1
|
Byvaltsev VA, Goloborodko VY, Kalinin AA, Shepelev VV, Pestryakov YY, Riew KD. A standardized anesthetic/analgetic regimen compared to standard anesthetic/analgetic regimen for patients with high-risk factors undergoing open lumbar spine surgery: a prospective comparative single-center study. Neurosurg Rev 2023; 46:95. [PMID: 37093302 DOI: 10.1007/s10143-023-02005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023]
Abstract
The objective of the study is to improve the results of patients undergoing lumbar spine surgery who are at high risk for anesthesia and/or surgical complications. Two independent groups were compared: the study group (SG, n = 40) (standardized neuroanesthetic protocol with multimodal analgesia) and the control group (CG, n = 40) (intravenous anesthesia based on propofol and fentanyl). The data were collected using prospective observation of early and long-term results of lumbar fusion. After 24 months, the level of functional state and quality of life were studied. Patients in the SG did not have statistically significant changes in intraoperative hemodynamics; the best indicators of cognitive functions were noted. The effectiveness of the SG compared with the CG was confirmed by a statistically significantly lower amount of perioperative opioid drugs required (p = 0.01) and a minimal level of incisional pain (p < 0.05). An intergroup comparison of the adverse effects of anesthesia revealed a significantly lower number in the SG (n = 4) compared to the CG (n = 16) (p = 0.004). The number of postoperative surgical complications was comparable (p = 0.72). Intergroup comparison showed improved ODI, SF-36, and the Macnab scale at 24 months after surgery in the SG compared to the CG (p < 0.05). Long-term clinical results correlated with the level of incisional pain in the first three postoperative days. Our standardized neuroanesthetic protocol ensured effective treatment of postoperative incisional pain, significantly decreased the perioperative use of opioids, reduced adverse anesthesia events, and improved long-term clinical results in patients with high risk factors for anesthetic complications who undergoing open lumbar spine surgery.
Collapse
Affiliation(s)
- Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, 1 Krassnogo Vosstaniya Street, off 201, 664003, Irkutsk, Irkutskaya Oblast, Russia.
- Department of Neurosurgery, Railway Clinical Hospital, Irkutsk, Russia.
- Department of Traumatology, Orthopedics and Neurosurgery, Irkutsk State Medical Academy of Postgraduate Education, Irkutsk, Russia.
| | - Victoria Yu Goloborodko
- Department of Neurosurgery, Irkutsk State Medical University, 1 Krassnogo Vosstaniya Street, off 201, 664003, Irkutsk, Irkutskaya Oblast, Russia
- Department of Neurosurgery, Railway Clinical Hospital, Irkutsk, Russia
| | - Andrei A Kalinin
- Department of Neurosurgery, Irkutsk State Medical University, 1 Krassnogo Vosstaniya Street, off 201, 664003, Irkutsk, Irkutskaya Oblast, Russia
- Department of Neurosurgery, Railway Clinical Hospital, Irkutsk, Russia
| | - Valerii V Shepelev
- Department of Neurosurgery, Irkutsk State Medical University, 1 Krassnogo Vosstaniya Street, off 201, 664003, Irkutsk, Irkutskaya Oblast, Russia
| | - Yurii Ya Pestryakov
- Department of Neurosurgery, Irkutsk State Medical University, 1 Krassnogo Vosstaniya Street, off 201, 664003, Irkutsk, Irkutskaya Oblast, Russia
| | - K Daniel Riew
- Department of Orthopedic Surgery, Columbia University, New York, USA
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA
| |
Collapse
|
2
|
Moreno-López Y, Olivares-Moreno R, Cordero-Erausquin M, Rojas-Piloni G. Sensorimotor Integration by Corticospinal System. Front Neuroanat 2016; 10:24. [PMID: 27013985 PMCID: PMC4783411 DOI: 10.3389/fnana.2016.00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
The corticospinal (CS) tract is a complex system which targets several areas of the spinal cord. In particular, the CS descending projection plays a major role in motor command, which results from direct and indirect control of spinal cord pre-motor interneurons as well as motoneurons. But in addition, this system is also involved in a selective and complex modulation of sensory feedback. Despite recent evidence confirms that CS projections drive distinct segmental neural circuits that are part of the sensory and pre-motor pathways, little is known about the spinal networks engaged by the corticospinal tract (CST), the organization of CS projections, the intracortical microcircuitry, and the synaptic interactions in the sensorimotor cortex (SMC) that may encode different cortical outputs to the spinal cord. Here is stressed the importance of integrated approaches for the study of sensorimotor function of CS system, in order to understand the functional compartmentalization and hierarchical organization of layer 5 output neurons, who are key elements for motor control and hence, of behavior.
