1
|
Mohseni O, Berry A, Schumacher C, Seyfarth A, Vallery H, Sharbafi MA. Muscular responses to upper body mediolateral angular momentum perturbations during overground walking. Front Bioeng Biotechnol 2025; 13:1509090. [PMID: 40291562 PMCID: PMC12021904 DOI: 10.3389/fbioe.2025.1509090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Adaptive motor control and seamless coordination of muscle actions in response to external perturbations are crucial to maintaining balance during bipedal locomotion. There is an ongoing debate about the specific roles of individual muscles and underlying neural control circuitry that humans employ to maintain balance in different perturbation scenarios. To advance our understanding of human motor control in perturbation recovery, we conducted a study using a portable Angular Momentum Perturbator (AMP). Unlike other push/pull perturbation systems, the AMP can generate perturbation torques on the upper body while minimizing the perturbing forces at the center of mass. In this study, ten participants experienced trunk perturbations during either the mid-stance or touchdown phase in two frontal plane directions (ipsilateral and contralateral). We recorded and analyzed the electromyography (EMG) activity of eight lower-limb muscles from both legs to examine muscular responses in different phases and directions. Based on our findings, individuals primarily employ long-latency hip strategies to effectively counteract perturbation torques, with the occasional use of ankle strategies. Furthermore, it was found that proximal muscles, particularly the biarticular Rectus Femoris, consistently exhibited higher activation levels than other muscles. Additionally, in instances where a statistically significant difference was noted, we observed that the fastest reactions generally stem from muscles in close proximity to the perturbation site. However, the temporal sequence of muscles' activation depends on the timing and direction of the perturbation. These findings enhance reflex response modeling, aiding the development of simulation tools for accurately predicting exogenous disturbances. Additionally, they hold the potential to shape the development of assistive devices, with implications for clinical interventions, particularly for the elderly.
Collapse
Affiliation(s)
- Omid Mohseni
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
- Measurement and Sensor Technology Group, Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Andrew Berry
- Delft Biorobotics Lab, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Christian Schumacher
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Andre Seyfarth
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Heike Vallery
- Delft Biorobotics Lab, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
- Faculty of Mechanical Engineering, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Maziar A. Sharbafi
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Ho TK, Kreter N, Jensen C, Son J, Kramer P, Fino PC. Effects of Unexpected Underfoot Perturbations During Turning on Measures of Mediolateral Stability and Corresponding Recovery Strategies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635610. [PMID: 39974877 PMCID: PMC11838419 DOI: 10.1101/2025.01.30.635610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Humans regularly walk across uneven terrain, which demands the use of reactive control strategies to maintain forward progress and stability. While reactive control during walking has been well described during straight gait, it is unclear how reactive control differs during turning gait. Because turning is asymmetrical, perturbations to the inside and outside limbs may elicit different reactive adjustments. This study investigates how unexpected underfoot perturbations alter stability measures during turning and how individuals alter their foot placement to maintain stability after such perturbations. Seven healthy adults completed walking trials around a circular track while wearing mechanized shoes that pseudo-randomly delivered underfoot perturbations to either the inside or outside limb. We calculated mediolateral margin of stability corrected for centripetal acceleration (ML MoS C ), step width, and step length from kinematic data. Linear mixed effects models compared the effects of perturbation type (inversion vs eversion), perturbation limb (inside vs outside), and their interaction for each outcome measure. ML MoS C was affected by both perturbation type and perturbation limb, with larger changes observed during eversion, and outside, perturbations. Changes to step width and step time during two recovery steps after each perturbation were primarily influenced by the perturbation limb - outside perturbations elicited consistent changes during two recovery steps compared to one altered step after inside perturbations. Perturbations to the outside limb during turning disrupt gait longer than perturbations to the inside limb. This difference across perturbation limb may indicate that outside steps are more important to maintaining and recovering stability than inside ones during turning.
Collapse
|
3
|
Mohseni O, Mahmoudi A, Firouzi V, Seyfarth A, Vallery H, A Sharbafi M. Balance recovery schemes following mediolateral gyroscopic moment perturbations during walking. PLoS One 2024; 19:e0315414. [PMID: 39739770 DOI: 10.1371/journal.pone.0315414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Maintaining balance during human walking hinges on the exquisite orchestration of whole-body angular momentum (WBAM). This study delves into the regulation of WBAM during gait by examining balance strategies in response to upper-body moment perturbations in the frontal plane. A portable Angular Momentum Perturbator (AMP) was utilized in this work, capable of generating perturbation torques on the upper body while minimizing the impact on the center of mass (CoM) excursions. Ten participants underwent upper-body perturbations during either the mid-stance or touch-down moment in both ipsilateral and contralateral directions in the frontal plane. Our findings emphasize the predominant role of the hip strategy and foot placement as primary mechanisms for recovering from WBAM perturbations, regardless of the perturbation's timing or direction. Specifically, hip add/abduction torque and step width were significantly modulated following perturbations during the stance and swing phases, respectively, to reject frontal-plane balance threats. The knee and ankle torque modulation were not found to be effective in the recovery process. Additionally, we observed that recovery from WBAM perturbations occurs promptly within the same stride in which the perturbation occurs, unlike other perturbation scenarios, such as platform translation. These insights have the potential to enhance the development of assistive devices and more robust controllers for bipedal robots.
