lim
- Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada.,Graduate Programs in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sue Peters
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| | - Janice J Eng
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Rehabilitation Research Program, GF Strong Rehabilitation Centre, Vancouver, BC, Canada
| |
Collapse
|
31
|
Yang Y, Sinha N, Tian R, Gurari N, Drogos JM, Dewald JPA. Quantifying Altered Neural Connectivity of the Stretch Reflex in Chronic Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1436-1441. [PMID: 32275603 DOI: 10.1109/tnsre.2020.2986304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-stroke flexion synergy limits arm/hand function and is also linked to hyperactive stretch reflexes or spasticity. It is implicated in the increased role of indirect motor pathways following damage to direct corticospinal projections. We hypothesized that this maladaptive neuroplasticity also affects stretch reflexes. Specifically, multi-synaptic interactions in indirect motor pathways may increase nonlinear neural connectivity and time lag between stretch and reflex muscle response. Continuous position perturbations were applied to the elbow joint when eleven participants with stroke generated two levels of shoulder abduction (SABD) torques with their paretic arm to induce synergy-related spasticity. Likewise, the perturbations were applied to eleven control subjects while performing SABD and elbow flexion levels matching the synergy torques in stroke. We quantified linear and non-linear connectivity and the corresponding time lags between perturbations and muscle activity. Enhanced nonlinear connectivity with a prolonged time lag was found in stroke as compared to controls. Non-linear connectivity and time lag also increased with the expression of the flexion synergy, as induced by greater SABD load levels, in stroke. This study provides new evidence of changes in neural connectivity and long-latency time lag in the stretch reflex response post-stroke. The results suggest the contribution of indirect motor pathways to synergy-related spasticity.
Collapse
|
32
|
Caria A, da Rocha JLD, Gallitto G, Birbaumer N, Sitaram R, Murguialday AR. Brain-Machine Interface Induced Morpho-Functional Remodeling of the Neural Motor System in Severe Chronic Stroke. Neurotherapeutics 2020; 17:635-650. [PMID: 31802435 PMCID: PMC7283440 DOI: 10.1007/s13311-019-00816-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMI) permit bypass motor system disruption by coupling contingent neuroelectric signals related to motor activity with prosthetic devices that enhance afferent and proprioceptive feedback to the somatosensory cortex. In this study, we investigated neural plasticity in the motor network of severely impaired chronic stroke patients after an EEG-BMI-based treatment reinforcing sensorimotor contingency of ipsilesional motor commands. Our structural connectivity analysis revealed decreased fractional anisotropy in the splenium and body of the corpus callosum, and in the contralesional hemisphere in the posterior limb of the internal capsule, the posterior thalamic radiation, and the superior corona radiata. Functional connectivity analysis showed decreased negative interhemispheric coupling between contralesional and ipsilesional sensorimotor regions, and decreased positive intrahemispheric coupling among contralesional sensorimotor regions. These findings indicate that BMI reinforcing ipsilesional brain activity and enhancing proprioceptive function of the affected hand elicits reorganization of contralesional and ipsilesional somatosensory and motor-assemblies as well as afferent and efferent connection-related motor circuits that support the partial re-establishment of the original neurophysiology of the motor system even in severe chronic stroke.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 33, 38068, Rovereto, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Ospedale San Camillo, Venice, Italy.
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany.
| | - Josué Luiz Dalboni da Rocha
- Brain and Language Laboratory, Department of Clinical Neuroscience, University of Geneva, Geneva, Switzerland
| | - Giuseppe Gallitto
- Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 33, 38068, Rovereto, Italy
| | - Niels Birbaumer
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany
| | - Ranganatha Sitaram
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, Section of Neuroscience, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ander Ramos Murguialday
- Institut für Medizinische Psychologie und Verhaltensneurobiologie, Universität Tübingen, Tübingen, Germany
- Health Technologies Department, TECNALIA, San Sebastian, Spain
| |
Collapse
|
33
|
Possible Contributions of Ipsilateral Pathways From the Contralesional Motor Cortex to the Voluntary Contraction of the Spastic Elbow Flexors in Stroke Survivors: A TMS Study. Am J Phys Med Rehabil 2020; 98:558-565. [PMID: 30672773 DOI: 10.1097/phm.0000000000001147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The contribution of the contralesional motor cortex to the impaired limbs is still controversial. The aim of this study was to investigate the role of descending projections from the contralesional hemisphere during voluntary elbow flexion on the paretic side. DESIGN Eleven healthy and 10 stroke subjects performed unilateral isometric elbow flexion tasks at various submaximal levels. Transcranial magnetic stimulation was delivered to the hotspot of biceps muscles ipsilateral to the target side (paretic side in stroke subjects or right side in controls) at rest and during elbow flexion tasks. Motor-evoked potential amplitudes of the contralateral resting biceps muscles, transcranial magnetic stimulation-induced ipsilateral force increment, and reflex torque and weakness of spastic elbow flexors were quantified. RESULTS The normalized motor-evoked potential amplitude increased with force level in both healthy and stroke subjects. However, stroke subjects exhibited significantly higher force increment compared with healthy subjects only at low level of elbow flexion but similar at moderate to high levels. The greater force increment significantly correlated with reflex torque of the spastic elbow flexors, but not weakness. CONCLUSIONS These results provide novel evidence that ipsilateral projections are not likely to contribute to strength but are correlated to spasticity of spastic-paretic elbow flexors after stroke.
