1
|
Grose G, Manzone DM, Eschelmuller G, Peters RM, Carpenter MG, Inglis JT, Chua R. The effects of eccentric exercise-induced fatigue on position sense during goal-directed movement. J Appl Physiol (1985) 2022; 132:1005-1019. [PMID: 35271409 DOI: 10.1152/japplphysiol.00177.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the impairment of position sense associated with muscle fatigue. In Exp. 1, participants performed learned eccentric extension (22 °/s) movements of the elbow as the arm was pulled through the horizontal plane without vision of the arm. They opened their closed right hand when they judged it to be passing through a target. Dynamic position sense was assessed via accuracy of limb position to the target at time of hand opening. Eccentric movements were performed against a flexion load (10% of flexion MVC). We investigated performance under conditions with and without biceps vibration, as well as before and after eccentric exercise. In Exp. 2, a motor was used to extend the participant's limb passively. We compared conditions with and without vibration of the lengthening but passive biceps, before and after exercise. In Exp. 1, vibration of the active biceps resulted in participants opening their hand earlier ( [95% CI] -5.52° [-7.40, -3.63]) compared to without vibration. Exercise reduced flexion MVCs by ~44%, and participants undershot the target more (-5.51° [-9.31, -1.70]) in the post-exercise block during control trials. Exercise did not influence the persistence of the vibratory illusion. In Exp. 2, vibration resulted in greater undershooting (-2.99° [-3.99, -1.98]) compared to without vibration, before and after exercise. Although exercise reduced MVCs by ~50%, the passive task showed no effects of exercise. We suggest that the CNS continues to rely on muscle spindles for limb position sense, even when they reside in a muscle exposed to fatiguing eccentric contractions.
Collapse
Affiliation(s)
- George Grose
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | | | - Gregg Eschelmuller
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, The University of Calgary, Calgary, Canada
| | - Mark Gregory Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Romeo Chua
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Exercise, fatigue and proprioception: a retrospective. Exp Brain Res 2019; 237:2447-2459. [DOI: 10.1007/s00221-019-05634-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
3
|
Logan LM, Semrau JA, Cluff T, Scott SH, Dukelow SP. Effort matching between arms depends on relative limb geometry and personal control. J Neurophysiol 2018; 121:459-470. [PMID: 30540499 DOI: 10.1152/jn.00346.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprioception encompasses our sense of position and movement of our limbs, as well as the effort with which we engage in voluntary actions. Historically, sense of effort has been linked to centrally generated signals that elicit voluntary movements. We were interested in determining the effect of differences in limb geometry and personal control on sense of effort. In experiment 1, subjects exerted either extension or flexion torques to resist a torque applied by a robot exoskeleton to their reference elbow. They attempted to match this torque by exerting an equal effort torque (in a congruent direction with the reference arm) with their opposite (matching) arm in different limb positions (±15°). Subjects produced greater matching torque when their matching arm exerted effort toward the mirrored position of the reference (e.g., reference/matching arms at 90°/105° elbow flexion) vs. away (e.g., 90°/75° flexion). In experiment 2, a larger angular difference between arms (30°) resulted in a larger discrepancy in matched torques. Furthermore, in both experiments 1 and 2, subjects tended to overestimate the reference arm torque. This motivated a third experiment to determine whether providing more personal control might influence perceived effort and reduce the overestimation of the reference torques that we observed ( experiments 3a and 3b). Overestimation of the matched torques decreased significantly when subjects self-selected the reference torque that they were matching. Collectively, our data suggest that perceived effort between arms can be influenced by signals relating to the relative geometry of the limbs and the personal control of motor output during action. NEW & NOTEWORTHY This work highlights how limb geometry influences our sense of effort during voluntary motor actions. It also suggests that loss of personal control during motor actions leads to an increase in perceived effort.