Collapse
Affiliation(s)
- Omid Mohseni
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany
- Measurement and Sensor Technology Group, Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Hessen, Germany
| | - Asghar Mahmoudi
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany
- Institute for Mechatronic Systems, Faculty of Mechanical Engineering, Technische Universität Darmstadt, Hessen, Germany
| | - Vahid Firouzi
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany
- Simulation, Systems Optimization and Robotics Group, Department of Computer Science, Technische Universität Darmstadt, Hessen, Germany
| | - Andre Seyfarth
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany
| | - Heike Vallery
- Delft Biorobotics Lab, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
- Institute of Automatic Control, Faculty of Mechanical Engineering, Rhine-Westphalia Technical University of Aachen, Aachen, North Rhine-Westphalia, Germany
| | - Maziar A Sharbafi
- Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität Darmstadt, Hessen, Germany
| |
Collapse
|
4
|
Jiang L, Kasahara S, Ishida T, Koshino Y, Chiba A, Wei Y, Samukawa M, Tohyama H. Effect of suspensory strategy on balance recovery after lateral perturbation. Hum Mov Sci 2024; 94:103184. [PMID: 38330628 DOI: 10.1016/j.humov.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Postural stability is essential for performing daily activities and preventing falls, whereby suspensory strategy with knee flexion may play a role in postural control. However, the contribution of the suspensory strategy for postural control during sudden lateral perturbation remains unclear. We aimed to determine how suspensory strategy contributed to postural adjustment during sudden perturbation in the lateral direction and what knee flexion setting maximized its effect. Eighteen healthy young adults (10 male and 8 female) participated in this study. Kinematic data during lateral perturbation at three velocities (7, 15, and 20 cm/s) were collected under three knee flexion angle conditions (0°, 15°, and 65°) using motion capture technology. Postural adjustments to the external perturbation were assessed by four parameters related to the temporal aspects of the center of mass (COM): reaction time, peak displacement/time and reversal time, and minimum value of the margin of stability (minimum-MOS). Our results showed that the COM height before the perturbation significantly lowered with increasing knee flexion angle. The COM reaction times for low and mid perturbation velocities were delayed at 65° of knee flexion compared to 0° and 15°, and the COM reversal times were significantly shorter at 65° of knee flexion than at 0° and 15° across all perturbation velocities. The minimum-MOS at the high-velocity of perturbation was significantly smaller at 65° of knee flexion than at 0° and 15°. In conclusion, the adoption of a suspensory strategy with slight knee flexion induced enhanced stability during sudden external and lateral perturbations. However, excessive knee flexion induced instability.
Collapse
Affiliation(s)
- Linjing Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Kasahara
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| | - Tomoya Ishida
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuta Koshino
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ami Chiba
- Department of Rehabilitation, Hirosaki University Hospital, Hirosaki, Japan
| | - Yuting Wei
- Department of Rehabilitation, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Mina Samukawa
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Brough LG, Neptune RR. A comparison of the effects of mediolateral surface and foot placement perturbations on balance control and response strategies during walking. Gait Posture 2024; 108:313-319. [PMID: 38199090 DOI: 10.1016/j.gaitpost.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Balance perturbation studies during walking have improved our understanding of balance control in various destabilizing conditions. However, it is unknown to what extent balance recovery strategies can be generalized across different types of mediolateral balance perturbations. RESEARCH QUESTION Do similar mediolateral perturbations (foot placement versus surface translation) have similar effects on balance control and corresponding balance response strategies? METHODS Kinetic and kinematic data were previously collected during two separate studies, each with 15 young, healthy participants walking on an instrumented treadmill. In both studies, medial and lateral balance perturbations were applied at 80% of the gait cycle either by a treadmill surface translation or a pneumatic force applied to the swing foot. Differences in balance control (frontal plane whole body angular momentum) and balance response strategies (hip abduction moment, ankle inversion moment, center of pressure excursion and frontal plane trunk moment) between perturbed and unperturbed gait cycles were evaluated using statistical parametric mapping. RESULTS Balance disruptions after foot placement perturbations were larger and sustained longer compared to surface translations. Changes in joint moment responses were also larger for the foot placement perturbations compared to the surface translation perturbations. Lateral hip, ankle, and trunk strategies were used to maintain balance after medial foot placement perturbations, while a trunk strategy was primarily used after surface translations. SIGNIFICANCE Surface and foot placement perturbations influence balance control and corresponding response strategies differently. These results can help inform the development of perturbation-based balance training interventions aimed at reducing fall risk in clinical populations.
