1
|
Gulberti A, Schneider TR, Galindo-Leon EE, Heise M, Pino A, Westphal M, Hamel W, Buhmann C, Zittel S, Gerloff C, Pötter-Nerger M, Engel AK, Moll CKE. Premotor cortical beta synchronization and the network neuromodulation of externally paced finger tapping in Parkinson's disease. Neurobiol Dis 2024; 197:106529. [PMID: 38740349 DOI: 10.1016/j.nbd.2024.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD. Yet a dynamic tuning of beta oscillations in BG-cortical loops is fundamental for movement-timing and synchronization, and the impact of PD therapies on sensorimotor functions relying on neural transmission in the beta frequency-range remains controversial. Here, we set out to determine the differential effects of network neuromodulation through dopaminergic medication (ON and OFF levodopa) and STN-DBS (ON-DBS, OFF-DBS) on tapping synchronization and accompanying cortical activities. To this end, we conducted a rhythmic finger-tapping study with high-density EEG-recordings in 12 PD patients before and after surgery for STN-DBS and in 12 healthy controls. STN-DBS significantly ameliorated tapping parameters as frequency, amplitude and synchrony to the given auditory rhythms. Aberrant neurophysiologic signatures of sensorimotor feedback in the beta-range were found in PD patients: their neural modulation was weaker, temporally sluggish and less distributed over the right cortex in comparison to controls. Levodopa and STN-DBS boosted the dynamics of beta-band modulation over the right hemisphere, hinting to an improved timing of movements relying on tactile feedback. The strength of the post-event beta rebound over the supplementary motor area correlated significantly with the tapping asynchrony in patients, thus indexing the sensorimotor match between the external auditory pacing signals and the performed taps. PD patients showed an excessive interhemispheric coherence in the beta-frequency range during the finger-tapping task, while under DBS-ON the cortico-cortical connectivity in the beta-band was normalized. Ultimately, therapeutic DBS significantly ameliorated the auditory-motor coupling of PD patients, enhancing the electrophysiological processing of sensorimotor feedback-information related to beta-band activity, and thus allowing a more precise cued-tapping performance.
Collapse
Affiliation(s)
- Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Till R Schneider
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar E Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Heise
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Pino
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Socially Assistive Robots for Parkinson's Disease: Needs, Attitudes and Specific Applications as Identified by Healthcare Professionals. ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION 2022. [DOI: 10.1145/3570168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To explore how socially assistive robots (SARs) may assist the specific needs of individuals with Parkinson's disease (IwPD), we conducted three focus groups with 12 clinicians who treat IwPD. We present a thematic analysis of their perceptions of the needs of the patients, and their own expectations, perceived advantages, disadvantages and concerns regarding the use of SARs for IwPD. Clinicians were positive towards using SARs for IwPD, if used in the patient's home, for motor, communication, emotional, and cognitive needs, especially for practice and for help with activities of daily living. They were concerned that a SAR might be used to replace clinicians’ work, and stressed it should only
augment
the clinicians’ work. They thought a SAR may relieve some of the burden experienced by informal caregivers, and identified specific applications for SARs for PD. We asked 18 stakeholders (nine IwPD, nine family members) to rate their level of agreement with the clinicians’ statements. The greatest divergence between their views and those of the clinicians was on the topic of using a SAR as a companion, or as a feeding assistant, to which they objected. This work may be used as a basis for future studies designing SARs for IwPD.