Collapse
|
34
|
Gandhi DB, Sterba A, Khatter H, Pandian JD. Mirror Therapy in Stroke Rehabilitation: Current Perspectives. Ther Clin Risk Manag 2020; 16:75-85. [PMID: 32103968 PMCID: PMC7012218 DOI: 10.2147/tcrm.s206883] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 12/30/2022] Open
Abstract
In contrast to varied therapy approaches, mirror therapy (MT) can be used even in completely plegic stroke survivors, as it uses visual stimuli for producing a desired response in the affected limb. MT has been studied to have effects not just on motor impairments but also on sensations, visuospatial neglect, and pain after stroke. This paper attempts to systematically review and present the current perspectives on mirror therapy and its application in stroke rehabilitation, and dosage, feasibility and acceptability in stroke rehabilitation. An electronic database search across Google, PubMed, Web of Science, etc., generated 3871 results. After screening them based on the inclusion and exclusion criteria, we included 28 studies in this review. The data collected were divided on the basis of application in stroke rehabilitation, modes of intervention delivery, and types of control and outcome assessment. We found that most studies intervened for upper limb motor impairments post stroke. Studies were equally distributed between intervention in chronic and acute phases post stroke with therapy durations lasting between 1 and 8 weeks. MT showed definitive motor and sensory improvements although the extent of improvements in sensory impairments and hemineglect is limited. MT proves to be an effective and feasible approach to rehabilitate post-stroke survivors in the acute, sub-acute, and chronic phases of stroke, although its long-term effects and impact on activities of daily living need to be analysed extensively.
Collapse
Affiliation(s)
- Dorcas Bc Gandhi
- College of Physiotherapy, Christian Medical College & Hospital Ludhiana, Ludhiana, Punjab, India.,Faculty of Medicine, Masaryk University, Stroke Brno, International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| | - Albert Sterba
- Department of Neurology, Christian Medical College & Hospital Ludhiana, Ludhiana, Punjab, India
| | - Himani Khatter
- Faculty of Medicine, Masaryk University, Stroke Brno, International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| | - Jeyaraj D Pandian
- Faculty of Medicine, Masaryk University, Stroke Brno, International Clinical Research Center, St. Anne´s University Hospital, Brno, Czech Republic
| |
Collapse
|
35
|
Bani-Ahmed A, Cirstea CM. Ipsilateral primary motor cortex and behavioral compensation after stroke: a case series study. Exp Brain Res 2020; 238:439-452. [PMID: 31950216 DOI: 10.1007/s00221-020-05728-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022]
Abstract
Arm motor recovery after stroke is mainly attributed to reorganization of the primary motor cortex (M1). While M1 contralateral to the paretic arm (cM1) is critical for recovery, the role of ipsilateral M1 (iM1) is still inconclusive. Whether iM1 activity is related to recovery, behavioral compensation, or both is still far from settled. We hypothesized that the magnitude of iM1 activity in chronic stroke survivors will increase or decrease in direct proportion to the degree that movements of the paretic arm are compensated. Movement kinematics (VICON, Oxford Metrics) and functional MRI data (3T MR system) were collected in 11 patients before and after a 4-week training designed to improve motor control of the paretic arm and decrease compensatory trunk recruitment. Twelve matched controls underwent similar evaluations and training. Relationships between iM1 activity and trunk motion were analyzed. At baseline, patients exhibited increased iM1 activity (p = 0.001) and relied more on trunk movement (p = 0.02) than controls. These two variables were directly and significantly related in patients (r = 0.74, p = 0.01) but not in controls (r = 0.28, p = 0.4). After training, patients displayed a significant reduction in iM1 activity (p = 0.008) and a trend toward decreased trunk use (p = 0.1). The relationship between these two variables remained significant (r = 0.66, p = 0.03) and different from controls (r = 0.26, p = 0.4). Our preliminary results suggest that iM1 may play a role in compensating for brain damage rather than directly gaining control of the paretic arm. However, we recommend caution in interpreting these results until more work is completed.