Collapse
Affiliation(s)
- Lydia G Brough
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
van Hal ES, Hijmans JM, Postema K, Otten E. A Passive Polycentric Mechanism to Improve Active Mediolateral Balance in Prosthetic Walking. IEEE Trans Neural Syst Rehabil Eng 2024; 32:63-71. [PMID: 38051623 DOI: 10.1109/tnsre.2023.3339701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Prosthetic legs are typically passive systems without active ankle control, restricting mediolateral balancing to a hip strategy. Resulting balance control impairments for persons with a lower extremity amputation may be mitigated by increasing hip strategy effectiveness, in which relatively small hip moments of force are adequate for mediolateral balancing. To increase hip strategy effectiveness we have developed a prosthetic leg prototype based on the Peaucellier mechanism, the Sideways Balance Mechanism (SBM). This polycentric mechanism adds a frontal plane degree of freedom, reducing mediolateral body displacements. Adding a passive joint alone introduces instability, in which mediolateral body rotation leads to CoM height loss, ultimately resulting in a fall. The SBM however provides stability typically absent by lengthening under rotation, thereby compensating for CoM height loss. By allowing for both foot rotation (in-/eversion), and increased mediolateral ground reaction force the SBM increases hip strategy effectiveness. We aimed to provide proof of principle that the SBM can improve active mediolateral balance control in prosthetic walking by increasing hip strategy effectiveness compared to a typical set-up. Comparison between a typical set-up and the SBM showed an increased mediolateral ground reaction force at equal hip moments of force for a 2D forwards dynamics computer simulation, and a reduced hip moment of force at equal mediolateral ground reaction force for a case study. Results validate increased hip strategy effectiveness of the SBM compared to a typical set-up, providing proof of principle that adding an SBM to a prosthetic set-up improves mediolateral balance control in prosthetic walking.
Collapse
|
7
|
Mahaki M, van Leeuwen AM, Bruijn SM, van der Velde N, van Dieën JH. Mediolateral foot placement control can be trained: Older adults learn to walk more stable, when ankle moments are constrained. PLoS One 2023; 18:e0292449. [PMID: 37910445 PMCID: PMC10619794 DOI: 10.1371/journal.pone.0292449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Falls are a problem, especially for older adults. Placing our feet accurately relative to the center-of-mass helps us to prevent falling during gait. The degree of foot placement control with respect to the center-of mass kinematic state is decreased in older as compared to young adults. Here, we attempted to train mediolateral foot placement control in healthy older adults. Ten older adults trained by walking on shoes with a narrow ridge underneath (LesSchuh), restricting mediolateral center-of-pressure shifts. As a training effect, we expected improved foot placement control during normal walking. A training session consisted of a normal walking condition, followed by a training condition on LesSchuh and finally an after-effect condition. Participants performed six of such training sessions, spread across three weeks. As a control, before the first training session, we included two similar sessions, but on normal shoes only. We evaluated whether a training effect was observed across sessions and weeks in a repeated-measures design. Whilst walking with LesSchuh, the magnitude of foot placement error reduced half-a-millimeter between sessions within a week (cohen's d = 0.394). As a training effect in normal walking, the magnitude of foot placement errors was significantly lower compared to the control week, by one millimeter in weeks 2 (cohen's d = 0.686) and 3 (cohen's d = 0.780) and by two millimeters in week 4 (cohen's d = 0.875). Local dynamic stability of normal walking also improved significantly. More precise foot placement may thus have led to improved stability. It remains to be determined whether the training effects were the result of walking on LesSchuh or from repeated treadmill walking itself. Moreover, enhancement of mechanisms beyond the scope of our outcome measures may have improved stability. At the retention test, gait stability returned to similar levels as in the control week. Yet, a reduction in foot placement error persisted.
Collapse
Affiliation(s)
- Mohammadreza Mahaki
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Research Program(s), Amsterdam, The Netherlands
| | - Anina Moira van Leeuwen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Research Program(s), Amsterdam, The Netherlands
- Institute of Brain and Behavior, Amsterdam, The Netherlands
| | - Sjoerd M. Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Research Program(s), Amsterdam, The Netherlands
- Institute of Brain and Behavior, Amsterdam, The Netherlands
| | - Nathalie van der Velde
- Amsterdam Movement Sciences, Research Program(s), Amsterdam, The Netherlands
- Department of Internal Medicine/Geriatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Research Program(s), Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zhu Y, Huang J, Ma X, Chen WM. A neuromusculoskeletal modelling approach to bilateral hip mechanics due to unexpected lateral perturbations during overground walking. BMC Musculoskelet Disord 2023; 24:775. [PMID: 37784076 PMCID: PMC10544490 DOI: 10.1186/s12891-023-06897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Current studies on how external perturbations impact gait dynamics have primarily focused on the changes in the body's center of mass (CoM) during treadmill walking. The biomechanical responses, in particular to the multi-planar hip joint coordination, following perturbations in overground walking conditions are not completely known. METHODS In this study, a customized gait-perturbing device was designed to impose controlled lateral forces onto the subject's pelvis during overground walking. The biomechanical responses of bilateral hips were simulated by subject-specific neuromusculoskeletal models (NMS) driven by in-vivo motion data, which were further evaluated by statistical parameter mapping (SPM) and muscle coactivation index (CI) analysis. The validity of the subject-specific NMS was confirmed through comparison with measured surface electromyographic signals. RESULTS Following perturbations, the sagittal-plane hip motions were reduced for the leading leg by 18.39° and for the trailing leg by 8.23°, while motions in the frontal and transverse plane were increased, with increased hip abduction for the leading leg by 10.71° and external rotation by 9.06°, respectively. For the hip kinetics, both the bilateral hip joints showed increased abductor moments during midstance (20%-30% gait cycle) and decreased values during terminal stance (38%-48%). Muscle CI in both sagittal and frontal planes was significantly decreased for perturbed walking (p < 0.05), except for the leading leg in the sagittal plane. CONCLUSION The distinctive phase-dependent biomechanical response of the hip demonstrated its coordinated control strategy for balance recovery due to gait perturbations. And the changes in muscle CI suggested a potential mechanism for rapid and precise control of foot placement through modulation of joint stiffness properties. These findings obtained during actual overground perturbation conditions could have implications for the improved design of wearable robotic devices for balance assistance.