Collapse
|
3
|
Gong R, Mühlberg C, Wegscheider M, Fricke C, Rumpf JJ, Knösche TR, Classen J. Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson's disease. J Neurophysiol 2022; 127:1606-1621. [PMID: 35544757 PMCID: PMC9190732 DOI: 10.1152/jn.00541.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bradykinesia is a cardinal motor symptom in Parkinson’s disease (PD), the pathophysiology of which is not fully understood. We analyzed the role of cross-frequency coupling of oscillatory cortical activity in motor impairment in patients with PD and healthy controls. High-density EEG signals were recorded during various motor activities and at rest. Patients performed a repetitive finger-pressing task normally, but were slower than controls during tapping. Phase-amplitude coupling (PAC) between β (13–30 Hz) and broadband γ (50–150 Hz) was computed from individual EEG source signals in the premotor, primary motor, and primary somatosensory cortices, and the primary somatosensory complex. In all four regions, averaging the entire movement period resulted in higher PAC in patients than in controls for the resting condition and the pressing task (similar performance between groups). However, this was not the case for the tapping tasks where patients performed slower. This suggests the strength of state-related β-γ PAC does not determine Parkinsonian bradykinesia. Examination of the dynamics of oscillatory EEG signals during motor transitions revealed a distinctive motif of PAC rise and decay around press onset. This pattern was also present at press offset and slow tapping onset, linking such idiosyncratic PAC changes to transitions between different movement states. The transition-related PAC modulation in patients was similar to controls in the pressing task but flattened during slow tapping, which related to normal and abnormal performance, respectively. These findings suggest that the dysfunctional evolution of neuronal population dynamics during movement execution is an important component of the pathophysiology of Parkinsonian bradykinesia. NEW & NOTEWORTHY Our findings using noninvasive EEG recordings provide evidence that PAC dynamics might play a role in the physiological cortical control of movement execution and may encode transitions between movement states. Results in patients with Parkinson’s disease suggest that bradykinesia is related to a deficit of the dynamic regulation of PAC during movement execution rather than its absolute strength. Our findings may contribute to the development of a new concept of the pathophysiology of bradykinesia.
Collapse
Affiliation(s)
- Ruxue Gong
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany.,Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Mühlberg
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Mirko Wegscheider
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Fricke
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Jost-Julian Rumpf
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| | - Thomas R Knösche
- Method and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
4
|
De Vleeschhauwer J, Broeder S, Janssens L, Heremans E, Nieuwboer A, Nackaerts E. Impaired Touchscreen Skills in Parkinson's Disease and Effects of Medication. Mov Disord Clin Pract 2021; 8:546-554. [PMID: 33981787 PMCID: PMC8088105 DOI: 10.1002/mdc3.13179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Deficits in fine motor skills may impair device manipulation including touchscreens in people with Parkinson's disease (PD). OBJECTIVES To investigate the impact of PD and anti-parkinsonian medication on the ability to use touchscreens. METHODS Twelve PD patients (H&Y II-III), OFF and ON medication, and 12 healthy controls (HC) performed tapping, single and multi-direction sliding tasks on a touchscreen and a mobile phone task (MPT). Task performance was compared between patients (PD-OFF, PD-ON) and HC and between medication conditions. RESULTS Significant differences were found in touchscreen timing parameters, while accuracy was comparable between groups. PD-OFF needed more time than HC to perform single (P = 0.048) and multi-direction (P = 0.004) sliding tasks and to grab the dot before sliding (i.e., transition times) (P = 0.040; P = 0.004). For tapping, dopaminergic medication significantly increased performance times (P = 0.046) to comparable levels as those of HC. However, for the more complex multi-direction sliding, movement times remained slower in PD than HC irrespective of medication intake (P < 0.050 during ON and OFF). The transition times for the multi-direction sliding task was also higher in PD-ON than HC (P = 0.048). Touchscreen parameters significantly correlated with MPT performance, supporting the ecological validity of the touchscreen tool. CONCLUSIONS PD patients show motor problems when manipulating touchscreens, even when optimally medicated. This hinders using mobile technology in daily life and has implications for developing adequate E-health applications for this group. Future work needs to establish whether touchscreen training is effective in PD.
Collapse
Affiliation(s)
- Joni De Vleeschhauwer
- KU Leuven, Department of Rehabilitation SciencesResearch Group for Neurorehabilitation (eNRGy)LeuvenBelgium
| | - Sanne Broeder
- KU Leuven, Department of Rehabilitation SciencesResearch Group for Neurorehabilitation (eNRGy)LeuvenBelgium
| | - Luc Janssens
- KU Leuven, Group T Campus, Electrical Engineering Technology (ESAT)LeuvenBelgium
| | - Elke Heremans
- Faculty of Rehabilitation SciencesHasselt University, REVALDiepenbeekBelgium
| | - Alice Nieuwboer
- KU Leuven, Department of Rehabilitation SciencesResearch Group for Neurorehabilitation (eNRGy)LeuvenBelgium
| | - Evelien Nackaerts
- KU Leuven, Department of Rehabilitation SciencesResearch Group for Neurorehabilitation (eNRGy)LeuvenBelgium
| |
Collapse
|
5
|
Yaffe JA, Zlotnik Y, Ifergane G, Levy-Tzedek S. Implicit task switching in Parkinson's disease is preserved when on medication. PLoS One 2020; 15:e0227555. [PMID: 31935247 PMCID: PMC6959575 DOI: 10.1371/journal.pone.0227555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
People with Parkinson's disease have been shown to have difficulty switching between movement plans. In the great majority of studies, the need to switch between tasks was made explicitly. Here, we tested whether people with Parkinson's disease, taking their normal medication, have difficulty switching between implicitly specified tasks. We further examined whether this switch is performed predictively or reactively. Twenty five people with Parkinson's disease continuously increased or decreased the frequency of their arm movements, inducing an abrupt-but unaware-switch between rhythmic movements (at high frequencies) and discrete movements (at low frequencies). We tested whether that precipitous change was performed reactively or predictively. We found that 56% of participants predictively switched between the two movement types. The ability of people with Parkinson's disease, taking their regular medication, to predictively control their movements on implicit tasks is thus preserved.
