1
|
Flux E, van der Krogt MM, Harlaar J, Buizer AI, Sloot LH. Functional assessment of stretch hyperreflexia in children with cerebral palsy using treadmill perturbations. J Neuroeng Rehabil 2021; 18:151. [PMID: 34663392 PMCID: PMC8522046 DOI: 10.1186/s12984-021-00940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND As hyperactive muscle stretch reflexes hinder movement in patients with central nervous system disorders, they are a common target of treatment. To improve treatment evaluation, hyperactive reflexes should be assessed during activities as walking rather than passively. This study systematically explores the feasibility, reliability and validity of sudden treadmill perturbations to evoke and quantify calf muscle stretch reflexes during walking in children with neurological disorders. METHODS We performed an observational cross-sectional study including 24 children with cerebral palsy (CP; 6-16 years) and 14 typically developing children (TD; 6-15 years). Short belt accelerations were applied at three different intensities while children walked at comfortable speed. Lower leg kinematics, musculo-tendon lengthening and velocity, muscle activity and spatiotemporal parameters were measured to analyze perturbation responses. RESULTS We first demonstrated protocol feasibility: the protocol was completed by all but three children who ceased participation due to fatigue. All remaining children were able to maintain their gait pattern during perturbation trials without anticipatory adaptations in ankle kinematics, spatiotemporal parameters and muscle activity. Second, we showed the protocol's reliability: there was no systematic change in muscle response over time (P = 0.21-0.54) and a bootstrapping procedure indicated sufficient number of perturbations, as the last perturbation repetition only reduced variability by ~ 2%. Third, we evaluated construct validity by showing that responses comply with neurophysiological criteria for stretch reflexes: perturbations superimposed calf muscle lengthening (P < 0.001 for both CP and TD) in all but one participant. This elicited increased calf muscle activity (359 ± 190% for CP and 231 ± 68% for TD, both P < 0.001) in the gastrocnemius medialis muscle, which increased with perturbation intensity (P < 0.001), according to the velocity-dependent nature of stretch reflexes. Finally, construct validity was shown from a clinical perspective: stretch reflexes were 1.7 times higher for CP than TD for the gastrocnemius medialis muscle (P = 0.017). CONCLUSIONS The feasibility and reliability of the protocol, as well as the construct validity-shown by the exaggerated velocity-dependent nature of the measured responses-strongly support the use of treadmill perturbations to quantify stretch hyperreflexia during gait. We therefore provided a framework which can be used to inform clinical decision making and treatment evaluation.
Collapse
Affiliation(s)
- Eline Flux
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Marjolein M van der Krogt
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
- Department Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department Orthopedics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemieke I Buizer
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lizeth H Sloot
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, PO Box 7057, 1007MB, Amsterdam, The Netherlands
- Institute for Computer Engineering, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
2
|
Cleland BT, Schindler-Ivens S. Symmetry Is Associated With Interlimb Coordination During Walking and Pedaling After Stroke. J Neurol Phys Ther 2021; 46:81-87. [PMID: 34507343 PMCID: PMC8904653 DOI: 10.1097/npt.0000000000000377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Asymmetry during walking may be explained by impaired interlimb coordination. We examined these associations: (1) propulsive symmetry with interlimb coordination during walking, (2) work symmetry with interlimb coordination during pedaling, and (3) work symmetry and interlimb coordination with clinical impairment. METHODS Nineteen individuals with chronic stroke and 15 controls performed bilateral, lower limb pedaling with a conventional device and a device with a bisected crank and upstroke assistance. Individuals with stroke walked on a split-belt treadmill. Measures of symmetry (%Propulsionwalk, %Workped) and interlimb phase coordination index (PCIwalk, PCIped) were computed. Clinical evaluations were the lower extremity Fugl-Meyer (FMLE) and walking speed. Associations were assessed with Spearman's rank correlations. RESULTS Participants with stroke displayed asymmetry and impaired interlimb coordination compared with controls (P ≤ 0.001). There were significant correlations between asymmetry and impaired interlimb coordination (walking: R2 = 0.79, P < 0.001; pedaling: R2 = 0.62, P < 0.001) and between analogous measures across tasks (%Workped, %Propulsionwalk: R2 = 0.41, P = 0.01; PCIped, PCIwalk: R2 = 0.52, P = 0.003). Regardless of task, asymmetry and interlimb coordination were correlated with FMLE (R2 ≥ 0.48, P ≤ 0.004) but not walking speed. There was larger within group variation for %Propulsionwalk than %Workped (Z = 2.6, P = 0.005) and for PCIped than PCIwalk (Z = 3.6, P = 0.003). DISCUSSION AND CONCLUSIONS Pedaling may provide useful insights about walking, and impaired interlimb coordination may contribute to asymmetry in walking. Pedaling and walking provide distinct insights into stroke-related impairments, related to whether the task allows compensation (walking > pedaling) or compels paretic limb use (pedaling > walking). Pedaling a device with a bisected crank shaft may have therapeutic value.Video Abstract available for more insight from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A365).