Collapse
Affiliation(s)
- Lindsey M Logan
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada
| | - Jennifer A Semrau
- Department of Clinical Neurosciences, University of Calgary, Alberta, Calgary , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada.,Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Tyler Cluff
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario , Canada
| | - Sean P Dukelow
- Faculty of Kinesiology, University of Calgary , Calgary, Alberta , Canada.,Department of Clinical Neurosciences, University of Calgary, Alberta, Calgary , Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
4
|
Taylor KF, Meyer VM, Smith LB, Lustik MB. Multiplanar wrist joint proprioception: The effect of anesthetic blockade of the posterior interosseous nerve or skin envelope surrounding the joint. J Hand Ther 2016. [PMID: 26209163 DOI: 10.1016/j.jht.2015.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
STUDY DESIGN Randomized clinical trial. PURPOSE Contribution of the posterior interosseous nerve (PIN) and surrounding skin envelope to wrist proprioception is a topic of debate and the primary focus of this research. METHODS We performed a double-blinded, placebo control study in which subjects underwent baseline multiplanar testing of wrist proprioception. They were randomized to receive either anesthetic blockade of the PIN within the fourth dorsal compartment, or circumferential topical anesthetic blockade of skin surrounding the wrist. Corresponding opposite wrists underwent placebo intervention with saline injection or inert ultrasound gel. Subjects repeated proprioceptive testing. RESULTS Eighty subjects, 45 male and 35 female, mean age 33 years (range, 19-64 years), completed testing. The percentage of measurements falling outside a ±18° range did not differ between pre-treatment and post-treatment PIN blockade or for circumferential skin anesthesia. CONCLUSIONS Wrist proprioception appears to be a multifactorial phenomenon. Surgeons may sacrifice the PIN without concern for effect on joint proprioception. LEVEL OF EVIDENCE Level I.
Collapse
Affiliation(s)
- Kenneth F Taylor
- Department of Orthopaedic Surgery and Rehabilitation, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Vanessa M Meyer
- Department of Orthopedics and Rehabilitation, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Laurel B Smith
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Michael B Lustik
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, USA
| |
Collapse
|
5
|
Butler AA, Héroux ME, Gandevia SC. How Weight Affects the Perceived Spacing between the Thumb and Fingers during Grasping. PLoS One 2015; 10:e0127983. [PMID: 25996760 PMCID: PMC4440696 DOI: 10.1371/journal.pone.0127983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
We know much about mechanisms determining the perceived size and weight of lifted objects, but little about how these properties of size and weight affect the body representation (e.g. grasp aperture of the hand). Without vision, subjects (n = 16) estimated spacing between fingers and thumb (perceived grasp aperture) while lifting canisters of the same width (6.6cm) but varied weights (300, 600, 900, and 1200 g). Lifts were performed by movement of either the wrist, elbow or shoulder to examine whether lifting with different muscle groups affects the judgement of grasp aperture. Results for perceived grasp aperture were compared with changes in perceived weight of objects of different sizes (5.2, 6.6, and 10 cm) but the same weight (600 g). When canisters of the same width but different weights were lifted, perceived grasp aperture decreased 4.8% [2.2 ‒ 7.4] (mean [95% CI]; P < 0.001) from the lightest to the heaviest canister, no matter how they were lifted. For objects of the same weight but different widths, perceived weight decreased 42.3% [38.2 ‒ 46.4] from narrowest to widest (P < 0.001), as expected from the size-weight illusion. Thus, despite a highly distorted perception of the weight of objects based on their size, we conclude that proprioceptive afferents maintain a reasonably stable perception of the aperture of the grasping hand over a wide range of object weights. Given the small magnitude of this 'weight-grasp aperture' illusion, we propose the brain has access to a relatively stable 'perceptual ruler' to aid the manipulation of different objects.
