1
|
Johnson JT, de Mari D, Doherty H, Hammond FL, Wheaton LA. Alpha-band activity in parietofrontal cortex predicts future availability of vibrotactile feedback in prosthesis use. Exp Brain Res 2022; 240:1387-1398. [PMID: 35257195 DOI: 10.1007/s00221-022-06340-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 01/01/2023]
Abstract
Prosthesis disuse and abandonment is an ongoing issue in upper-limb amputation. In addition to lost structural and motor function, amputation also results in decreased task-specific sensory information. One proposed remedy is augmenting somatosensory information using vibrotactile feedback to provide tactile feedback of grasping objects. While the role of frontal and parietal areas in motor tasks is well established, the neural and kinematic effects of this augmented vibrotactile feedback remain in question. In this study, we sought to understand the neurobehavioral effects of providing augmented feedback during a reach-grasp-transport task. Ten persons with sound limbs performed a motor task while wearing a prosthesis simulator with and without vibrotactile feedback. We hypothesized that providing vibrotactile feedback during prosthesis use would increase activity in frontal and parietal areas and improve grasp-related behavior. Results show that anticipation of upcoming vibrotactile feedback may be encoded in motor and parietal areas during the reach-to-grasp phase of the task. While grasp aperture is unaffected by vibrotactile feedback, the availability of vibrotactile feedback does lead to a reduction in velocity during object transport. These results help shed light on how engineered feedback is utilized by prostheses users and provide methodologies for further assessment in advanced prosthetics research.
Collapse
Affiliation(s)
- John T Johnson
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Daniele de Mari
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Harper Doherty
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Frank L Hammond
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA
| | - Lewis A Wheaton
- Georgia Institute of Technology, 575 14 TH Street Northwest, Atlanta, GA, 30318, USA.
| |
Collapse
|
2
|
Williams L, Pirouz N, Mizelle JC, Cusack W, Kistenberg R, Wheaton LA. Remodeling of cortical activity for motor control following upper limb loss. Clin Neurophysiol 2016; 127:3128-3134. [PMID: 27472549 DOI: 10.1016/j.clinph.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Upper extremity loss presents immediate and lasting challenges for motor control. While sensory and motor representations of the amputated limb undergo plasticity to adjacent areas of the sensorimotor homunculus, it remains unclear whether laterality of motor-related activity is affected by neural reorganization following amputation. METHODS Using electroencephalography, we evaluated neural activation patterns of formerly right hand dominant persons with upper limb loss (amputees) performing a motor task with their residual right limb, then their sound left limb. We compared activation patterns with left- and right-handed persons performing the same task. RESULTS Amputees have involvement of contralateral motor areas when using their sound limb and atypically increased activation of posterior parietal regions when using the affected limb. When using the non-amputated left arm, patterns of activation remains similar to right handed persons using their left arm. CONCLUSIONS A remodeling of activations from traditional contralateral motor areas into posterior parietal areas occurs for motor planning and execution when using the amputated limb. This may reflect an amputation-specific adaptation of heightened visuospatial feedback for motor control involving the amputated limb. SIGNIFICANCE These results identify a neuroplastic mechanism for motor control in amputees, which may have great relevance to development of motor rehabilitation paradigms and prosthesis adaptation.
Collapse
Affiliation(s)
| | | | - J C Mizelle
- School of Applied Physiology, Georgia Tech, USA; Department of Kinesiology, East Carolina University, USA
| | - William Cusack
- School of Applied Physiology, Georgia Tech, USA; St. Jude Medical, Sunnyvale, CA, USA
| | | | | |
Collapse
|
3
|
Chang CJ, Yang TF, Yang SW, Chern JS. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality. Front Aging Neurosci 2016; 8:80. [PMID: 27199732 PMCID: PMC4848299 DOI: 10.3389/fnagi.2016.00080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of motor control among elderly participants with varying fall-risk potentials. The results suggest that, although elderly adults may be without neurological deficits, inefficient central modulation during challenging postural conditions could be an internal factor that contributes to the risk of fall. Furthermore, training that helps to improve coordinated sensorimotor integration may be a useful approach to reduce the risk of fall among elderly populations or when patients suffer from neurological deficits.