Collapse
Affiliation(s)
- Brice T Cleland
- Department of Physical Therapy, College of Health Sciences, Marquette University, Milwaukee, Wisconsin
| | | |
Collapse
|
3
|
Lopez AJ, Xu J, Hoque MM, McMullen C, Kesar TM, Borich MR. Integration of Convergent Sensorimotor Inputs Within Spinal Reflex Circuits in Healthy Adults. Front Hum Neurosci 2020; 14:592013. [PMID: 33324184 PMCID: PMC7725688 DOI: 10.3389/fnhum.2020.592013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022] Open
Abstract
The output from motor neuron pools is influenced by the integration of synaptic inputs originating from descending corticomotor and spinal reflex pathways. In this study, using paired non-invasive brain and peripheral nerve stimulation, we investigated how descending corticomotor pathways influence the physiologic recruitment order of the soleus Hoffmann (H-) reflex. Eleven neurologically unimpaired adults (9 females; mean age 25 ± 3 years) completed an assessment of transcranial magnetic stimulation (TMS)-conditioning of the soleus H-reflex over a range of peripheral nerve stimulation (PNS) intensities. Unconditioned H-reflex recruitment curves were obtained by delivering PNS pulses to the posterior tibial nerve. Subsequently, TMS-conditioned H-reflex recruitment curves were obtained by pairing PNS with subthreshold TMS at short (−1.5 ms) and long (+10 ms) intervals. We evaluated unconditioned and TMS-conditioned H-reflex amplitudes along the ascending limb, peak, and descending limb of the H-reflex recruitment curve. Our results revealed that, for long-interval facilitation, TMS-conditioned H-reflex amplitudes were significantly larger than unconditioned H-reflex amplitudes along the ascending limb and peak of the H-reflex recruitment curve. Additionally, significantly lower PNS intensities were needed to elicit peak H-reflex amplitude (Hmax) for long-interval facilitation compared to unconditioned. These findings suggest that the influence of descending corticomotor pathways, particularly those mediating long-interval facilitation, contribute to changing the recruitment gain of the motor neuron pool, and can inform future methodological protocols for TMS-conditioning of H-reflexes. By characterizing and inducing short-term plasticity in circuitry mediating short- and long-interval TMS-conditioning of H-reflex amplitudes, future studies can investigate supraspinal and spinal circuit contributions to abnormal motor control, as well as develop novel therapeutic targets for neuromodulation.