Collapse
Affiliation(s)
- Annie A. Butler
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Martin E. Héroux
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
6
|
Tsay A, Allen T, Proske U, Giummarra M. Sensing the body in chronic pain: A review of psychophysical studies implicating altered body representation. Neurosci Biobehav Rev 2015; 52:221-32. [DOI: 10.1016/j.neubiorev.2015.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/11/2014] [Accepted: 03/06/2015] [Indexed: 01/29/2023]
|
7
|
Pettorossi VE, Panichi R, Botti FM, Biscarini A, Filippi GM, Schieppati M. Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin. Clin Neurophysiol 2015; 126:1886-900. [PMID: 25812729 DOI: 10.1016/j.clinph.2015.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. METHODS Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. RESULTS Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. CONCLUSIONS Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to previously experienced position of head with respect to trunk. SIGNIFICANCE Tonic proprioceptive inflow, as might occur as a consequence of enduring or permanent head postures, can induce adaptive plastic changes in vestibular-dependent motion sensitiveness. These changes might be counteracted by vibration of selected neck muscles.
Collapse
Affiliation(s)
| | - Roberto Panichi
- Department of Experimental Medicine, University of Perugia, Italy
| | | | - Andrea Biscarini
- Department of Experimental Medicine, University of Perugia, Italy
| | | | - Marco Schieppati
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Centro Studi Attività Motorie, Fondazione Salvatore Maugeri (IRCCS), Pavia, Italy.
| |
Collapse
|
8
|
Missitzi J, Gentner R, Misitzi A, Geladas N, Politis P, Klissouras V, Classen J. Heritability of motor control and motor learning. Physiol Rep 2013; 1:e00188. [PMID: 24744865 PMCID: PMC3970744 DOI: 10.1002/phy2.188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/19/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to elucidate the relative contribution of genes and environment on individual differences in motor control and acquisition of a force control task, in view of recent association studies showing that several candidate polymorphisms may have an effect on them. Forty‐four healthy female twins performed brisk isometric abductions with their right thumb. Force was recorded by a transducer and fed back to the subject on a computer screen. The task was to place the tracing of the peak force in a force window defined between 30% and 40% of the subject's maximum force, as determined beforehand. The initial level of proficiency was defined as the number of attempts reaching the force window criterion within the first 100 trials. The difference between the number of successful trials within the last and the first 100 trials was taken as a measure of motor learning. For motor control, defined by the initial level of proficiency, the intrapair differences in monozygotic (MZ) and dizygotic (DZ) twins were 6.8 ± 7.8 and 13.8 ± 8.4, and the intrapair correlations 0.77 and 0.39, respectively. Heritability was estimated at 0.68. Likewise for motor learning intrapair differences in the increment of the number of successful trials in MZ and DZ twins were 5.4 ± 5.2 and 12.8 ± 7, and the intrapair correlations 0.58 and 0.19. Heritability reached 0.70. The present findings suggest that heredity accounts for a major part of existing differences in motor control and motor learning, but uncertainty remains which gene polymorphisms may be responsible. Individual differences in motor control and learning are attributed to a great extent to genetic predisposition. However, uncertainty remains which gene polymorphism may be responsible.
Collapse
Affiliation(s)
- Julia Missitzi
- Ergophysiology Research Laboratory, Department of Sport Medicine and Biology of Physical Activity, University of Athens, Athens, Greece ; Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | - Reinhard Gentner
- Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Wurzburg, Wurzburg, Germany
| | | | - Nickos Geladas
- Ergophysiology Research Laboratory, Department of Sport Medicine and Biology of Physical Activity, University of Athens, Athens, Greece
| | - Panagiotis Politis
- Histology Laboratory, Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece (P.P.)