Collapse
Affiliation(s)
- Yunchao Zhu
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Ji Huang
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Xin Ma
- National Clinical Research Center for Geriatric Diseases (NCRCGD), Huashan Hospital Affiliated to Fudan University, No.12, Wulumuqi Middle Rd., Shanghai, 200040, China
| | - Wen-Ming Chen
- Academy for Engineering and Technology, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| |
Collapse
|
9
|
van Mierlo M, Abma M, Vlutters M, van Asseldonk EHF, van der Kooij H. Effect of perturbation timing on recovering whole-body angular momentum during very slow walking. Hum Mov Sci 2023; 91:103138. [PMID: 37573800 DOI: 10.1016/j.humov.2023.103138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Humans prioritize regulation of the whole-body angular momentum (WBAM) during walking. When perturbed, modulations of the moment arm of the ground reaction force (GRF) with respect to the centre of mass (CoM) assist in recovering WBAM. For sagittal-plane perturbations of the WBAM given at toe off right (TOR), horizontal GRF modulations and not centre of pressure (COP) modulations were mainly responsible for these moment arm modulations. In this study, we aimed to find whether the instant of perturbations affects the contributions of the GRF and/or CoP modulations to the moment arm changes, in balance recovery during very slow walking. Perturbations of the WBAM were applied at three different instants of the gait cycle, namely at TOR, mid-swing (MS), and heel strike right (HSR). Forces equal to 16% of the participant's body weight were applied simultaneously to the pelvis and upper body in opposite directions for a duration of 150 ms. The results showed that the perturbation onset did not significantly affect the GRF moment arm modulation. However, the contribution of both the CoP and GRF modulation to the moment arm changes did change depending on the perturbation instant. After perturbations resulting in a forward pitch of the trunk a larger contribution was present from the CoP modulation when perturbations were given at MS or HSR, compared to perturbations at TOR. After backward pitch perturbations given at MS and HSR the CoP modulation counteracted the moment arm required for WBAM recovery. Therefore a larger contribution from the horizontal GRF was needed to direct the GRF posterior to the CoM and recover WBAM. In conclusion, the onset of WBAM perturbations does not affect the moment arm modulation needed for WBAM recovery, while it does affect the way CoP and GRF modulation contribute to that recovery.
Collapse
Affiliation(s)
- M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | - M Abma
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - M Vlutters
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
10
|
Bianco NA, Collins SH, Liu K, Delp SL. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. PLoS Comput Biol 2023; 19:e1010712. [PMID: 37549183 PMCID: PMC10434928 DOI: 10.1371/journal.pcbi.1010712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/17/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Walking balance is central to independent mobility, and falls due to loss of balance are a leading cause of death for people 65 years of age and older. Bipedal gait is typically unstable, but healthy humans use corrective torques to counteract perturbations and stabilize gait. Exoskeleton assistance could benefit people with neuromuscular deficits by providing stabilizing torques at lower-limb joints to replace lost muscle strength and sensorimotor control. However, it is unclear how applied exoskeleton torques translate to changes in walking kinematics. This study used musculoskeletal simulation to investigate how exoskeleton torques applied to the ankle and subtalar joints alter center of mass kinematics during walking. We first created muscle-driven walking simulations using OpenSim Moco by tracking experimental kinematics and ground reaction forces recorded from five healthy adults. We then used forward integration to simulate the effect of exoskeleton torques applied to the ankle and subtalar joints while keeping muscle excitations fixed based on our previous tracking simulation results. Exoskeleton torque lasted for 15% of the gait cycle and was applied between foot-flat and toe-off during the stance phase, and changes in center of mass kinematics were recorded when the torque application ended. We found that changes in center of mass kinematics were dependent on both the type and timing of exoskeleton torques. Plantarflexion torques produced upward and backward changes in velocity of the center of mass in mid-stance and upward and smaller forward velocity changes near toe-off. Eversion and inversion torques primarily produced lateral and medial changes in velocity in mid-stance, respectively. Intrinsic muscle properties reduced kinematic changes from exoskeleton torques. Our results provide mappings between ankle plantarflexion and inversion-eversion torques and changes in center of mass kinematics which can inform designers building exoskeletons aimed at stabilizing balance during walking. Our simulations and software are freely available and allow researchers to explore the effects of applied torques on balance and gait.