Collapse
Affiliation(s)
- Alejandro J Lopez
- Neural Plasticity Research Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States.,Motion Analysis Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Jiang Xu
- Neural Plasticity Research Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States.,Motion Analysis Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States.,Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maruf M Hoque
- Neural Plasticity Research Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States.,Motion Analysis Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Carly McMullen
- Neural Plasticity Research Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States.,Motion Analysis Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Trisha M Kesar
- Motion Analysis Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Michael R Borich
- Neural Plasticity Research Laboratory, Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
4
|
Fujita K, Kobayashi Y, Miaki H, Hori H, Tsushima Y, Sakai R, Nomura T, Ogawa T, Kinoshita H, Nishida T, Hitosugi M. Pedaling improves gait ability of hemiparetic patients with stiff-knee gait: fall prevention during gait. J Stroke Cerebrovasc Dis 2020; 29:105035. [PMID: 32807447 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Stiff-knee gait, which is a gait abnormality observed after stroke, is characterized by decreased knee flexion angles during the swing phase, and it contributes to a decline in gait ability. This study aimed to identify the immediate effects of pedaling exercises on stiff-knee gait from a kinesiophysiological perspective. METHODS Twenty-one patients with chronic post-stroke hemiparesis and stiff-knee gait were randomly assigned to a pedaling group and a walking group. An ergometer was set at a load of 5 Nm and rotation speed of 40 rpm, and gait was performed at a comfortable speed; both the groups performed the intervention for 10 min. Kinematic and electromyographical data while walking on flat surfaces were immediately measured before and after the intervention. RESULTS In the pedaling group, activity of the rectus femoris significantly decreased from the pre-swing phase to the early swing phase during gait after the intervention. Flexion angles and flexion angular velocities of the knee and hip joints significantly increased during the same period. The pedaling group showed increased step length on the paralyzed side and gait velocity. CONCLUSIONS Pedaling increases knee flexion during the swing phase in hemiparetic patients with stiff-knee gait and improves gait ability.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Yasutaka Kobayashi
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Hiroichi Miaki
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa-city, Ishikawa, Japan.
| | - Hideaki Hori
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Yuichi Tsushima
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Ryo Sakai
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, 55-13-1 Egami, Fukui-city 910-3190, Fukui, Japan.
| | - Tomomi Nomura
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Tomoki Ogawa
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Hirotaka Kinoshita
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Tomoko Nishida
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Masahito Hitosugi
- Department of Legal Medicine, Shiga University of Medical Science, Otsu-city, Shiga, Japan.
| |
Collapse
|
5
|
Spastic movement disorder: should we forget hyperexcitable stretch reflexes and start talking about inappropriate prediction of sensory consequences of movement? Exp Brain Res 2020; 238:1627-1636. [DOI: 10.1007/s00221-020-05792-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/29/2022]
|
6
|
Cleland BT, Gelting T, Arand B, Struhar J, Schindler-Ivens S. Impaired interlimb coordination is related to asymmetries during pedaling after stroke. Clin Neurophysiol 2019; 130:1474-1487. [PMID: 31288158 PMCID: PMC6684846 DOI: 10.1016/j.clinph.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To understand whether lower limb asymmetry in chronic stroke is related to paretic motor impairment or impaired interlimb coordination. METHODS Stroke and control participants performed conventional, unilateral, and bilateral uncoupled pedaling. During uncoupled pedaling, the pedals were mechanically disconnected. Paretic mechanical work was measured during conventional pedaling. Pedaling velocity and muscle activity were compared across conditions and groups. Relative limb phasing was examined during uncoupled pedaling. RESULTS During conventional pedaling, EMG and mechanical work were lower in the paretic than the non-paretic limb (asymmetry). During unilateral pedaling with the paretic limb, muscle activity was larger, but velocity was slower and more variable than during conventional pedaling (evidence of paretic motor impairment). During uncoupled pedaling, muscle activity increased further, but velocity was slower and more variable than in other conditions (evidence of impaired interlimb coordination). Relative limb phasing was impaired in stroke participants. Regression analysis suggested that interlimb coordination may be a stronger predictor of asymmetry than paretic motor impairment. CONCLUSIONS Paretic motor impairment and impaired interlimb coordination may contribute to asymmetry during pedaling after stroke. SIGNIFICANCE Rehabilitation that addresses paretic motor impairment and impaired interlimb coordination may improve symmetry and maximize improvement.