Collapse
Affiliation(s)
- Jacob A. Yaffe
- Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yair Zlotnik
- Neurology Department, Soroka University Medical Center, Beer-Sheva, Israel
| | - Gal Ifergane
- Neurology Department, Soroka University Medical Center, Beer-Sheva, Israel
| | - Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
6
|
Fernandez L, Huys R, Issartel J, Azulay JP, Eusebio A. Movement Speed-Accuracy Trade-Off in Parkinson's Disease. Front Neurol 2018; 9:897. [PMID: 30405521 PMCID: PMC6208126 DOI: 10.3389/fneur.2018.00897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
Patients with Parkinson's disease (PD) often have difficulties generating rhythmic movements, and also difficulties on movement adjustments to accuracy constraints. In the reciprocal aiming task, maintaining a high accuracy comes with the cost of diminished movement speed, whereas increasing movement speed disrupts end-point accuracy, a phenomenon well known as the speed-accuracy trade-off. The aim of this study was to examine how PD impacts speed-accuracy trade-off during rhythmic aiming movements by studying the structural kinematic movement organization and to determine the influence of dopamine replacement therapy on continuous movement speed and accuracy. Eighteen patients with advanced idiopathic Parkinson's disease performed a reciprocal aiming task, where the difficulty of the task was manipulated through target width. All patients were tested in two different sessions: ON-medication and OFF-medication state. A control group composed of healthy age-matched participants was also included in the study. The following variables were used for the analyses: Movement time, Error rate, effective target width, and Performance Index. Percentage of acceleration time and percentage of non-linearity were completed with kinematics patterns description using Rayleigh-Duffing model. Both groups traded off speed against accuracy as the constraints pertaining to the latter increased. The trade-off was more pronounced with the PD patients. Dopamine therapy allowed the PD patients to move faster, but at the cost of movement accuracy. Surprisingly, the structural kinematic organization did not differ across group nor across medication condition. These results suggest that PD patients, when involved in a reciprocal aiming task, are able to produce rhythmic movements. PD patients' overall slowing down seems to reflect a global adaptation to the disease in the absence of a structurally altered kinematic organization.
Collapse
Affiliation(s)
| | - Raoul Huys
- Université de Toulouse, UMR 5549 CERCO (Centre de Recherche Cerveau et Cognition), UPS, CNRS, Toulouse, France
| | - Johann Issartel
- Multisensory Motor Learning Lab, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Jean-Philippe Azulay
- Aix-Marseille Université, APHM, CHU Timone, Department of Neurology and Movement Disorders, Marseille, France
| | - Alexandre Eusebio
- Aix-Marseille Université, APHM, CHU Timone, Department of Neurology and Movement Disorders, Marseille, France.,Aix-Marseille Université, CNRS, UMR 7289, Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
7
|
Levy-Tzedek S, Arbelle D, Forman D, Zlotnik Y. Improvement in upper-limb UPDRS motor scores following fast-paced arm exercise: A pilot study. Restor Neurol Neurosci 2018; 36:535-545. [PMID: 29889088 PMCID: PMC6087443 DOI: 10.3233/rnn-180818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The symptoms of patients with Parkinson's disease (PD) have been shown to improve when they perform fast-paced rhythmic cycling movements with their lower limbs. OBJECTIVE Our goal in this pilot experiment was to test the feasibility and the benefits of a short exercise program involving fast-paced rhythmic movements of the upper limb for patients with PD. METHODS We used an experimental procedure that elicits large, fast-paced movements by the participants without the direct instructions to do so by the experimenter. Ten participants with PD (71.0±6.5 years old) performed a 50-min fast-paced rhythmic exercise of the upper limb after withdrawal from PD medication for at least 12 hours. RESULTS Participants improved their kinematic performance, in terms of accuracy and combined speed and amplitude (p < 0.02), as well as their upper-limb MDS-UPDRS motor scores (p = 0.023). CONCLUSIONS The results demonstrate the feasibility of using the described apparatus to perform an exercise session of approximately 50 min with both arms, and give a preliminary indication of the potential benefit of such an exercise program.