Collapse
Affiliation(s)
- Ali Bani-Ahmed
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Therapy, University of Tabuk, Tabuk, Saudi Arabia
| | - Carmen M Cirstea
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, One Hospital Drive, DC046.00, Columbia, MO, 65212, USA.
| |
Collapse
|
36
|
Khong KYW, Galán F, Soteropoulos DS. Rapid crossed responses in an intrinsic hand muscle during perturbed bimanual movements. J Neurophysiol 2019; 123:630-644. [PMID: 31851557 PMCID: PMC7052646 DOI: 10.1152/jn.00282.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mechanical perturbations in one upper limb often elicit corrective responses in both the perturbed as well as its contralateral and unperturbed counterpart. These crossed corrective responses have been shown to be sensitive to the bimanual requirements of the perturbation, but crossed responses (CRs) in hand muscles are far less well studied. Here, we investigate corrective CRs in an intrinsic hand muscle, the first dorsal interosseous (1DI), to clockwise and anticlockwise mechanical perturbations to the contralateral index finger while participants performed a bimanual finger abduction task. We found that the CRs in the unperturbed 1DI were sensitive to the direction of the perturbation of the contralateral index finger. However, the size of the CRs was not sensitive to the amplitude of the contralateral perturbation nor its context within the bimanual task. The onset latency of the CRs was too fast to be purely transcortical (<70 ms) in 12/12 participants. This confirms that during isolated bimanual finger movements, sensory feedback from one hand can influence the other, but the pathways mediating the earliest components of this interaction are likely to involve subcortical systems such as the brainstem or spinal cord, which may afford less flexibility to the task demands.NEW & NOTEWORTHY An intrinsic hand muscle shows a crossed response to a perturbation of the contralateral index finger. The crossed response is dependent on the direction of the contralateral perturbation but not on the amplitude or the bimanual requirements of the movement, suggesting a far less flexible control policy than those governing crossed responses in more proximal muscles. The crossed response is too fast to be purely mediated by transcortical pathways, suggesting subcortical contributions.
Collapse
Affiliation(s)
- Katie Y W Khong
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Queen's University Belfast, Belfast, Northern Ireland
| | - Ferran Galán
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
37
|
Brainstem and spinal cord MRI identifies altered sensorimotor pathways post-stroke. Nat Commun 2019; 10:3524. [PMID: 31388003 PMCID: PMC6684621 DOI: 10.1038/s41467-019-11244-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Damage to the corticospinal tract is widely studied following unilateral subcortical stroke, whereas less is known about changes to other sensorimotor pathways. This may be due to the fact that many studies investigated morphological changes in the brain, where the majority of descending and ascending brain pathways are overlapping, and did not investigate the brainstem where they separate. Moreover, these pathways continue passing through separate regions in the spinal cord. Here, using a high-resolution structural MRI of both the brainstem and the cervical spinal cord, we were able to identify a number of microstructurally altered pathways, in addition to the corticospinal tract, post stroke. Moreover, decreases in ipsi-lesional corticospinal tract integrity and increases in contra-lesional medial reticulospinal tract integrity were correlated with motor impairment severity in individuals with stroke. There are few studies of structural changes in ascending and descending sensorimotor pathways after stroke, beyond the corticospinal tract, in the brain. Here the authors identify changes in white matter structure in brainstem and spinal cord following stroke, and show its relationship to motor impairment.
Collapse
|
38
|
Cunningham DA, Knutson JS, Sankarasubramanian V, Potter-Baker KA, Machado AG, Plow EB. Bilateral Contralaterally Controlled Functional Electrical Stimulation Reveals New Insights Into the Interhemispheric Competition Model in Chronic Stroke. Neurorehabil Neural Repair 2019; 33:707-717. [PMID: 31315515 DOI: 10.1177/1545968319863709] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background. Upper-limb chronic stroke hemiplegia was once thought to persist because of disproportionate amounts of inhibition imposed from the contralesional on the ipsilesional hemisphere. Thus, one rehabilitation strategy involves discouraging engagement of the contralesional hemisphere by only engaging the impaired upper limb with intensive unilateral activities. However, this premise has recently been debated and has been shown to be task specific and/or apply only to a subset of the stroke population. Bilateral rehabilitation, conversely, engages both hemispheres and has been shown to benefit motor recovery. To determine what neurophysiological strategies bilateral therapies may engage, we compared the effects of a bilateral and unilateral based therapy using transcranial magnetic stimulation. Methods. We adopted a peripheral electrical stimulation paradigm where participants received 1 session of bilateral contralaterally controlled functional electrical stimulation (CCFES) and 1 session of unilateral cyclic neuromuscular electrical stimulation (cNMES) in a repeated-measures design. In all, 15 chronic stroke participants with a wide range of motor impairments (upper extremity Fugl-Meyer score: 15 [severe] to 63 [mild]) underwent single 1-hour sessions of CCFES and cNMES. We measured whether CCFES and cNMES produced different effects on interhemispheric inhibition (IHI) to the ipsilesional hemisphere, ipsilesional corticospinal output, and ipsilateral corticospinal output originating from the contralesional hemisphere. Results. CCFES reduced IHI and maintained ipsilesional output when compared with cNMES. We found no effect on ipsilateral output for either condition. Finally, the less-impaired participants demonstrated a greater increase in ipsilesional output following CCFES. Conclusions. Our results suggest that bilateral therapies are capable of alleviating inhibition on the ipsilesional hemisphere and enhancing output to the paretic limb.