| | - Vassilis Klissouras
- Ergophysiology Research Laboratory, Department of Sport Medicine and Biology of Physical Activity, University of Athens, Athens, Greece
| | - Joseph Classen
- Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Wurzburg, Wurzburg, Germany ; Human Motor Control and Neuroplasticity Laboratory, Department of Neurology, University of Leipzig, Leipzig, D-04103, Germany
| |
Collapse
|
9
|
Walsh LD, Proske U, Allen TJ, Gandevia SC. The contribution of motor commands to position sense differs between elbow and wrist. J Physiol 2013; 591:6103-14. [PMID: 24099798 DOI: 10.1113/jphysiol.2013.259127] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent studies have suggested that centrally generated motor commands contribute to the perception of position and movement at the wrist, but not at the elbow. Because the wrist and elbow experiments used different methods, this study was designed to resolve the discrepancy. Two methods were used to test both the elbow and wrist (20 subjects each). For the wrist, subjects sat with their right arm strapped to a device that restricted movement to the wrist. Before each test, voluntary contraction of wrist flexor or extensor muscles controlled for muscle spindle thixotropy. After relaxation, the wrist was moved to a test angle. Position was indicated either with a pointer, or by matching with the contralateral wrist, under two conditions: when the reference wrist was relaxed or when its muscles were contracted isometrically (30% maximum). The elbow experiment used the same design to measure position sense in the passive elbow and with elbow muscles contracting (30% maximum). At the wrist when using a pointer, muscle contraction altered significantly the perceived wrist angle in the direction of contraction by 7 deg [3 deg, 12 deg] (mean [95% confidence interval]) with a flexor contraction and 8 deg [4 deg, 12 deg] with an extensor contraction. Similarly, in the wrist matching task, there was a change of 13 deg [9 deg, 16 deg] with a flexor contraction and 4 deg [1 deg, 8 deg] with an extensor contraction. In contrast, contraction of elbow flexors or extensors did not alter significantly the perceived position of the elbow, compared with rest. The contribution of central commands to position sense differs between the elbow and the wrist.
Collapse
Affiliation(s)
- Lee D Walsh
- S. C. Gandevia: Neuroscience Research Australia, Barker Street, Randwick, Sydney, NSW 2031, Australia.
| | | | | | | |
Collapse
|
10
|
Haptic-motor transformations for the control of finger position. PLoS One 2013; 8:e66140. [PMID: 23762477 PMCID: PMC3675141 DOI: 10.1371/journal.pone.0066140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Dexterous manipulation relies on modulation of digit forces as a function of digit placement. However, little is known about the sense of position of the vertical distance between finger pads relative to each other. We quantified subjects' ability to match perceived vertical distance between the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same or opposite hand (“test” hand) after a 10-second delay without vision of the hands. The reference hand digits were passively placed non-collinearly so that the thumb was higher or lower than the index finger (dy = 30 or –30 mm, respectively) or collinearly (dy = 0 mm). Subjects reproduced reference hand dy by using a congruent or inverse test hand posture while exerting negligible digit forces onto a handle. We hypothesized that matching error (reference hand dy minus test hand dy) would be greater (a) for collinear than non-collinear dys, (b) when reference and test hand postures were not congruent, and (c) when subjects reproduced dy using the opposite hand. Our results confirmed our hypotheses. Under-estimation errors were produced when the postures of reference and test hand were not congruent, and when test hand was the opposite hand. These findings indicate that perceived finger pad distance is reproduced less accurately (1) with the opposite than the same hand and (2) when higher-level processing of the somatosensory feedback is required for non-congruent hand postures. We propose that erroneous sensing of finger pad distance, if not compensated for during contact and onset of manipulation, might lead to manipulation performance errors as digit forces have to be modulated to perceived digit placement.
Collapse
|
11
|
Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 2013; 92:1651-97. [PMID: 23073629 DOI: 10.1152/physrev.00048.2011] [Citation(s) in RCA: 1092] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This is a review of the proprioceptive senses generated as a result of our own actions. They include the senses of position and movement of our limbs and trunk, the sense of effort, the sense of force, and the sense of heaviness. Receptors involved in proprioception are located in skin, muscles, and joints. Information about limb position and movement is not generated by individual receptors, but by populations of afferents. Afferent signals generated during a movement are processed to code for endpoint position of a limb. The afferent input is referred to a central body map to determine the location of the limbs in space. Experimental phantom limbs, produced by blocking peripheral nerves, have shown that motor areas in the brain are able to generate conscious sensations of limb displacement and movement in the absence of any sensory input. In the normal limb tendon organs and possibly also muscle spindles contribute to the senses of force and heaviness. Exercise can disturb proprioception, and this has implications for musculoskeletal injuries. Proprioceptive senses, particularly of limb position and movement, deteriorate with age and are associated with an increased risk of falls in the elderly. The more recent information available on proprioception has given a better understanding of the mechanisms underlying these senses as well as providing new insight into a range of clinical conditions.