Collapse
Affiliation(s)
- Shelly Levy-Tzedek
- Department of Physical Therapy, Recanati School for Community Health Professions, Ben Gurion University of the Negev, Beer Sheva, Israel
- Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Arbelle
- Department of Physical Therapy, Recanati School for Community Health Professions, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Dan Forman
- Department of Physical Therapy, Recanati School for Community Health Professions, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yair Zlotnik
- Department of Neurology, Soroka University Medical Center, Beer Sheva, Israel
| |
Collapse
|
8
|
Levy-Tzedek S. Changes in Predictive Task Switching with Age and with Cognitive Load. Front Aging Neurosci 2017; 9:375. [PMID: 29213235 PMCID: PMC5702656 DOI: 10.3389/fnagi.2017.00375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022] Open
Abstract
Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.
Collapse
Affiliation(s)
- Shelly Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
9
|
Levy-Tzedek S. Motor errors lead to enhanced performance in older adults. Sci Rep 2017; 7:3270. [PMID: 28607449 PMCID: PMC5468294 DOI: 10.1038/s41598-017-03430-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/05/2017] [Indexed: 01/13/2023] Open
Abstract
Young individuals make larger and faster forearm movements when visual feedback about the movement is not available, compared to when it is. We set out to test whether this behavior persists with aging. We tested 40 participants, 20 in each age group - young and old, on a task that required making rhythmic movements of the forearm with and without visual feedback. Surprisingly, we found that older adults increased the speed and the amplitude of their movements to an even greater extent than did the young adults. Furthermore, we found that the increase in speed and amplitude during the non-vision trial segments improved their performance on the task, and they were able to leverage the change in these movement parameters (speed and amplitude) to improve their performance during subsequent trial segments that did include visual feedback. The improvement in accuracy on the task was accompanied by a decrease in path variability. The results indicate that older adults can adapt their movement parameters to enhance performance following a motor perturbation. They further suggest that motor variability in old age can be advantageous under certain circumstances.
Collapse
Affiliation(s)
- S Levy-Tzedek
- Recanati School for Community Health Professions, Department of Physical Therapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel. .,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Proulx MJ, Gwinnutt J, Dell'Erba S, Levy-Tzedek S, de Sousa AA, Brown DJ. Other ways of seeing: From behavior to neural mechanisms in the online "visual" control of action with sensory substitution. Restor Neurol Neurosci 2016; 34:29-44. [PMID: 26599473 PMCID: PMC4927905 DOI: 10.3233/rnn-150541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vision is the dominant sense for perception-for-action in humans and other higher primates. Advances in sight restoration now utilize the other intact senses to provide information that is normally sensed visually through sensory substitution to replace missing visual information. Sensory substitution devices translate visual information from a sensor, such as a camera or ultrasound device, into a format that the auditory or tactile systems can detect and process, so the visually impaired can see through hearing or touch. Online control of action is essential for many daily tasks such as pointing, grasping and navigating, and adapting to a sensory substitution device successfully requires extensive learning. Here we review the research on sensory substitution for vision restoration in the context of providing the means of online control for action in the blind or blindfolded. It appears that the use of sensory substitution devices utilizes the neural visual system; this suggests the hypothesis that sensory substitution draws on the same underlying mechanisms as unimpaired visual control of action. Here we review the current state of the art for sensory substitution approaches to object recognition, localization, and navigation, and the potential these approaches have for revealing a metamodal behavioral and neural basis for the online control of action.