Collapse
Affiliation(s)
- Nicholas A. Bianco
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Steven H. Collins
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
| | - Karen Liu
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Scott L. Delp
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
11
|
Buurke TJW, van de Venis L, Keijsers N, Nonnekes J. The effect of walking with reduced trunk motion on dynamic stability in healthy adults. Gait Posture 2023; 103:113-118. [PMID: 37156163 DOI: 10.1016/j.gaitpost.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Most people with Parkinson's disease (PD) walk with a smaller mediolateral base of support (BoS) compared to healthy people, but the underlying mechanisms remain unknown. Reduced trunk motion in people with PD might be related to this narrow-based gait. Here, we study the relationship between trunk motion and narrow-based gait in healthy adults. According to the extrapolated center of mass (XCoM) concept, a decrease in mediolateral XCoM excursion would require a smaller mediolateral BoS to maintain a constant margin of stability (MoS) and remain stable. RESEARCH QUESTION As proof of principle, we assessed whether walking with reduced trunk motion results in a smaller step width in healthy adults, without altering the mediolateral MoS. METHODS Fifteen healthy adults walked on a treadmill at preferred comfortable walking speed in two conditions. First, the 'regular walking' condition without any instructions, and second, the 'reduced trunk motion' condition with the instruction: 'Keep your trunk as still as possible'. Treadmill speed was kept the same in the two conditions. Trunk kinematics, step width, mediolateral XCoM excursion and mediolateral MoS were calculated and compared between the two conditions. RESULTS Walking with the instruction to keep the trunk still significantly reduced trunk kinematics. Walking with reduced trunk motion resulted in significant decreases in step width and mediolateral XCoM excursion, but not in the mediolateral MoS. Furthermore, step width and mediolateral XCoM excursion were strongly correlated during both conditions (r = 0.887 and r = 0.934). SIGNIFICANCE This study shows that walking with reduced trunk motion leads to a gait pattern with a smaller BoS in healthy adults, without altering the mediolateral MoS. Our findings indicate a strong coupling between CoM motion state and the mediolateral BoS. We expect that people with PD who walk narrow-based, have a similar mediolateral MoS as healthy people, which will be further investigated.
Collapse
Affiliation(s)
- Tom J W Buurke
- University of Groningen, University Medical Center Groningen, Department of Human Movement Sciences, Groningen, the Netherlands; KU Leuven, Department of Movement Sciences, Leuven, Belgium.
| | - Lotte van de Venis
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Noël Keijsers
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek, Department of Research, Nijmegen, the Netherlands; Radboud University, Donders Institute for Brain, Cognition and Behaviour, Department of Sensorimotor Neuroscience, Nijmegen, The Netherlands
| | - Jorik Nonnekes
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Center of Expertise for Parkinson & Movement Disorders, Department of Rehabilitation, Nijmegen, The Netherlands; Sint Maartenskliniek, Department of Research, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Quarmby A, Khajooei M, Kurtz P, Henschke J, Kim M, Mayer F, Engel T. Unexpected running perturbations: Reliability and validity of a treadmill running protocol with analysis of provoked reflex activity in the lower extremities. Front Sports Act Living 2023; 5:1129058. [PMID: 37008630 PMCID: PMC10050738 DOI: 10.3389/fspor.2023.1129058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionBalance is vital for human health and experiments have been conducted to measure the mechanisms of postural control, for example studying reflex responses to simulated perturbations. Such studies are frequent in walking but less common in running, and an understanding of reflex responses to trip-like disturbances could enhance our understanding of human gait and improve approaches to training and rehabilitation. Therefore, the primary aim of this study was to investigate the technical validity and reliability of a treadmill running protocol with perturbations. A further exploratory aim was to evaluate the associated neuromuscular reflex responses to the perturbations, in the lower limbs.MethodsTwelve healthy participants completed a running protocol (9 km/h) test-retest (2 weeks apart), whereby 30 unilateral perturbations were executed via the treadmill belts (presets:2.0 m/s amplitude;150 ms delay (post-heel contact);100ms duration). Validity of the perturbations was assessed via mean ± SD comparison, percentage error calculation between the preset and recorded perturbation characteristics (PE%), and coefficient of variation (CV%). Test-retest reliability (TRV%) and Bland-Altman analysis (BLA; bias ± 1.96 * SD) was calculated for reliability. To measure reflex activity, electromyography (EMG) was applied in both legs. EMG amplitudes (root mean square normalized to unperturbed strides) and latencies [ms] were analysed descriptively.ResultsLeft-side perturbation amplitude was 1.9 ± 0.1 m/s, delay 105 ± 2 ms, and duration 78 ± 1 ms. Right-side perturbation amplitude was 1.9 ± 0.1 m/s, delay 118 ± 2 ms, duration 78 ± 1 ms. PE% ranged from 5–30% for the recorded perturbations. CV% of the perturbations ranged from 19.5–76.8%. TRV% for the perturbations was 6.4–16.6%. BLA for the left was amplitude: 0.0 ± 0.3m/s, delay: 0 ± 17 ms, duration: 2 ± 13 ms, and for the right was amplitude: 0.1 ± 0.7, delay: 4 ± 40 ms, duration: 1 ± 35 ms. EMG amplitudes ranged from 175 ± 141%–454 ± 359% in both limbs. Latencies were 109 ± 12–116 ± 23 ms in the tibialis anterior, and 128 ± 49-157 ± 20 ms in the biceps femoris.DiscussionGenerally, this study indicated sufficient validity and reliability of the current setup considering the technical challenges and limitations, although the reliability of the right-sided perturbations could be questioned. The protocol provoked reflex responses in the lower extremities, especially in the leading leg. Acute neuromusculoskeletal adjustments to the perturbations could be studied and compared in clinical and healthy running populations, and the protocol could be utilised to monitor chronic adaptations to interventions over time.