Collapse
Affiliation(s)
- David A Cunningham
- 1 Case Western Reserve University, Cleveland, OH, USA.,2 MetroHealth Medical Center, Cleveland, OH, USA.,3 Cleveland Functional Electrical Stimulation Center, OH, USA
| | - Jayme S Knutson
- 1 Case Western Reserve University, Cleveland, OH, USA.,2 MetroHealth Medical Center, Cleveland, OH, USA.,3 Cleveland Functional Electrical Stimulation Center, OH, USA
| | | | - Kelsey A Potter-Baker
- 5 Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA.,6 Cleveland Clinic, OH, USA
| | | | | |
Collapse
|
39
|
Lee D, Lee G. Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial. Eur J Phys Rehabil Med 2019; 55:442-449. [PMID: 30916531 DOI: 10.23736/s1973-9087.19.05334-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND When solely mirror therapy is applied for a long period of time, spatial perception and attention to the damaged side may decrease, and the effect of mirror therapy may be limited. To overcome this limitation, it has recently been suggested that the combination of mirror therapy with mirror treatment is effective. AIM The aim of this study was to investigate the effects of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors. DESIGN A randomized controlled trial. SETTING Rehabilitation center. POPULATION Thirty stroke survivors were randomly assigned to two groups: the experimental group (N.=15) and the control group (N.=15). METHODS Participants of the experimental group received afferent electrical stimulation with mirror therapy, and participants of the control group received sham afferent electrical stimulation with sham mirror therapy for 60 minutes per day, 5 days per week, for 4 weeks. Motor function was measured using a handheld dynamometer and the Modified Ashworth Scale, balance was measured using the Berg Balance Scale, and gait was assessed using the GAITRite® (GAITRite, CIR System Inc., Franklin, NJ, USA) pressure-sensitive walkway at baseline and after 4 weeks. RESULTS The experimental group showed significant differences in muscle strength, Modified Ashworth Scale, and Berg Balance Scale results, and velocity, cadence, step length, stride length, and double support time of their gait (P<0.05) in the pre-post intervention comparison. Significant differences between the two groups in muscle strength, Berg Balance Scale, gait velocity, step length, and stride length (P<0.05) were found. CONLCUSIONS Mirror therapy with afferent electrical stimulation may effectively improve muscle strength and gait and balance abilities in hemiplegic stroke survivors. CLINICAL REHABILITATION IMPACT Afferent electrical stimulation combined with mirror therapy can be used as an effective intervention to improve lower limb motor function, balance, and gait in chronic stroke survivors in clinical settings.
Collapse
Affiliation(s)
- Donggeon Lee
- Department of Physical Therapy, Graduate School of Kyungnam University, Changwon, South Korea
| | - Gyuchang Lee
- Department of Physical Therapy, Kyungnam University, Changwon, South Korea -
| |
Collapse
|
40
|
Choudhury S, Shobhana A, Singh R, Sen D, Anand SS, Shubham S, Baker MR, Kumar H, Baker SN. The Relationship Between Enhanced Reticulospinal Outflow and Upper Limb Function in Chronic Stroke Patients. Neurorehabil Neural Repair 2019; 33:375-383. [DOI: 10.1177/1545968319836233] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background. Recent evidence from both monkey and human studies suggests that the reticulospinal tract may contribute to recovery of arm and hand function after stroke. In this study, we evaluated a marker of reticulospinal output in stroke survivors with varying degrees of motor recovery. Methods. We recruited 95 consecutive stroke patients presenting 6 months to 12 years after their index stroke, and 19 heathy control subjects. Subjects were asked to respond to a light flash with a rapid wrist flexion; at random, the flash was paired with either a quiet or loud (startling) sound. The mean difference in electromyogram response time after flash with quiet sound compared with flash with loud sound measured the StartReact effect. Upper limb function was assessed by the Action Research Arm Test (ARAT), spasticity was graded using the Modified Ashworth Scale (MAS) and active wrist angular movement using an electrogoniometer. Results. StartReact was significantly larger in stroke patients than healthy participants (78.4 vs 45.0 ms, P < .005). StartReact showed a significant negative correlation with the ARAT score and degree of active wrist movement. The StartReact effect was significantly larger in patients with higher spasticity scores. Conclusion. We speculate that in some patients with severe damage to their corticospinal tract, recovery led to strengthening of reticulospinal connections and an enhanced StartReact effect, but this did not occur for patients with milder impairment who could use surviving corticospinal connections to mediate recovery.