Collapse
Affiliation(s)
- Michael J Proulx
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - James Gwinnutt
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - Sara Dell'Erba
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| | - Shelly Levy-Tzedek
- Cognition, Aging and Rehabilitation Lab, Recanati School for Community Health Professions, Department of Physical Therapy & Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra A de Sousa
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK.,Department of Science, Bath Spa University, Bath, UK
| | - David J Brown
- Crossmodal Cognition Lab, Department of Psychology, University of Bath, Bath, UK
| |
Collapse
|
11
|
Rhythmic arm movements are less affected than discrete ones after a stroke. Exp Brain Res 2016; 234:1403-17. [DOI: 10.1007/s00221-015-4543-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
12
|
Nackaerts E, Nieuwboer A, Broeder S, Smits-Engelsman BCM, Swinnen SP, Vandenberghe W, Heremans E. Opposite Effects of Visual Cueing During Writing-Like Movements of Different Amplitudes in Parkinson's Disease. Neurorehabil Neural Repair 2015; 30:431-9. [PMID: 26276122 DOI: 10.1177/1545968315601361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Handwriting is often impaired in Parkinson's disease (PD). Several studies have shown that writing in PD benefits from the use of cues. However, this was typically studied with writing and drawing sizes that are usually not used in daily life. OBJECTIVE This study examines the effect of visual cueing on a prewriting task at small amplitudes (≤1.0 cm) in PD patients and healthy controls to better understand the working action of cueing for writing. METHODS A total of 15 PD patients and 15 healthy, age-matched controls performed a prewriting task at 0.6 cm and 1.0 cm in the presence and absence of visual cues (target lines). Writing amplitude, variability of amplitude, and speed were chosen as dependent variables, measured using a newly developed touch-sensitive tablet. RESULTS Cueing led to immediate improvements in writing size, variability of writing size, and speed in both groups in the 1.0 cm condition. However, when writing at 0.6 cm with cues, a decrease in writing size was apparent in both groups (P < .001) and the difference in variability of amplitude between cued and uncued writing disappeared. In addition, the writing speed of controls decreased when the cue was present. CONCLUSIONS Visual target lines of 1.0 cm improved the writing of sequential loops in contrast to lines spaced at 0.6 cm. These results illustrate that, unlike for gait, visual cueing for fine-motor tasks requires a differentiated approach, taking into account the possible increases of accuracy constraints imposed by cueing.
Collapse
Affiliation(s)
| | | | | | | | | | - Wim Vandenberghe
- KU Leuven, Leuven, Belgium University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
13
|
Rocha PA, Porfírio GM, Ferraz HB, Trevisani VFM. Effects of external cues on gait parameters of Parkinson's disease patients: A systematic review. Clin Neurol Neurosurg 2014; 124:127-34. [PMID: 25043443 DOI: 10.1016/j.clineuro.2014.06.026] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
Affiliation(s)
- Priscila A Rocha
- Universidade Federal de São Paulo/Escola Paulista de Medicina-UNIFESP/EPM, Urgency Medicine and Medicine based in Evidence, São Paulo, SP, Brazil.
| | - Gustavo M Porfírio
- Universidade Federal de São Paulo/Escola Paulista de Medicina-UNIFESP/EPM, Urgency Medicine and Medicine based in Evidence, São Paulo, SP, Brazil
| | - Henrique B Ferraz
- Universidade Federal de São Paulo/Escola Paulista de Medicina-UNIFESP/EPM, Neurology, São Paulo, SP, Brazil
| | - Virginia F M Trevisani
- Universidade Federal de São Paulo/Escola Paulista de Medicina-UNIFESP/EPM, Urgency Medicine and Medicine based in Evidence, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Parma V, Zanatto D, Straulino E, Scaravilli T, Castiello U. Kinematics of the Reach-to-Grasp Movement in Vascular Parkinsonism: A Comparison with Idiopathic Parkinson's Disease Patients. Front Neurol 2014; 5:75. [PMID: 24904519 PMCID: PMC4032884 DOI: 10.3389/fneur.2014.00075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/02/2014] [Indexed: 11/13/2022] Open
Abstract
The performance of patients with vascular parkinsonism (VPD) on a reach-to-grasp task was compared with that of patients affected by idiopathic Parkinson’s disease (IPD) and age-matched control subjects. The aim of the study was to determine how patients with VPD and IPD compare at the level of the kinematic organization of prehensile actions. We examined how subjects concurrently executed the transport and grasp components of reach-to-grasp movements when grasping differently sized objects. When comparing both VPD and IPD groups to control subjects, all patients showed longer movement duration and smaller hand opening, reflecting bradykinesia and hypometria, respectively. Furthermore, for all patients, the onset of the manipulation component was delayed with respect to the onset of the transport component. However, for patients with VPD this delay was significantly smaller than that found for the IPD group. It is proposed that this reflects a deficit – which is moderate for VPD as compared to IPD patients – in the simultaneous (or sequential) implementation of different segments of a complex movement. Altogether these findings suggest that kinematic analysis of reach-to-grasp movement has the ability to provide potential instruments to characterize different forms of parkinsonism.