Collapse
Affiliation(s)
- Uwe Proske
- Department of Physiology, Monash University, Victoria, Australia.
| | | |
Collapse
|
12
|
Fortier S, Basset FA. The effects of exercise on limb proprioceptive signals. J Electromyogr Kinesiol 2012; 22:795-802. [DOI: 10.1016/j.jelekin.2012.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/22/2012] [Accepted: 04/01/2012] [Indexed: 10/28/2022] Open
|
13
|
Haik MN, Camargo PR, Zanca GG, Alburquerque-Sendín F, Salvini TF, Mattiello-Rosa SM. Joint position sense is not altered during shoulder medial and lateral rotations in female assembly line workers with shoulder impingement syndrome. Physiother Theory Pract 2012; 29:41-50. [PMID: 22515172 DOI: 10.3109/09593985.2012.676722] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study evaluated joint position sense (JPS) during medial and lateral rotations of the shoulder in female workers with and without shoulder impingement syndrome (SIS). Three groups were assessed. The case group consisted of 15 female assembly line workers (35.5, SD 5.8 years) with unilateral SIS. Control group 1 consisted of 15 female assembly line workers asymptomatic for SIS (34.4, SD 5.5 years) and control group 2 consisted of 15 female subjects (33.1, SD 6.2 years) asymptomatic for SIS and with no exposure to activities with the upper limbs. The JPS was evaluated bilaterally during passive (2°/sec) and active (5°/sec) repositioning tests using an isokinetic dynamometer. The target angles were 45° of lateral rotation (achieved by medially rotating the shoulder from 90° of lateral rotation) and 75° of lateral rotation (achieved by laterally rotating the shoulder from neutral rotation). There were no differences between sides for all groups (p > 0.05). There were no differences in any of the variables between the case group and the control groups (p > 0.05). The results of this study suggest that JPS during medial and lateral rotations of the shoulder is not altered in female assembly line workers with SIS.
Collapse
Affiliation(s)
- Melina N Haik
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, SP, Brasil
| | | | | | | | | | | |
Collapse
|
14
|
Bringoux L, Blouin J, Coyle T, Ruget H, Mouchnino L. Effect of gravity-like torque on goal-directed arm movements in microgravity. J Neurophysiol 2012; 107:2541-8. [PMID: 22298835 DOI: 10.1152/jn.00364.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gravitational force level is well-known to influence arm motor control. Specifically, hyper- or microgravity environments drastically change pointing accuracy and kinematics, particularly during initial exposure. These modifications are thought to partly reflect impairment in arm position sense. Here we investigated whether applying normogravitational constraints at joint level during microgravity episodes of parabolic flights could restore movement accuracy equivalent to that observed on Earth. Subjects with eyes closed performed arm reaching movements toward predefined sagittal angular positions in four environment conditions: normogravity, hypergravity, microgravity, and microgravity with elastic bands attached to the arm to mimic gravity-like torque at the shoulder joint. We found that subjects overshot and undershot the target orientations in hypergravity and microgravity, respectively, relative to a normogravity baseline. Strikingly, adding gravity-like torque prior to and during movements performed in microgravity allowed subjects to be as accurate as in normogravity. In the former condition, arm movement kinematics, as notably illustrated by the relative time to peak velocity, were also unchanged relative to normogravity, whereas significant modifications were found in hyper- and microgravity. Overall, these results suggest that arm motor planning and control are tuned with respect to gravitational information issued from joint torque, which presumably enhances arm position sense and activates internal models optimally adapted to the gravitoinertial environment.