Collapse
Affiliation(s)
| | | | - Ravi Singh
- Institute of Neurosciences, Kolkata, India
| | | | | | | | - Mark R. Baker
- Department of Clinical Neurophysiology and Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | - Stuart N. Baker
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Parry R, Macias Soria S, Pradat-Diehl P, Marchand-Pauvert V, Jarrassé N, Roby-Brami A. Effects of Hand Configuration on the Grasping, Holding, and Placement of an Instrumented Object in Patients With Hemiparesis. Front Neurol 2019; 10:240. [PMID: 30941091 PMCID: PMC6433942 DOI: 10.3389/fneur.2019.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/22/2019] [Indexed: 11/24/2022] Open
Abstract
Objective: Limitations with manual dexterity are an important problem for patients suffering from hemiparesis post stroke. Sensorimotor deficits, compensatory strategies and the use of alternative grasping configurations may influence the efficiency of prehensile motor behavior. The aim of the present study is to examine how different grasp configurations affect patient ability to regulate both grip forces and object orientation when lifting, holding and placing an object. Methods: Twelve stroke patients with mild to moderate hemiparesis were recruited. Each was required to lift, hold and replace an instrumented object. Four different grasp configurations were tested on both the hemiparetic and less affected arms. Load cells from each of the 6 faces of the instrumented object and an integrated inertial measurement unit were used to extract data regarding the timing of unloading/loading phases, regulation of grip forces, and object orientation throughout the task. Results: Grip forces were greatest when using a palmar-digital grasp and lowest when using a top grasp. The time delay between peak acceleration and maximum grip force was also greatest for palmar-digital grasp and lowest for the top grasp. Use of the hemiparetic arm was associated with increased duration of the unloading phase and greater difficulty with maintaining the vertical orientation of the object at the transitions to object lifting and object placement. The occurrence of touch and push errors at the onset of grasp varied according to both grasp configuration and use of the hemiparetic arm. Conclusion: Stroke patients exhibit impairments in the scale and temporal precision of grip force adjustments and reduced ability to maintain object orientation with various grasp configurations using the hemiparetic arm. Nonetheless, the timing and magnitude of grip force adjustments may be facilitated using a top grasp configuration. Conversely, whole hand prehension strategies compound difficulties with grip force scaling and inhibit the synchrony of grasp onset and object release.
Collapse
Affiliation(s)
- Ross Parry
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France.,Centre de Recherche sur le Sport et le Mouvement, EA 2931, Université Paris Nanterre, Nanterre, France
| | - Sandra Macias Soria
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France
| | - Pascale Pradat-Diehl
- Service de Médecine Physique et de Réadaptation, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France.,AP-HP, GRC n°18 Handicap cognitif et réadaptation (HanCRe), Sorbonne Université, Hôpitaux Universitaires Pitié Salpêtrière-Charles Foix, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France
| | | | - Nathanaël Jarrassé
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France
| | - Agnès Roby-Brami
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, Paris, France
| |
Collapse
|
42
|
The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. Clin Neurophysiol 2019; 130:781-788. [PMID: 30925310 DOI: 10.1016/j.clinph.2019.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Ipsilateral connectivity from the non-stroke hemisphere to paretic arm muscles appears to play little role in functional recovery, which instead depends on contralateral connectivity from the stroke hemisphere. Yet the incidence of ipsilateral projections in stroke survivors is often reported to be higher than normal. We tested this directly using a sensitive measure of connectivity to proximal arm muscles. METHOD TMS of the stroke and non-stroke motor cortex evoked responses in pre-activated triceps and deltoid muscles of 17 stroke survivors attending reaching training. Connectivity was defined as a clear MEP or a short-latency silent period in ongoing EMG in ≥ 50% of stimulations. We measured reaching accuracy at baseline, improvement after training and upper limb Fugl-Meyer (F-M) score. RESULTS Incidence of ipsilateral connections to triceps (47%) and deltoid (58%) was high, but unrelated to baseline reaching accuracy and F-M scores. Instead, these were related to contralateral connectivity from the stroke hemisphere. Absolute but not proportional improvement after training was greater in patients with ipsilateral responses. CONCLUSIONS Despite enhanced ipsilateral connectivity, arm function and learning was related most strongly to contralateral pathway integrity from the stroke hemisphere. SIGNIFICANCE Further work is needed to decipher the role of ipsilateral connections.
Collapse
|
43
|
Chen YT, Li S, Zhou P, Li S. A startling acoustic stimulation (SAS)-TMS approach to assess the reticulospinal system in healthy and stroke subjects. J Neurol Sci 2019; 399:82-88. [PMID: 30782527 DOI: 10.1016/j.jns.2019.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Reticulospinal (RS) hyperexcitability is observed in stroke survivors with spastic hemiparesis. Habituated startle acoustic stimuli (SAS) can be used to stimulate the RS pathways non-reflexively. However, the role of RS pathways in motor function and its interactions with the corticospinal system after stroke still remain unclear. Therefore, the purpose of this study was to investigate the effects of conditioning SAS on the corticospinal system in healthy subjects and in stroke subjects with spastic hemiparesis. An established conditioning SAS- transcranial magnetic stimulation (TMS) paradigm was used to test the interactions between the RS pathways and the corticospinal system. TMS was delivered to the right hemisphere of eleven healthy subjects and the contralesional hemisphere of eleven stroke subjects during isometric elbow flexor contraction on the non-impaired (or left) side. Conditioning SAS had similar effects on the corticospinal motor system in both healthy and stroke subjects, including similar SAS-induced motor evoked potential (MEP) reduction at rest, but not during voluntary contraction tasks; similar magnitudes of TMS-induced MEP and force increment and shortening of the silent period during voluntary elbow flexor contraction. This study provides evidence that RS excitability on the contralesional side in stroke subjects with spastic hemiparesis is not abnormal, and suggests that RS projections are likely to be primarily unilateral in humans.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States.