Collapse
Affiliation(s)
- Valentina Parma
- Department of General Psychology, University of Padova , Padova , Italy
| | - Debora Zanatto
- Department of General Psychology, University of Padova , Padova , Italy
| | - Elisa Straulino
- Department of General Psychology, University of Padova , Padova , Italy
| | - Tomaso Scaravilli
- Unità Operativa di Neurologia, Ospedale dell'Angelo, USL12 , Mestre , Italy
| | - Umberto Castiello
- Department of General Psychology, University of Padova , Padova , Italy ; Centro di Neuroscienze Cognitive, University of Padova , Padova , Italy
| |
Collapse
|
15
|
Snider J, Lee D, Harrington DL, Poizner H. Scaling and coordination deficits during dynamic object manipulation in Parkinson's disease. J Neurophysiol 2014; 112:300-15. [PMID: 24760787 DOI: 10.1152/jn.00041.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to reach for and dynamically manipulate objects in a dexterous fashion requires scaling and coordination of arm, hand, and fingertip forces during reach and grasp components of this behavior. The neural substrates underlying dynamic object manipulation are not well understood. Insight into the role of basal ganglia-thalamocortical circuits in object manipulation can come from the study of patients with Parkinson's disease (PD). We hypothesized that scaling and coordination aspects of motor control are differentially affected by this disorder. We asked 20 PD patients and 23 age-matched control subjects to reach for, grasp, and lift virtual objects along prescribed paths. The movements were subdivided into two types, intensive (scaling) and coordinative, by detecting their underlying self-similarity. PD patients off medication were significantly impaired relative to control subjects for both aspects of movement. Intensive deficits, reduced peak speed and aperture, were seen during the reach. Coordinative deficits were observed during the reach, namely, the relative position along the trajectory at which peak speed and aperture were achieved, and during the lift, when objects tilted with respect to the gravitational axis. These results suggest that basal ganglia-thalamocortical circuits may play an important role in fine motor coordination. Dopaminergic therapy significantly improved intensive but not coordinative aspects of movements. These findings are consistent with a framework in which tonic levels of dopamine in the dorsal striatum encode the energetic cost of a movement, thereby improving intensive or scaling aspects of movement. However, repletion of brain dopamine levels does not restore finely coordinated movement.
Collapse
Affiliation(s)
- Joseph Snider
- Institute of Neural Computation, University of California San Diego, La Jolla, California
| | - Dongpyo Lee
- Institute of Neural Computation, University of California San Diego, La Jolla, California
| | - Deborah L Harrington
- Research Service, Department of Veterans Affairs San Diego Healthcare System, La Jolla, California; Department of Radiology, University of California San Diego, La Jolla, California; and
| | - Howard Poizner
- Institute of Neural Computation, University of California San Diego, La Jolla, California; Graduate Program in Neurosciences, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Abstract
Movement disorders, which include disorders such as Parkinson's disease, dystonia, Tourette's syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed.