Collapse
Affiliation(s)
- Brice T Cleland
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA.
| | - Tamicah Gelting
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA
| | - Brett Arand
- College of Engineering, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Jan Struhar
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA
| | - Sheila Schindler-Ivens
- College of Health Sciences, Department of Physical Therapy, Clinical and Translational Rehabilitation Health Science, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
7
|
Delisle-Rodriguez D, Cardoso V, Gurve D, Loterio F, Alejandra Romero-Laiseca M, Krishnan S, Bastos-Filho T. System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation. J Neural Eng 2019; 16:056005. [DOI: 10.1088/1741-2552/ab08c8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Brain Activation During Passive and Volitional Pedaling After Stroke. Motor Control 2019; 23:52-80. [PMID: 30012052 PMCID: PMC6685765 DOI: 10.1123/mc.2017-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 01/06/2018] [Accepted: 02/25/2018] [Indexed: 11/18/2022]
Abstract
Background: Prior work indicates that pedaling-related brain activation is lower in people with stroke than in controls. We asked whether this observation could be explained by between-group differences in volitional motor commands and pedaling performance. Methods: Individuals with and without stroke performed passive and volitional pedaling while brain activation was recorded with functional magnetic resonance imaging. The passive condition eliminated motor commands to pedal and minimized between-group differences in pedaling performance. Volume, intensity, and laterality of brain activation were compared across conditions and groups. Results: There were no significant effects of condition and no Group × Condition interactions for any measure of brain activation. Only 53% of subjects could minimize muscle activity for passive pedaling. Conclusions: Altered motor commands and pedaling performance are unlikely to account for reduced pedaling-related brain activation poststroke. Instead, this phenomenon may be due to functional or structural brain changes. Passive pedaling can be difficult to achieve and may require inhibition of excitatory descending drive.
Collapse
|
9
|
Mullens CH, Brown DA. Visual feedback during pedaling allows individuals poststroke to alter inappropriately prolonged paretic vastus medialis activity. J Neurophysiol 2018. [PMID: 29537910 DOI: 10.1152/jn.00256.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individuals who have experienced a stroke often demonstrate inappropriate muscle activity phasing in the paretic leg during locomotion. Past research has demonstrated that inappropriate paretic phasing varies between behavioral contexts and is reduced during unilateral pedaling with the nonparetic leg inactive. We investigated whether individuals could voluntarily alter activity in a target muscle of the paretic limb in a consistent behavioral context and whether this voluntary change differed between bilateral and unilateral pedaling. During a fixed-speed motorized pedaling task, participants were asked to use visual feedback to deactivate the vastus medialis (VM) before a 90° target region of the pedaling cycle, as measured by surface electromyography and by change in fraction of total cycle amplitude in the target region. We based the start of this target region on the earliest observed deactivation for this muscle (found in fast pedaling), which allowed us to challenge both the paretic and nonparetic VM. During visual feedback, participants significantly reduced the fraction of activity found in the target region, with no significant difference in degree of reduction between paretic and nonparetic legs or between bilateral and unilateral pedaling. Surprisingly, in bilateral pedaling, individuals with greater clinical impairment demonstrated greater paretic limb response to feedback. Our results demonstrated that during this tightly constrained task, the paretic VM showed a surprisingly similar flexibility of muscle activity to the nonparetic VM. Our findings show that participants were able to use provided visual feedback to modulate the degree of an observed poststroke muscle-phasing impairment. NEW & NOTEWORTHY This study demonstrates that by using visual feedback during a constrained task with minimized kinematic control requirements, participants with poststroke hemiplegia can voluntarily change muscle activity phase in the vastus medialis. Surprisingly, we did not observe a significant difference in ability to alter phasing between paretic and nonparetic legs or between bilateral and unilateral pedaling. In this visual feedback task, participants appear to modify muscle activity well in both the paretic and nonparetic legs.