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, United States; TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, United States
| |
Collapse
|
44
|
Murphy SA, Negro F, Farina D, Onushko T, Durand M, Hunter SK, Schmit BD, Hyngstrom A. Stroke increases ischemia-related decreases in motor unit discharge rates. J Neurophysiol 2018; 120:3246-3256. [PMID: 30379629 DOI: 10.1152/jn.00923.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following stroke, hyperexcitable sensory pathways, such as the group III/IV afferents that are sensitive to ischemia, may inhibit paretic motor neurons during exercise. We quantified the effects of whole leg ischemia on paretic vastus lateralis motor unit firing rates during submaximal isometric contractions. Ten chronic stroke survivors (>1 yr poststroke) and 10 controls participated. During conditions of whole leg occlusion, the discharge timings of motor units were identified from decomposition of high-density surface electromyography signals during repeated submaximal knee extensor contractions. Quadriceps resting twitch responses and near-infrared spectroscopy measurements of oxygen saturation as an indirect measure of blood flow were made. There was a greater decrease in paretic motor unit discharge rates during the occlusion compared with the controls (average decrease for stroke and controls, 12.3 ± 10.0% and 0.1 ± 12.4%, respectively; P < 0.001). The motor unit recruitment thresholds did not change with the occlusion (stroke: without occlusion, 11.68 ± 5.83%MVC vs. with occlusion, 11.11 ± 5.26%MVC; control: 11.87 ± 5.63 vs. 11.28 ± 5.29%MVC). Resting twitch amplitudes declined similarly for both groups in response to whole leg occlusion (stroke: 29.16 ± 6.88 vs. 25.75 ± 6.78 Nm; control: 38.80 ± 13.23 vs 30.14 ± 9.64 Nm). Controls had a greater exponential decline (lower time constant) in oxygen saturation compared with the stroke group (stroke time constant, 22.90 ± 10.26 min vs. control time constant, 5.46 ± 4.09 min; P < 0.001). Ischemia of the muscle resulted in greater neural inhibition of paretic motor units compared with controls and may contribute to deficient muscle activation poststroke. NEW & NOTEWORTHY Hyperexcitable inhibitory sensory pathways sensitive to ischemia may play a role in deficient motor unit activation post stroke. Using high-density surface electromyography recordings to detect motor unit firing instances, we show that ischemia of the exercising muscle results in greater inhibition of paretic motor unit firing rates compared with controls. These findings are impactful to neurophysiologists and clinicians because they implicate a novel mechanism of force-generating impairment poststroke that likely exacerbates baseline weakness.
Collapse
Affiliation(s)
- Spencer A Murphy
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, University of Brescia , Brescia , Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College of London , London , United Kingdom
| | - Tanya Onushko
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Allison Hyngstrom
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| |
Collapse
|
45
|
McPherson JG, Chen A, Ellis MD, Yao J, Heckman CJ, Dewald JPA. Progressive recruitment of contralesional cortico-reticulospinal pathways drives motor impairment post stroke. J Physiol 2018; 596:1211-1225. [PMID: 29457651 DOI: 10.1113/jp274968] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Activation of the shoulder abductor muscles in the arm opposite a unilateral brain injury causes involuntary increases in elbow, wrist and finger flexion in the same arm, a phenomenon referred to as the flexion synergy. It has been proposed that flexion synergy expression is related to reduced output from ipsilesional motor cortex and corticospinal pathways. In this human subjects study, we provide evidence that the magnitude of flexion synergy expression is instead related to a progressive, task-dependent recruitment of contralesional cortex. We also provide evidence that recruitment of contralesional cortex may induce excessive activation of ipsilateral reticulospinal descending motor pathways that cannot produce discrete movements, leading to flexion synergy expression. We interpret these findings as an adaptive strategy that preserves low-level motor control at the cost of fine motor control. ABSTRACT A hallmark of hemiparetic stroke is the loss of fine motor control in the contralesional arm and hand and the constraint to a grouped movement pattern known as the flexion synergy. In the flexion synergy, increasing shoulder abductor activation drives progressive, involuntary increases in elbow, wrist and finger flexion. The neural mechanisms underlying this phenomenon remain unclear. Here, across 25 adults with moderate to severe hemiparesis following chronic stroke and 18 adults without neurological injury, we test the overall hypothesis that two inter-related mechanisms are necessary for flexion synergy expression: increased task-dependent activation of the intact, contralesional cortex and recruitment of contralesional motor pathways via ipsilateral reticulospinal projections. First, we imaged brain activation in real time during reaching motions progressively constrained by flexion synergy expression. Using this approach, we found that cortical activity indeed shifts towards the contralesional hemisphere in direct proportion to the degree of shoulder abduction loading in the contralesional arm. We then leveraged the post-stroke reemergence of a developmental brainstem reflex to show that anatomically diffuse reticulospinal motor pathways are active during synergy expression. We interpret this progressive recruitment of contralesional cortico-reticulospinal pathways as an adaptive strategy that preserves low-level motor control at the cost of fine motor control.