Collapse
Affiliation(s)
- Neepa Patel
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
| | - Mark Hallett
- Human Motor Control Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Rand MK, Van Gemmert AWA, Hossain ABMI, Stelmach GE. Coordination deficits during trunk-assisted reach-to-grasp movements in Parkinson's disease. Exp Brain Res 2014; 232:61-74. [PMID: 24105594 PMCID: PMC3905200 DOI: 10.1007/s00221-013-3720-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
Abstract
The present study investigated how Parkinson's disease (PD) affects temporal coordination among the trunk, arm, and fingers during trunk-assisted reach-to-grasp movements. Seated participants with PD and healthy controls made prehensile movements. During the reach to the object, the involvement of the trunk was altered based on the instruction; the trunk was not involved, moved forward (flexion), or moved backward (extension) in the sagittal plane. Each of the trunk movements was combined with an extension or flexion motion of the arm during the reach. For the transport component, the individuals with PD substantially delayed the onset of trunk motion relative to that of arm motion in conditions where the trunk was moved in the direction opposite from the arm reaching toward the object. At the same time, variability of intervals between the onsets and intervals between the velocity peaks of the trunk and wrist movements was increased. The magnitudes of the variability measures were significantly correlated with the severity of PD. Regarding the grasp component, the individuals with PD delayed the onset of finger movements during reaching. These results imply that PD impairs temporal coordination between the axial and distal body segments during goal-directed skilled actions. When there is a directional discrepancy between the trunk and wrist motions, individuals with PD appear to prioritize wrist motion that is tied to the task goal over the trunk motion. An increase in disease severity magnifies the coordination deficits.
Collapse
Affiliation(s)
- Miya K. Rand
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), 67 Ardeystraße, 44139 Dortmund, Germany
| | - Arend W. A. Van Gemmert
- School of Kinesiology, Louisiana State University, 112 HP Long Fieldhouse, Baton Rouge, LA 70803, USA
| | | | - George E. Stelmach
- Motor Control Laboratory, Arizona State University, Tempe, AZ 85287-0701, USA
| |
Collapse
|
18
|
Parkinson's disease patients show impaired corrective grasp control and eye-hand coupling when reaching to grasp virtual objects. Neuroscience 2013; 254:205-21. [PMID: 24056196 DOI: 10.1016/j.neuroscience.2013.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/22/2023]
Abstract
The effect of Parkinson's disease (PD) on hand-eye coordination and corrective response control during reach-to-grasp tasks remains unclear. Moderately impaired PD patients (n=9) and age-matched controls (n=12) reached to and grasped a virtual rectangular object, with haptic feedback provided to the thumb and index fingertip by two 3-degree of freedom manipulanda. The object rotated unexpectedly on a minority of trials, requiring subjects to adjust their grasp aperture. On half the trials, visual feedback of finger positions disappeared during the initial phase of the reach, when feedforward mechanisms are known to guide movement. PD patients were tested without (OFF) and with (ON) medication to investigate the effects of dopamine depletion and repletion on eye-hand coordination online corrective response control. We quantified eye-hand coordination by monitoring hand kinematics and eye position during the reach. We hypothesized that if the basal ganglia are important for eye-hand coordination and online corrections to object perturbations, then PD patients tested OFF medication would show reduced eye-hand spans and impoverished arm-hand coordination responses to the perturbation, which would be further exasperated when visual feedback of the hand was removed. Strikingly, PD patients tracked their hands with their gaze, and their movements became destabilized when having to make online corrective responses to object perturbations exhibiting pauses and changes in movement direction. These impairments largely remained even when tested in the ON state, despite significant improvement on the Unified Parkinson's Disease Rating Scale. Our findings suggest that basal ganglia-cortical loops are essential for mediating eye-hand coordination and adaptive online responses for reach-to-grasp movements, and that restoration of tonic levels of dopamine may not be adequate to remediate this coordinative nature of basal ganglia-modulated function.