Collapse
Affiliation(s)
- Christopher H Mullens
- Department of Physical Therapy and Human Movement Science, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - David A Brown
- Department of Physical Therapy, School of Health Professions, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
10
|
Liang JN, Brown DA. Impaired H-Reflex Gain during Postural Loaded Locomotion in Individuals Post-Stroke. PLoS One 2015; 10:e0144007. [PMID: 26629996 PMCID: PMC4668037 DOI: 10.1371/journal.pone.0144007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Objective Successful execution of upright locomotion requires coordinated interaction between controllers for locomotion and posture. Our earlier research supported this model in the non-impaired and found impaired interaction in the post-stroke nervous system during locomotion. In this study, we sought to examine the role of the Ia afferent spinal loop, via the H-reflex response, under postural influence during a locomotor task. We tested the hypothesis that the ability to increase stretch reflex gain in response to postural loads during locomotion would be reduced post-stroke. Methods Fifteen individuals with chronic post-stroke hemiparesis and 13 non-impaired controls pedaled on a motorized cycle ergometer with specialized backboard support system under (1) seated supported, and (2) non-seated postural-loaded conditions, generating matched pedal force outputs of two levels. H-reflexes were elicited at 90°crank angle. Results We observed increased H-reflex gain with postural influence in non-impaired individuals, but a lack of increase in individuals post-stroke. Furthermore, we observed decreased H-reflex gain at higher postural loads in the stroke-impaired group. Conclusion These findings suggest an impaired Ia afferent pathway potentially underlies the defects in the interaction between postural and locomotor control post-stroke and may explain reduced ability of paretic limb support during locomotor weight-bearing in individuals post-stroke. Significance These results support the judicious use of bodyweight support training when first helping individuals post-stroke to regain locomotor pattern generation and weight-bearing capability.
Collapse
Affiliation(s)
- Jing Nong Liang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, Chicago Illinois, United States of America
- Department of Physical Therapy, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail:
| | - David A. Brown
- Department of Physical Therapy, School of Health Related Professions, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
11
|
Promjunyakul NO, Schmit BD, Schindler-Ivens SM. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke. Front Hum Neurosci 2015; 9:324. [PMID: 26089789 PMCID: PMC4454878 DOI: 10.3389/fnhum.2015.00324] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/20/2015] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann's area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of -0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum - but not cortex - was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities.
Collapse
Affiliation(s)
- Nutta-On Promjunyakul
- Department of Physical Therapy, Marquette University Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA ; Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin Milwaukee, WI, USA
| | - Sheila M Schindler-Ivens
- Department of Physical Therapy, Marquette University Milwaukee, WI, USA ; Department of Biomedical Engineering, Marquette University Milwaukee, WI, USA ; Clinical and Translational Science Institute of Southeastern Wisconsin, Medical College of Wisconsin Milwaukee, WI, USA
| |
Collapse
|
12
|
Effect of biofeedback cycling training on functional recovery and walking ability of lower extremity in patients with stroke. Kaohsiung J Med Sci 2014; 30:35-42. [PMID: 24388057 DOI: 10.1016/j.kjms.2013.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/14/2013] [Indexed: 11/21/2022] Open
|
13
|
Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB. Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 2013; 111:746-54. [PMID: 24225545 DOI: 10.1152/jn.00372.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is still widely believed that exaggerated stretch reflexes and increased muscle tone in ankle plantar flexors contribute to reduced ankle joint movement during gait in children with cerebral palsy (CP). However, no study has directly measured stretch reflex activity during gait in these children. We investigated sensory feedback mechanisms during walking in 20 CP children and 41 control children. Stretch responses in plantar flexor muscles evoked in stance showed an age-related decline in control but not CP children. In swing the responses were abolished in control children, but significant responses were observed in 14 CP children. This was related to reduced activation of dorsiflexors in swing. Removal of sensory feedback in stance produced a drop in soleus activity of a similar size in control and CP children. Soleus activity was observed in swing to the same extent in control and CP children. Removal of sensory feedback in swing caused a larger drop in soleus activity in control children than in CP children. The lack of age-related decline in stretch reflexes and the inability to suppress reflexes in swing is likely related to lack of maturation of corticospinal control in CP children. Since soleus activity was not seen more frequently than in control children in swing and since sensory feedback did not contribute more to their soleus activity, spasticity is unlikely to contribute to foot drop and toe walking. We propose that altered central drive to the ankle muscles and increased passive muscle stiffness are the main causes of foot drop and toe walking.