Collapse
Affiliation(s)
- Jacob G McPherson
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, EC 2600, Miami, FL, 33174, USA
| | - Albert Chen
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael D Ellis
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Jun Yao
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - C J Heckman
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physiology, Northwestern University, 303 East Chicago Ave, M211, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Feinberg School of Medicine, Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.,Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Northwestern University, 345 East Superior Street, Chicago, IL, 60611, USA.,McCormick School of Engineering, Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
46
|
Yang Y, Dewald JPA, van der Helm FCT, Schouten AC. Unveiling neural coupling within the sensorimotor system: directionality and nonlinearity. Eur J Neurosci 2017; 48:2407-2415. [PMID: 28887885 PMCID: PMC6221113 DOI: 10.1111/ejn.13692] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Neural coupling between the central nervous system and the periphery is essential for the neural control of movement. Corticomuscular coherence is a popular linear technique to assess synchronised oscillatory activity in the sensorimotor system. This oscillatory coupling originates from ascending somatosensory feedback and descending motor commands. However, corticomuscular coherence cannot separate this bidirectionality. Furthermore, the sensorimotor system is nonlinear, resulting in cross‐frequency coupling. Cross‐frequency oscillations cannot be assessed nor exploited by linear measures. Here, we emphasise the need of novel coupling measures, which provide directionality and acknowledge nonlinearity, to unveil neural coupling in the sensorimotor system. We highlight recent advances in the field and argue that assessing directionality and nonlinearity of neural coupling will break new ground in the study of the control of movement in healthy and neurologically impaired individuals.
Collapse
Affiliation(s)
- Yuan Yang
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Julius P A Dewald
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,Department of Biomedical Engineering, McCormick school of Engineering, Northwestern University, Evanston, IL, USA
| | - Frans C T van der Helm
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Alfred C Schouten
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.,MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
47
|
Hasegawa K, Kasuga S, Takasaki K, Mizuno K, Liu M, Ushiba J. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. J Neuroeng Rehabil 2017; 14:85. [PMID: 28841920 PMCID: PMC5574148 DOI: 10.1186/s12984-017-0294-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. METHODS Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. RESULTS ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the contralateral hemisphere during finger pinching. We found that trapezius MEPs increased during motor imagery of shoulder elevations and correlated with ipsilateral ERD amplitudes. CONCLUSIONS Ipsilateral ERD during execution and imagery of shoulder girdle elevations appears to reflect the excitability of uncrossed pathways projecting to the shoulder muscles. As such, ipsilateral ERD could be used for neurofeedback training of shoulder movement, aiming at reanimation of the i-CST.
Collapse
Affiliation(s)
- Keita Hasegawa
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shoko Kasuga
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,Keio Institute of Pure and Applied Sciences (KiPAS), 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Kenichi Takasaki
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Junichi Ushiba
- Keio Institute of Pure and Applied Sciences (KiPAS), 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan. .,Department of Rehabilitation Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan. .,Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
48
|
Tan AQ, Dhaher YY. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb. Front Neurol 2017; 8:373. [PMID: 28824530 PMCID: PMC5545591 DOI: 10.3389/fneur.2017.00373] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating paretic leg kinetics is unknown. The purpose of this study is to characterize the effect of CON-H activation on aberrant across-joint kinetic coupling of the ipsilateral lower-extremity muscles poststroke. METHODS Amplitude-matched adductor longus motor-evoked potentials were elicited using single pulse transcranial magnetic stimulation (TMS) of the lesioned (L-H) and CON-Hs during an isometric adductor torque matching task from 11 stroke participants. For 10 control participants, TMS of the contralateral and ipsilateral hemisphere were given during the same task. TMS-induced torques were characterized at the hip and knee joints to determine the differential regulation of abnormal kinetic synergies by each motor cortices. The TMS-induced ratio of knee extension/hip adduction torques was quantified during 40 and 20% of maximum adduction torque. FINDINGS For both the 40 and 20% target adduction tasks, we find that contralesional stimulation significantly reduced but did not eliminate the TMS-induced ratio of knee extension/hip adduction torques for the stroke group (p = 0.0468, p = 0.0396). In contrast, the controls did not present a significantly different TMS-evoked torque following stimulation (p = 0.923) of the hemisphere ipsilateral to the test leg. INTERPRETATION The reduced expression of abnormal across-joint kinetic coupling suggests that the CON-H may contribute an adaptive role in lower limb control poststroke. Future study of neuromodulation paradigms that leverage adaptive CON-H activation may yield clinically relevant gains in lower limb motor function poststroke.