Collapse
Affiliation(s)
- L Bringoux
- CNRS-Aix-Marseille Université, UMR 7287 Institut des Sciences du Mouvement, 163, Ave. de Luminy CP 910, F13288 Marseille Cedex 9, France.
| | | | | | | | | |
Collapse
|
15
|
Wong JD, Wilson ET, Gribble PL. Spatially selective enhancement of proprioceptive acuity following motor learning. J Neurophysiol 2011; 105:2512-21. [PMID: 21368000 PMCID: PMC3094168 DOI: 10.1152/jn.00949.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/26/2011] [Indexed: 11/22/2022] Open
Abstract
It is well recognized that the brain uses sensory information to accurately produce motor commands. Indeed, most research into the relationship between sensory and motor systems has focused on how sensory information modulates motor function. In contrast, recent studies have begun to investigate the reverse: how sensory and perceptual systems are tuned based on motor function, and specifically motor learning. In the present study we investigated changes to human proprioceptive acuity following recent motor learning. Sensitivity to small displacements of the hand was measured before and after 10 min of motor learning, during which subjects grasped the handle of a robotic arm and guided a cursor to a series of visual targets randomly located within a small workspace region. We used a novel method of assessing proprioceptive acuity that avoids active movement, interhemispheric transfer, and intermodality coordinate transformations. We found that proprioceptive acuity improved following motor learning, but only in the region of the arm's workspace explored during learning. No proprioceptive improvement was observed when motor learning was performed in a different location or when subjects passively experienced limb trajectories matched to those of subjects who actively performed motor learning. Our findings support the idea that sensory changes occur in parallel with changes to motor commands during motor learning.
Collapse
Affiliation(s)
- Jeremy D Wong
- Department of Psychology, The University of Western Ontario, 1151 Richmond St., London, ON Canada
| | | | | |
Collapse
|
16
|
Suprak DN. Shoulder joint position sense is not enhanced at end range in an unconstrained task. Hum Mov Sci 2011; 30:424-35. [PMID: 21444119 DOI: 10.1016/j.humov.2011.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
Shoulder joint position sense (JPS) is important for maintaining stability and contributing to coordinated movements. It is provided by afferent and centrally-derived signals interpreted and integrated by the central nervous system (CNS) for subsequent use. Shoulder JPS is enhanced as the joint approaches end range of motion (ROM) in studies involving internal and external rotation with the arm supported, but this finding has not been confirmed in unconstrained movements. To address this issue, the present study examined the effect of shoulder position in the horizontal plane on JPS at a constant elevation. Twenty-three healthy individuals were recruited from a university campus. Subjects attempted to actively replicate various target positions in both plane and elevation. Target positions consisted of five positions in the horizontal plane, normalized to individual horizontal abduction ROM, at 90° of arm elevation. All target positions were tested three times, and average absolute and variable errors were analyzed for each position. No differences in either absolute (p=.312) or variable (p=.185) errors were observed between positions. These results further support the contention that the muscle spindles are a dominant source of afferent feedback regarding shoulder JPS in unconstrained movements, even approaching end ROM, when the capsuloligamentous receptors are active.
Collapse
Affiliation(s)
- David N Suprak
- Kinesiology and Physical Education Program, Department of Physical Education, Health, and Recreation, Western Washington University, USA.
| |
Collapse
|
17
|
Walsh LD, Taylor JL, Gandevia SC. Overestimation of force during matching of externally generated forces. J Physiol 2010; 589:547-57. [PMID: 21098006 DOI: 10.1113/jphysiol.2010.198689] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
If a weight is applied to a finger and the subject asked to produce the same force, the subject generates a force larger than the weight. That is, subjects overestimate the force applied by an external target when matching it. Details of this force overestimation are not well understood. We show that subjects overestimate small target weights, but not larger ones. Furthermore we show for the first time that the force overestimation consists of two components. The first component is a constant. The second component depends on the precise magnitude of the weight and is only present when subjects hold the target weight against gravity. We suggest that the two components are generated in different phases of the force-matching task, are due to different processes, and must have an influence on all proprioceptive judgements of force.