Collapse
Affiliation(s)
- Maria Willerslev-Olsen
- Department of Nutrition, Exercise and Sport Science and Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
14
|
Liang JN, Brown DA. Impaired foot-force direction regulation during postural loaded locomotion in individuals poststroke. J Neurophysiol 2013; 110:378-86. [PMID: 23615554 DOI: 10.1152/jn.00005.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following stroke, hemiparesis results in impaired motor control. Specifically, inappropriate direction of foot-forces during locomotion has been reported. In our previous study (Liang and Brown 2011) that examined poststroke foot-force direction during a seated, supported locomotor task, we observed that foot-force control capabilities were preserved poststroke. In this current study, we sought to better understand the mechanisms underlying the interaction of locomotor and postural control as an interactive mechanism that might interfere, poststroke, with appropriate foot-force generation. We designed an experiment in which participants performed biomechanically controlled locomotor tasks, under posturally challenged pedaling conditions while they generated mechanical output that was comparable to pedaling conditions without postural challenge, thus allowing us to monitor the strategies that the nervous system adopts when postural conditions were manipulated. We hypothesized that, with postural influence, individuals poststroke would generate inappropriate shear forces accompanied by inappropriate changes to muscle activity patterns when performing a mechanically controlled locomotor task, and would be exaggerated with increased postural loading. Sixteen individuals with chronic poststroke hemiparesis and 14 age-similar nonimpaired controls pedaled on a cycle ergometer under 1) seated supported and 2) nonseated postural loaded pedaling conditions, generating matched pedal force outputs of two effort levels. When we compared postural influence with seated pedaling, we observed increased magnitudes of forward-directed shear forces in the paretic legs associated with increased magnitude of leg extensor muscle activity, but not in controls. These findings provide evidence to support a model that describes independent controllers for posture and locomotion, but that the interaction between the two controllers is impaired poststroke.
Collapse
Affiliation(s)
- Jing Nong Liang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | | |
Collapse
|
15
|
Yamaguchi T, Fujiwara T, Saito K, Tanabe S, Muraoka Y, Otaka Y, Osu R, Tsuji T, Hase K, Liu M. The effect of active pedaling combined with electrical stimulation on spinal reciprocal inhibition. J Electromyogr Kinesiol 2013; 23:190-4. [DOI: 10.1016/j.jelekin.2012.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 11/29/2022] Open
|
16
|
Stowe AM, Hughes-Zahner L, Barnes VK, Herbelin LL, Schindler-Ivens SM, Quaney BM. A pilot study to measure upper extremity H-reflexes following neuromuscular electrical stimulation therapy after stroke. Neurosci Lett 2013; 535:1-6. [PMID: 23313593 DOI: 10.1016/j.neulet.2012.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 10/27/2022]
Abstract
Upper extremity (UE) hemiparesis persists after stroke, limiting hand function. Neuromuscular electrical stimulation (NMES) is an effective intervention to improve UE recovery, although the underlying mechanisms are not fully understood. Our objective was to establish a reliable protocol to measure UE agonist-antagonist forearm monosynaptic reflexes in a pilot study to determine if NMES improves wrist function after stroke. We established the between-day reliability of the H-reflex in the extensor carpi radialis longus (ECRL) and flexor carpi radialis (FCR) musculature for individuals with prior stroke (n=18). The same-day generation of ECRL/FCR H-reflex recruitment curves was well tolerated, regardless of age or UE spasticity. The between-day reliability of the ECRL H-reflex was enhanced above FCR, similar to healthy subjects [20], with the Hmax the most reliable parameter quantified in both muscles. H-reflex and functional measures following NMES show the potential for NMES-induced increases in ECRL Hmax, but confirmation requires a larger clinical study. Our initial results support the safe, easy, and efficacious use of in-home NMES, and establish a potential method to measure UE monosynaptic reflexes after stroke.
Collapse
Affiliation(s)
- A M Stowe
- Landon Center on Aging, Kansas University Medical Center, Kansas City, KS, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Jain S, Gourab K, Schindler-Ivens S, Schmit BD. EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol 2012; 124:379-90. [PMID: 23036179 DOI: 10.1016/j.clinph.2012.08.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. METHODS Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13-35 Hz) frequency band were analyzed and compared between active and passive trials. RESULTS The peak-to-peak amplitude (peak positive-peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = -0.77, p < 0.01) the medial hamstrings (r = -0.85, p < 0.01) and the tibialis anterior (r = -0.70, p < 0.01) muscles. CONCLUSIONS These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. SIGNIFICANCE This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans.