Collapse
|
13
|
Fallahtafti F, Bruijn S, Mohammadzadeh Gonabadi A, Sangtarashan M, Boron JB, Curtze C, Siu KC, Myers SA, Yentes J. Trunk Velocity Changes in Response to Physical Perturbations Are Potential Indicators of Gait Stability. SENSORS (BASEL, SWITZERLAND) 2023; 23:2833. [PMID: 36905037 PMCID: PMC10007351 DOI: 10.3390/s23052833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Response to challenging situations is important to avoid falls, especially after medial perturbations, which require active control. There is a lack of evidence on the relationship between the trunk's motion in response to perturbations and gait stability. Eighteen healthy adults walked on a treadmill at three speeds while receiving perturbations of three magnitudes. Medial perturbations were applied by translating the walking platform to the right at left heel contact. Trunk velocity changes in response to the perturbation were calculated and divided into the initial and the recovery phases. Gait stability after a perturbation was assessed using the margin of stability (MOS) at the first heel contact, MOS mean, and standard deviation for the first five strides after the perturbation onset. Faster speed and smaller perturbations led to a lower deviation of trunk velocity from the steady state, which can be interpreted as an improvement in response to the perturbation. Recovery was quicker after small perturbations. The MOS mean was associated with the trunk's motion in response to perturbations during the initial phase. Increasing walking speed may increase resistance to perturbations, while increasing the magnitude of perturbation leads to greater trunk motions. MOS is a useful marker of resistance to perturbations.
Collapse
Affiliation(s)
- Farahnaz Fallahtafti
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- VA Nebraska-Western Iowa Health Care System, Department of Veterans’ Affairs, Omaha, NE 68105, USA
| | - Sjoerd Bruijn
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | - Mohammad Sangtarashan
- Department of Industrial Engineering, Amirkabir University of Technology, Tehran 15875, Iran
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Ka-Chun Siu
- Department of Health & Rehabilitation Sciences, Physical Therapy Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sara A. Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA
- VA Nebraska-Western Iowa Health Care System, Department of Veterans’ Affairs, Omaha, NE 68105, USA
| | - Jennifer Yentes
- Department of Health & Rehabilitation Sciences, Physical Therapy Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Kreter N, Lybbert C, Gordon KE, Fino PC. The effects of physical and temporal certainty on human locomotion with discrete underfoot perturbations. J Exp Biol 2022; 225:jeb244509. [PMID: 36124619 PMCID: PMC9659331 DOI: 10.1242/jeb.244509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Foot placement can be selected to anticipate upcoming perturbations, but it is unclear how this anticipatory strategy is influenced by available response time or precise knowledge of the perturbation's characteristics. This study investigates anticipatory and reactive locomotor strategies for repeated underfoot perturbations with varying levels of temporal certainty, physical certainty, and available response time. Thirteen healthy adults walked with random underfoot perturbations from a mechanized shoe. Temporal certainty was challenged by presenting the perturbations with or without warning. Available response time was challenged by adjusting the timing of the warning before the perturbation. Physical certainty was challenged by making perturbation direction (inversion or eversion) unpredictable for certain conditions. Linear-mixed effects models assessed the effect of each condition on the percentage change of margin of stability and step width. For perturbations with one stride or less of response time, we observed few changes to step width or margin of stability. As response time increased to two strides, participants adopted wider steps in anticipation of the perturbation (P=0.001). Physical certainty had little effect on gait for the step of the perturbation, but participants recovered normal gait sooner when the physical nature of the perturbation was predictable (P<0.001). Despite having information about the timing and direction of upcoming perturbations, individuals do not develop perturbation-specific feedforward strategies. Instead, they use feedback control to recover normal gait after a perturbation. However, physical certainty appears to make the feedback controller more efficient and allows individuals to recover normal gait sooner.