Collapse
Affiliation(s)
- Andrew Q. Tan
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Yasin Y. Dhaher
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Searle Center for the Science of Walking, Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| |
Collapse
|
49
|
Inatomi Y, Nakajima M, Yonehara T, Ando Y. Ipsilateral hemiparesis in ischemic stroke patients. Acta Neurol Scand 2017; 136:31-40. [PMID: 27666559 DOI: 10.1111/ane.12690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate clinical characteristics of ipsilateral hemiparesis in ischemic stroke patients. MATERIALS AND METHODS Patients with acute ischemic stroke were prospectively examined. Ipsilateral hemiparesis was defined as hemiparesis ipsilateral to recent stroke lesions. Patients with ipsilateral hemiparesis were examined with functional neuroimaging studies including transcranial magnetic stimulation (TMS) and functional MRI. RESULTS Of 8360 patients, ipsilateral hemiparesis was detected in 14 patients (0.17%, mean age 71±6 years, eight men). Lesions responsible for the recent strokes were located in the frontal cortex in three patients, corona radiata in seven, internal capsule in one, and pons in three. These lesions were located along the typical route of the corticospinal tract in all but one patient. Thirteen patients also had a past history of stroke contralateral to the recent lesions; 12 of these had motor deficits contralateral to past stroke lesions. During TMS, ipsilateral magnetic evoked potentials were evoked in two of seven patients and contralateral potentials were evoked in all seven. Functional MRI activated cerebral hemispheres ipsilaterally in eight of nine patients and contralaterally in all nine. CONCLUSIONS Most patients with ipsilateral hemiparesis had a past history of stroke contralateral to the recent one, resulting in motor deficits contralateral to the earlier lesions. Moreover, functional neuroimaging findings indicated an active crossed corticospinal tract in all of the examined patients. Both findings suggest the contribution of the uncrossed corticospinal tract contralateral to stroke lesions as a post-stroke compensatory motor system.
Collapse
Affiliation(s)
- Y. Inatomi
- Department of Neurology; Saiseikai Kumamoto Hospital; Kumamoto Japan
| | - M. Nakajima
- Department of Neurology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| | - T. Yonehara
- Department of Neurology; Saiseikai Kumamoto Hospital; Kumamoto Japan
| | - Y. Ando
- Department of Neurology; Graduate School of Medical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
50
|
Owen M, Ingo C, Dewald JPA. Upper Extremity Motor Impairments and Microstructural Changes in Bulbospinal Pathways in Chronic Hemiparetic Stroke. Front Neurol 2017; 8:257. [PMID: 28659855 PMCID: PMC5468392 DOI: 10.3389/fneur.2017.00257] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022] Open
Abstract
Following hemiparetic stroke, precise, individuated control of single joints is often replaced by highly stereotyped patterns of multi-joint movement, or abnormal limb synergies, which can negatively impact functional use of the paretic arm. One hypothesis for the expression of these synergies is an increased dependence on bulbospinal pathways such as the rubrospinal (RubST) tract and especially the reticulospinal (RetST) tracts, which co-activate multiple muscles of the shoulder, elbow, wrist, and fingers. Despite indirect evidence supporting this hypothesis in humans poststroke, it still remains unclear whether it is correct. Therefore, we used high-resolution diffusion tensor imaging (DTI) to quantify white matter microstructure in relation to severity of arm synergy and hand-related motor impairments. DTI was performed on 19 moderately to severely impaired chronic stroke individuals and 15 healthy, age-matched controls. In stroke individuals, compared to controls, there was significantly decreased fractional anisotropy (FA) and significantly increased axial and radial diffusivity in bilateral corona radiata and body of the corpus callosum. Furthermore, poststroke, the contralesional (CL) RetST FA correlated significantly with both upper extremity (UE) synergy severity (r = -0.606, p = 0.003) and hand impairment (r = -0.609, p = 0.003). FA in the ipsilesional RubST significantly correlated with hand impairment severity (r = -0.590, p = 0.004). For the first time, we separately evaluate RetST and RubST microstructure in chronic stroke individuals with UE motor impairment. We demonstrate that individuals with the greatest UE synergy severity and hand impairments poststroke have the highest FA in the CL RetST a pattern consistent with increased myelination and suggestive of neuroplastic reorganization. Since the RetST pathway microstructure, in particular, is sensitive to abnormal joint coupling and hand-related motor impairment in chronic stroke, it could help test the effects of specific, and novel, anti-synergy neurorehabilitation interventions for recovery from hemiparesis.
Collapse
Affiliation(s)
- Meriel Owen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, United States
| | - Carson Ingo
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|