Collapse
Affiliation(s)
- Sanket Jain
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53201, United States
| | | | | | | |
Collapse
|
18
|
Hubli M, Bolliger M, Limacher E, R. Luft A, Dietz V. Spinal neuronal dysfunction after stroke. Exp Neurol 2012; 234:153-60. [DOI: 10.1016/j.expneurol.2011.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/28/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
19
|
Fuchs DP, Sanghvi N, Wieser J, Schindler-Ivens S. Pedaling alters the excitability and modulation of vastus medialis H-reflexes after stroke. Clin Neurophysiol 2011; 122:2036-43. [DOI: 10.1016/j.clinph.2011.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/29/2022]
|
20
|
Zehr EP, Loadman PM. Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clin Neurophysiol 2011; 123:796-807. [PMID: 21945456 DOI: 10.1016/j.clinph.2011.07.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cutaneous nerve stimulation evokes coordinated and phase-modulated reflex output widely distributed to muscles of all four limbs during walking. Accessibility to this distributed network after stroke offers insight into the pathological changes and suggests utility for therapeutic applications. Here we examined muscles in both the more (MA) and less affected (LA) legs evoked by stimulation at the ankle and wrist during walking in chronic (>6 months post CVA) stroke. METHODS Stroke and control participants walked on a treadmill with a harness support system. Reflexes were evoked with trains of electrical stimuli delivered separately to the cutaneous superficial peroneal (SP; at the ankle) and superficial radial (SR; at the wrist) nerves. Background locomotor and reflex EMG were phase-averaged across the gait cycle and analyzed off line. RESULTS Locomotor background muscle activation patterns were altered bilaterally in stroke, as compared with control. Phase-dependent modulation of interlimb cutaneous reflexes was found in both stroke and control subjects with stimulation of each nerve, but responses were blunted in stroke. Reflex reversal in tibialis anterior (TA) at heel strike with SP nerve stimulation was present in both groups. Notably, SR nerve stimulation produced facilitation during the swing-to-stance transition in the TA and suppression of MG in the MA leg during stance. CONCLUSIONS Interlimb cutaneous inputs may access coordinated reflex pathways in the MA limb during walking after stroke. Importantly activation in these pathways could provoke responses to counter foot drop during swing phase of walking. Additionally, our data support the perspective that there is no "unaffected" side after stroke and that caution should be used when interpreting the LA side as "control" after stroke. SIGNIFICANCE The presence of functionally-relevant interlimb cutaneous reflexes in the MA leg presents a substrate that may be strengthened by rehabilitation.
Collapse
Affiliation(s)
- E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
21
|
Kloter E, Wirz M, Dietz V. Locomotion in stroke subjects: interactions between unaffected and affected sides. Brain 2011; 134:721-31. [PMID: 21303854 DOI: 10.1093/brain/awq370] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm muscles of both sides, with larger amplitudes prior to swing over an obstacle compared with normal swing. In post-stroke subjects, the electromyography responses were stronger on both sides when the tibial nerve of the unaffected leg was stimulated compared with stimulation of the affected leg. This difference was more pronounced when stimuli were applied prior to swing over an obstacle than prior to normal swing. This indicates an impaired processing of afferent input from the affected leg resulting in attenuated and little task-modulated reflex responses in the arm muscles on both sides. In contrast, an afferent volley from the unaffected leg resulted in larger electromyography responses, even in the muscles of the affected arm. Arm muscle activations were stronger during swing over an obstacle than during normal swing, with no difference in electromyography amplitudes between the unaffected and affected sides. It is concluded that the deficits of the affected arm are compensated for by influences from the unaffected side. These observations indicate strong mutual influences between unaffected and affected sides during locomotion of post-stroke subjects, which might be used to optimize rehabilitation approaches.
Collapse
Affiliation(s)
- Evelyne Kloter
- Spinal Cord Injury Centre, Balgrist University Hospital, Forchstr. 340, CH-8008 Zurich, Switzerland
| | | | | |
Collapse
|