Collapse
Affiliation(s)
- Lee D Walsh
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia
| | | | | |
Collapse
|
18
|
Walsh LD, Gandevia SC, Taylor JL. Illusory movements of a phantom hand grade with the duration and magnitude of motor commands. J Physiol 2010; 588:1269-80. [PMID: 20194129 DOI: 10.1113/jphysiol.2009.183038] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The senses of limb movement and position are critical for accurate control of movement. Recent studies show that central signals of motor command contribute to the sense of limb position but it is not clear whether such signals influence the distinctly different sense of limb movement. Nine subjects participated in two experiments in which we inflated a cuff around their upper arm to produce an ischaemic block, paralysing and anaesthetising the forearm, wrist and hand. This produces an experimental phantom wrist and hand. With their arm hidden from view subjects were asked to make voluntary efforts with their blocked wrist. In the first experiment, efforts were 20 and 40% of maximum and were 2 and 4 s in duration. The second experiment used 1 and 5 s efforts of 5 and 50% of maximum. Subjects signalled perceived movements of their phantom wrist using a pointer. All subjects reported clear perceptions of movement of their phantom hand for all levels and durations of effort. On average, subjects perceived their phantom wrist to move between 16.4 +/- 3.3 deg (mean +/- 95% confidence interval (CI)) and 30.2 +/- 5.4 deg in the first experiment and between 10.3 +/- 3.5 and 38.6 +/- 6.7 deg in the second. The velocity of the movements and total displacement of the phantom graded with the level of effort, and the total displacement also graded with duration. Hence, we have shown that motor command signals have a novel proprioceptive role in the perception of movement of human joints.
Collapse
Affiliation(s)
- Lee D Walsh
- Prince of Wales Medical Research Institute, University of New South Wales, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
19
|
Ruget H, Blouin J, Coyle T, Mouchnino L. Modulation of proprioceptive inflow when initiating a step influences postural adjustments. Exp Brain Res 2009; 201:297-305. [PMID: 19834696 DOI: 10.1007/s00221-009-2035-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/25/2009] [Indexed: 12/16/2022]
Abstract
A synergistic inclination of the whole body towards the supporting leg is required when producing a stepping movement. It serves to shift the centre of mass towards the stance foot. While the importance of sensory information in the setting of this postural adjustment is undisputed, it is currently unknown the extent to which proprioceptive afferences (Ia) give rise to postural regulation during stepping movement when the availability of other sensory information relying on static linear acceleration (gravity) is no longer sensed in microgravity. We tested this possibility asking subjects to step forward with their eyes closed in normo- and microgravity environments. At the onset of the stepping movement, we vibrated the ankle muscles acting in the lateral direction to induce modification of the afferent inflow (Ia fibres). Vibration-evoked movement (perceived movement) was in the same direction as the forthcoming body shift towards the supporting side (current movement). A control condition was performed without vibration. In both environments, when vibration was applied, the hip shift towards the supporting side decreased. These postural modifications occurred, however, earlier in normogravity before initiating the stepping movement than in microgravity (i.e. during the completion of the stepping movement). Our results suggest that proprioceptive information induced by vibration and afferent inflow related to body movement exaggerated sense of movement. This biased perception led to the postural adjustment decrease. We propose that in both environments, proprioceptive inflow enables the subject to scale the postural adjustments, provided that body motion-induced afferences are present to activate this postural control.
Collapse
Affiliation(s)
- Hélène Ruget
- Laboratoire Neurobiologie de la Cognition, CNRS and Aix-Marseille Université, 3 place Victor Hugo, 13331, Marseille cedex 3, France
| | | | | | | |
Collapse
|