Collapse
Affiliation(s)
- Chun-Ju Chang
- Department of Biomedical Engineering, National Yang-Ming University Taipei, Taiwan
| | - Tsui-Fen Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General HospitalTaipei, Taiwan; Department of Physical Therapy and Assistive Technology, National Yang-Ming UniversityTaipei, Taiwan
| | - Sai-Wei Yang
- Department of Biomedical Engineering, National Yang-Ming University Taipei, Taiwan
| | - Jen-Suh Chern
- Graduate Institute of Rehabilitation Counseling, National Taiwan Normal University Taipei, Taiwan
| |
Collapse
|
4
|
Sensory modulation of movement, posture and locomotion. Neurophysiol Clin 2015; 45:255-67. [DOI: 10.1016/j.neucli.2015.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
|
5
|
Mizelle JC, Oparah A, Wheaton LA. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum. Brain Topogr 2015; 29:27-41. [PMID: 26306810 DOI: 10.1007/s10548-015-0446-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.
Collapse
Affiliation(s)
- J C Mizelle
- Department of Kinesiology, East Carolina University, Greenville, NC, 27858, USA
- Cognitive Motor Control Laboratory, School of Applied Physiology, Georgia Institute of Technology, 555 14th St., Atlanta, GA, 30332-0356, USA
| | - Alexis Oparah
- Department of Psychology & Neuroscience, Duke University, Box 90086, 417 Chapel Drive, Durham, NC, 27708, USA
| | - Lewis A Wheaton
- Cognitive Motor Control Laboratory, School of Applied Physiology, Georgia Institute of Technology, 555 14th St., Atlanta, GA, 30332-0356, USA.
| |
Collapse
|
6
|
Saradjian AH, Paleressompoulle D, Louber D, Coyle T, Blouin J, Mouchnino L. Do gravity-related sensory information enable the enhancement of cortical proprioceptive inputs when planning a step in microgravity? PLoS One 2014; 9:e108636. [PMID: 25259838 PMCID: PMC4178185 DOI: 10.1371/journal.pone.0108636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90-160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity.
Collapse
Affiliation(s)
- Anahid H. Saradjian
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Dany Paleressompoulle
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, CNRS -Aix-Marseille University, Marseille, France
| | - Didier Louber
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Thelma Coyle
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, UMR 7287, Marseille, France
| | - Jean Blouin
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
- * E-mail:
| |
Collapse
|
7
|
Quandt LC, Marshall PJ. The effect of action experience on sensorimotor EEG rhythms during action observation. Neuropsychologia 2014; 56:401-8. [PMID: 24568874 DOI: 10.1016/j.neuropsychologia.2014.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
A recent line of inquiry has examined how an observer׳s experience with action changes the neural processing of similar actions when they are subsequently observed. The current study used electroencephalography (EEG) to test the hypothesis that giving participants different types and amounts of experience with specific objects would lead to differential patterns of sensorimotor rhythms during the observation of similar actions on those objects. While EEG was recorded, three groups of participants (n=20 in each group; mean age=22.0 years, SD=2.7) watched video clips of an actor reaching, grasping, and lifting two objects. Participants then received information about differences in weight between the two objects. One group gained this information through extended sensorimotor experience with the objects, a second group received much briefer sensorimotor experience with the objects, and the third group read written information about the objects׳ weights. Participants then viewed the action sequences again. For participants who had sensorimotor experience with the objects, the EEG response to viewing the actions was differentially sensitive to the anticipated weight of the objects. We conclude that this sensitivity was based on the participant׳s prior sensorimotor experience with the objects. The participants who only received semantic information about the objects showed no such effects. The primary conclusion is that even brief experience with actions affects sensorimotor cortex activity during the subsequent observation of similar actions.