Collapse
Affiliation(s)
- Nicholas Kreter
- Department of Health and Kinesiology, University of Utah, 250 South 1850 East, Salt Lake City, UT 84112, USA
| | - Carter Lybbert
- Department of Health and Kinesiology, University of Utah, 250 South 1850 East, Salt Lake City, UT 84112, USA
| | - Keith E. Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Ave, Suite. 1100, Chicago, IL 60611, USA
| | - Peter C. Fino
- Department of Health and Kinesiology, University of Utah, 250 South 1850 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
15
|
Lanza MB, Arbuco B, Ryan AS, Shipper AG, Gray VL, Addison O. Systematic Review of the Importance of Hip Muscle Strength, Activation, and Structure in Balance and Mobility Tasks. Arch Phys Med Rehabil 2022; 103:1651-1662. [PMID: 34998714 PMCID: PMC10089299 DOI: 10.1016/j.apmr.2021.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE The aim of this systematic review was to identify the associations of the hip abductor muscle strength, structure, and neuromuscular activation on balance and mobility in younger, middle-aged, and older adults. DATA SOURCES We followed PRISMA guidelines and performed searches in PubMed, Embase, CINAHL, and Physiotherapy Evidence Database. STUDY SELECTION Study selection included: (1) studies with patients aged 18 years or older and (2) studies that measured hip abduction torque, surface electromyography, and/or muscle structure and compared these measures with balance or mobility outcomes. DATA EXTRACTION The extracted data included the study population, setting, sample size, sex, and measurement evaluated. DATA SYNTHESIS The present systematic review is composed of 59 research articles including a total of 2144 young, middle-aged, and older adults (1337 women). We found that hip abductor strength is critical for balance and mobility function, independent of age. Hip abductor neuromuscular activation is also important for balance and mobility, although it may differ across ages depending on the task. Finally, the amount of fat inside the muscle appears to be one of the important factors of muscle structure influencing balance. CONCLUSIONS In conclusion, a change in all investigated variables (hip abduction torque, neuromuscular activation, and intramuscular fat) appears to have an effect during balance or mobility tasks across age ranges and may elicit better performance. Future studies are necessary to confirm the effect of these variables across age ranges and the effects of interventions.
Collapse
Affiliation(s)
- Marcel B Lanza
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD.
| | - Breanna Arbuco
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Alice S Ryan
- Department of Medicine, Division of Gerontology and Palliative Medicine, University of Maryland School of Medicine, Baltimore, MD; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD
| | - Andrea G Shipper
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD
| | - Odessa Addison
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD; Baltimore Geriatric Research, Education, and Clinical Center, VAHMC, Baltimore, MD
| |
Collapse
|
16
|
Brough LG, Neptune RR. Individual muscle responses to mediolateral foot placement perturbations during walking. J Biomech 2022; 141:111201. [PMID: 35764014 DOI: 10.1016/j.jbiomech.2022.111201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
Walking requires active control of frontal plane balance through adjustments to mediolateral foot placement and ground reaction forces. Previous work on mediolateral balance perturbations and control of foot placement has often focused on the bilateral gluteus medius muscles. However, additional leg and trunk muscles can influence foot placement by transferring power to the foot and pelvis during swing. Thus, the purpose of this study was to determine individual muscle contributions to balance control following medial and lateral foot placement perturbations. Ten participants performed treadmill walking trials which included perturbations immediately before randomized heel strikes. Muscle contributions to foot placement, ground reaction forces, trunk power and frontal plane external moments during representative perturbed and unperturbed gait cycles were estimated using musculoskeletal modeling and simulation. Net muscle contributions to foot placement were 61 ± 50% more medial during the first recovery step following lateral perturbations and 28 ± 14% less medial in the second recovery step following medial perturbations. Following lateral perturbations, the swing gluteus medius performed 57 ± 50% more lateral work and the stance gluteus medius performed 61 ± 50% more medial work on the foot. Following medial perturbations, the erector spinae performed 39 ± 33% less lateral work on the foot. Changes in net muscle work on the foot were inconsistent with changes in step width, suggesting that changes in step width were not due to active muscle control but rather the mechanical effect of the perturbation. These outcomes provide a foundation for future studies analyzing balance control in populations at risk of falling.