Collapse
Affiliation(s)
- Yunuen Moreno-López
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| | - Rafael Olivares-Moreno
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| | - Matilde Cordero-Erausquin
- Unité Propre de Recherche 3212, Institut des Neurosciences Cellulaires et Intégratives, UPR 3212 CNRS Strasbourg, France
| | - Gerardo Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla Querétaro, México
| |
Collapse
|
3
|
Changes in the Gene c-fos Expression in the Rat Spinal Cord after Suppression of Activity of the Cerebral Monoaminergic Systems. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Cortical presynaptic control of dorsal horn C-afferents in the rat. PLoS One 2013; 8:e69063. [PMID: 23935924 PMCID: PMC3728294 DOI: 10.1371/journal.pone.0069063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/10/2013] [Indexed: 12/01/2022] Open
Abstract
Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory interneurons.
Collapse
|
5
|
Effects of anodal tDCS on lumbar propriospinal system in healthy subjects. Clin Neurophysiol 2012; 123:1027-34. [DOI: 10.1016/j.clinph.2011.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/11/2011] [Indexed: 11/20/2022]
|
6
|
Chakrabarty S, Martin JH. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord. Eur J Neurosci 2011; 34:682-94. [PMID: 21896059 DOI: 10.1111/j.1460-9568.2011.07798.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In maturity, skilled movements depend on coordination of control signals by descending pathways, such as the corticospinal tract (CST), and proprioceptive afferents (PAs). An important locus for this coordination is the spinal cord intermediate zone. Convergence of CST and PA terminations onto common regions leads to interactions that may underlie afferent gating and modulation of descending control signals during movements. We determined establishment of CST and PA terminations within common spinal cord regions and development of synaptic interactions in 4-week-old cats, which is before major spinal motor circuit refinement, and two ages after refinement (weeks 8, 11). We examined the influence of one or the other system on monosynaptic responses, on the spinal cord surface and locally in the intermediate zone, evoked by either CST or deep radial nerve (DRN) stimulation. DRN stimulation suppressed CST monosynaptic responses at 4 weeks, but this converted to facilitation by 8 weeks. This may reflect a strategy to limit CST movement control when it has aberrant immature connections, and could produce errant movements. CST stimulation showed delayed development of mixed suppression and facilitation of DRN responses. We found development of age-dependent overlap of PA and CST terminations where interactions were recorded in the intermediate zone. Our findings reveal a novel co-development of different inputs onto common spinal circuits and suggest a logic to CST-PA interactions at an age before the CST has established connectional specificity with spinal circuits.
Collapse
Affiliation(s)
- Samit Chakrabarty
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, NY, USA.
| | | |
Collapse
|
7
|
Chen YS, Zhou S. Soleus H-reflex and its relation to static postural control. Gait Posture 2011; 33:169-78. [PMID: 21211976 DOI: 10.1016/j.gaitpost.2010.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 11/19/2010] [Accepted: 12/09/2010] [Indexed: 02/02/2023]
Abstract
The Hoffmann reflex (H-reflex) test has been extensively used to investigate the responsiveness of Ia afferent spinal loop in animal and human studies. The H-reflex response is influenced by multiple neural pathways and the assessment of H-reflex variation is a useful tool in understanding the neural mechanisms in control of movement. Recently, several studies have examined the relationship between the H-reflex modulation and postural stability. For example, it has been reported that the amplitude of soleus (SOL) H-reflex is depressed in relation to increased body sway during upright standing on a soft surface compared to that on a solid surface. It has been suggested that the SOL H-reflex modulation under such condition is predominately affected by the presynaptic inhibitory mechanisms for avoiding oversaturation of the spinal motoneurons. It has also been reported that after balance training, the SOL H-reflex amplitude is down-modulated in parallel with improvement in balance control, suggesting a functional adaptation at the supraspinal levels. The aim of this review is to examine the current literature on the relationship between H-reflex modulation and postural control for a better understanding of the physiological mechanisms involved in control of posture in humans.
Collapse
Affiliation(s)
- Yung-Sheng Chen
- School of Health and Human Sciences, Southern Cross University, Lismore, New South Wales, Australia
| | | |
Collapse
|