Collapse
Affiliation(s)
- Lorna C Quandt
- University of Pennsylvania, Department of Neurology and Center for Cognitive Neuroscience, Philadelphia, PA 19104, USA.
| | - Peter J Marshall
- Temple University, Department of Psychology, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Changes in cortical beta activity related to a biceps brachii movement task while experiencing exercise induced muscle damage. Physiol Behav 2014; 123:1-10. [DOI: 10.1016/j.physbeh.2013.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/19/2013] [Accepted: 08/29/2013] [Indexed: 11/21/2022]
|
9
|
Mizelle J, Kelly RL, Wheaton LA. Ventral encoding of functional affordances: A neural pathway for identifying errors in action. Brain Cogn 2013; 82:274-82. [DOI: 10.1016/j.bandc.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 11/17/2022]
|
10
|
Saradjian AH, Tremblay L, Perrier J, Blouin J, Mouchnino L. Cortical facilitation of proprioceptive inputs related to gravitational balance constraints during step preparation. J Neurophysiol 2013; 110:397-407. [PMID: 23576699 DOI: 10.1152/jn.00905.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several studies have shown that the transmission of afferent inputs from the periphery to the somatosensory cortex is attenuated during the preparation of voluntary movements. In the present study, we tested whether sensory attenuation is also observed during the preparation of a voluntary step. It would appear dysfunctional to suppress somatosensory information, which is considered to be of the utmost importance for gait preparation. In this context, we predict that the somatosensory information is facilitated during gait preparation. To test this prediction, we recorded cortical somatosensory potentials (SEPs) evoked by bilateral lower limb vibration (i.e., proprioceptive inputs) during the preparation phase of a voluntary right-foot stepping movement (i.e., stepping condition). The subjects were also asked to remain still during and after the vibration as a control condition (i.e., static condition). The amplitude and timing of the early arrival of afferent inflow to the somatosensory cortices (i.e., P1-N1) were not significantly different between the static and stepping conditions. However, a large sustained negativity (i.e., late SEP) developed after the P1-N1 component, which was larger when subjects were preparing a step compared with standing. To determine whether this facilitation of proprioceptive inputs was related to gravitational equilibrium constraints, we performed the same experiment in microgravity. In the absence of equilibrium constraints, both the P1-N1 and late SEPs did not significantly differ between the static and stepping conditions. These observations provide neurophysiological evidence that the brain exerts a dynamic control over the transmission of the afferent signal according to their current relevance during movement preparation.
Collapse
Affiliation(s)
- Anahid H Saradjian
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | | | | | | | | |
Collapse
|
11
|
Tse YYF, Petrofsky JS, Berk L, Daher N, Lohman E, Laymon MS, Cavalcanti P. Postural sway and rhythmic electroencephalography analysis of cortical activation during eight balance training tasks. Med Sci Monit 2013; 19:175-86. [PMID: 23470794 PMCID: PMC3628716 DOI: 10.12659/msm.883824] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The purpose of this study was to investigate the changes in the Power Spectrum Density (PSD) of the electroencephalography (EEG) in common sensorimotor balance training tasks of varying difficulty. Sensorimotor balance exercises including alteration of vision, base of support or surface compliance are used to improve postural control. These exercises are presumed to induce supraspinal adaptation, however, there were no studies that investigated the power changes of the cortical activity in these static balance tasks. Our objective was to provide evidence in the cortical involvement with the static balance tasks frequently used in sensorimotor training. Material/Methods Postural sway and EEG changes of alpha, beta and sigma wave bands were measured in seventeen participants during eight balance tasks of varying difficulty with eyes open and closed, feet in tandem or apart and on foam or a firm surface. Results The power of beta and sigma bands increased significantly at the parietal and central area of the brain in tasks with eyes open together with one sensory factor (base of support or surface compliance) or two sensory factors (base of support and surface compliance) altered, and in task with three sensory factors (vision, base of support and surface compliance) altered from the control task. Conclusions This study demonstrated the cortical involvement in the sensorimotor balance tasks, suggesting that these exercises may induce cortical adaptation for postural control. The results support subcortical control with increased task difficulty and the increase in cortical processing when task became extremely challenging.
Collapse
Affiliation(s)
- Yuen Yi F Tse
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, CA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Theta frequency band activity and attentional mechanisms in visual and proprioceptive demand. Exp Brain Res 2010; 204:189-97. [DOI: 10.1007/s00221-010-2297-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
|