Collapse
|
19
|
Parkinson’s disease and sex-related differences in electromyography during daily life. J Electromyogr Kinesiol 2013; 23:958-65. [DOI: 10.1016/j.jelekin.2013.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/19/2022] Open
|
20
|
Almeida QJ, Brown MJN. Is DOPA-Responsive Hypokinesia Responsible for Bimanual Coordination Deficits in Parkinson's Disease? Front Neurol 2013; 4:89. [PMID: 23882254 PMCID: PMC3715734 DOI: 10.3389/fneur.2013.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 06/25/2013] [Indexed: 11/21/2022] Open
Abstract
Bradykinesia is a well-documented DOPA-responsive clinical feature of Parkinson’s disease (PD). While amplitude deficits (hypokinesia) are a key component of this slowness, it is important to consider how dopamine influences both the amplitude (hypokinesia) and frequency components of bradykinesia when a bimanually coordinated movement is required. Based on the notion that the basal ganglia are associated with sensory deficits, the influence of dopaminergic replacement on sensory feedback conditions during bimanual coordination was also evaluated. Bimanual movements were examined in PD and healthy comparisons in an unconstrained three-dimensional coordination task. PD were tested “off” (overnight withdrawal of dopaminergic treatment) and “on” (peak dose of dopaminergic treatment), while the healthy group was evaluated for practice effects across two sessions. Required cycle frequency (increased within each trial from 0.75 to 2 Hz), type of visual feedback (no vision, normal vision, and augmented vision), and coordination pattern (symmetrical in-phase and non-symmetrical anti-phase) were all manipulated. Overall, coordination (mean accuracy and standard deviation of relative phase) and amplitude deficits during bimanual coordination were confirmed in PD participants. In addition, significant correlations were identified between severity of motor symptoms as well as bradykinesia to greater coordination deficits (accuracy and stability) in PD “off” group. However, even though amplitude deficits (hypokinesia) improved with dopaminergic replacement, it did not improve bimanual coordination performance (accuracy or stability) in PD patients from “off” to “on.” Interestingly, while coordination performance in both groups suffered in the augmented vision condition, the amplitude of the more affected limb of PD was notably influenced. It can be concluded that DOPA-responsive hypokinesia contributes to, but is not directly responsible for bimanual coordination impairments in PD. It is likely that bimanual coordination deficits in PD are caused by the combination of dopaminergic system dysfunction as well as other neural impairments that may be DOPA-resistant or related to non-dopaminergic pathways.
Collapse
Affiliation(s)
- Quincy J Almeida
- Sun Life Financial Movement Disorders Research and Rehabilitation Centre (MDRC), Wilfrid Laurier University , Waterloo, ON , Canada
| | | |
Collapse
|
21
|
Holmes JD, Gu ML, Johnson AM, Jenkins ME. The Effects of a Home-Based Virtual Reality Rehabilitation Program on Balance Among Individuals with Parkinson's Disease. PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS 2013. [DOI: 10.3109/02703181.2013.814743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Ben-Tov M, Levy-Tzedek S, Karniel A. The effects of rhythmicity and amplitude on transfer of motor learning. PLoS One 2012; 7:e46983. [PMID: 23056549 PMCID: PMC3463554 DOI: 10.1371/journal.pone.0046983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/07/2012] [Indexed: 11/29/2022] Open
Abstract
We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.
Collapse
Affiliation(s)
- Mor Ben-Tov
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shelly Levy-Tzedek
- The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel
| | - Amir Karniel
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
23
|
KARNIEL AMIR. OPEN QUESTIONS IN COMPUTATIONAL MOTOR CONTROL. J Integr Neurosci 2011; 10:385-411. [DOI: 10.1142/s0219635211002749] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/15/2011] [Indexed: 11/18/2022] Open
|
24
|
Levy-Tzedek S, Ben Tov M, Karniel A. Rhythmic movements are larger and faster but with the same frequency on removal of visual feedback. J Neurophysiol 2011; 106:2120-6. [PMID: 21813746 DOI: 10.1152/jn.00266.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain controls rhythmic movement through neural circuits combining visual information with proprioceptive information from the limbs. Although rhythmic movements are fundamental to everyday activities the specific details of the responsible control mechanisms remain elusive. We tested 39 young adults who performed flexion/extension movements of the forearm. We provided them with explicit knowledge of the amplitude and the speed of their movements, whereas frequency information was only implicitly available. In a series of 3 experiments, we demonstrate a tighter control of frequency compared with amplitude or speed. We found that in the absence of visual feedback, movements had larger amplitude and higher peak speed while maintaining the same frequency as when visual feedback was available; this was the case even when participants were aware of performing overly large and fast movements. Finally, when participants were asked to modulate continuously movement frequency, but not amplitude, we found the local coefficient of variability of movement frequency to be lower than that of amplitude. We suggest that a misperception of the generated amplitude in the absence of visual feedback, coupled with a highly accurate perception of generated frequency, leads to the performance of larger and faster movements with the same frequency when visual feedback is not available. Relatively low local coefficient of variability of frequency in a task that calls for continuous change in movement frequency suggests that we tend to operate at a constant frequency at the expense of variation in amplitude and peak speed.
Collapse
Affiliation(s)
- S Levy-Tzedek
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheba, Israel.
| | | | | |
Collapse
|