Collapse
Affiliation(s)
- Lydia G Brough
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Richard R Neptune
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Rosenblum U, Melzer I, Zeilig G, Plotnik M. Muscle activation profile is modulated by unexpected balance loss in walking. Gait Posture 2022; 93:64-72. [PMID: 35091185 DOI: 10.1016/j.gaitpost.2022.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND During an unexpected loss of balance, avoiding a fall requires people to readjust their footing rapidly and effectively. A deeper understanding of muscle activation patterns in response to unexpected balance loss will provide insights into the mechanisms of balance recovery responses. This could have implications for treatment of people with balance deficits. RESEARCH QUESTION Explore the differences in balance recovery responses to perturbations in different phases of the gait cycle (single-support vs. double-support) in terms of biomechanical behavior (i.e., stepping and dynamic stability characteristics) and lower-limb muscle activation patterns. METHODS Muscle activation patterns of the ankle and knee muscles and muscle fiber type recruitment resulting from unannounced, mediolateral (i.e., right/left) horizontal-surface perturbations during walking was investigated in twenty healthy adults (27.00 ± 2.79 years, ten females). Surface electromyography (sEMG) total spectral power for specific frequency bands (40-60 Hz, 60-150 Hz, 150-250 Hz, 250-400 Hz and 400-1000 Hz), from tibialis anterior (TA) and vastus lateralis (VL) muscles were analyzed. Three mixed-effects models assessed behavioral and lower-limb muscle activation patterns resulting from perturbations in the gait cycle's single- and double-support phases. Statistical significance was set a priori at p < 0.05. RESULTS Compared to non-perturbed walking, we found a significant increase in the total spectral power of lower-extremity muscles during the first three seconds after perturbation. During the double-support phase of gait, we found a different muscle fiber type recruitment pattern between VL and TA muscles. However, there were no significant differences between VL and TA muscles for perturbations implemented in single-support phases. SIGNIFICANCE Our findings support the notion that muscle operating frequency is modulated in real-time to fit functional goal requirements, such as a rapid change of footing in response to unexpected loss of balance in single and double-support phases of gait.
Collapse
Affiliation(s)
- Uri Rosenblum
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel; Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Itshak Melzer
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel; Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Tel Aviv University, Israel; School of Health Professions, Ono Academic College, Kiryat Ono, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Knapp HA, Sobolewski BA, Dean JC. Augmented Hip Proprioception Influences Mediolateral Foot Placement During Walking. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2017-2026. [PMID: 34550889 DOI: 10.1109/tnsre.2021.3114991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hip abductor proprioception contributes to the control of mediolateral foot placement, which varies with step-by-step fluctuations in pelvis dynamics. Prior work has used hip abductor vibration as a sensory probe to investigate the link between vibration within a single step and subsequent foot placement. Here, we extended prior findings by applying time and location varying vibration in every step, seeking to predictably manipulate the continuous, step-by-step relationship between pelvis dynamics and foot placement. We compared participants' (n = 32; divided into two groups of 16 with slightly different vibration control) gait behavior across four treadmill walking conditions: 1) No feedback; 2) Random feedback, with vibration unrelated to pelvis motion; 3) Augmented feedback, with vibration designed to evoke proprioceptive feedback paralleling the actual pelvis motion; 4) Disrupted feedback, with vibration designed to evoke proprioceptive feedback inversely related to pelvis motion. We hypothesized that the relationship between pelvis dynamics and foot placement would be strengthened by Augmented feedback but weakened by Disrupted feedback. For both participant groups, the strength of the relationship between pelvis dynamics at the start of a step and foot placement at the end of a step was significantly (p ≤ 0.0002) influenced by the feedback condition. The link between pelvis dynamics and foot placement was strongest with Augmented feedback, but not significantly weakened with Disrupted feedback, partially supporting our hypotheses. Our approach to augmenting proprioceptive feedback during gait may have implications for clinical populations with a weakened relationship between pelvis motion and foot placement.
Collapse
|
19
|
van Mierlo M, Vlutters M, van Asseldonk EHF, van der Kooij H. Centre of pressure modulations in double support effectively counteract anteroposterior perturbations during gait. J Biomech 2021; 126:110637. [PMID: 34325123 DOI: 10.1016/j.jbiomech.2021.110637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/24/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
Centre of mass (CoM) motion during human balance recovery is largely influenced by the ground reaction force (GRF) and the centre of pressure (CoP). During gait, foot placement creates a region of possible CoP locations in the following double support (DS). This study aims to increase insight into how humans modulate the CoP during DS, and which CoP modulations are theoretically possible to maintain balance in the sagittal plane. Three variables sufficient to describe the shape, length and duration of the DS CoP trajectory of the total GRF, were assessed in perturbed human walking. To counteract the forward perturbations, braking was required and all CoP variables showed modulations correlated to the observed change in CoM velocity over the DS phase. These correlations were absent after backward perturbations, when only little propulsion was needed to counteract the perturbation. Using a linearized inverted pendulum model we could explore how the observed parameter modulations are effective in controlling the CoM. The distance the CoP travels forward and the instant the leading leg was loaded largely affected the CoM velocity, while the duration mainly affected the CoM position. The simulations also showed that various combinations of CoP parameters can reach a desired CoM position and velocity at the end of DS, and that even a full recovery in the sagittal plane within DS would theoretically have been possible. However, the human subjects did not exploit the therefore required CoP modulations. Overall, modulating the CoP trajectory in DS does effectively contributes to balance recovery.
Collapse
Affiliation(s)
- M van Mierlo
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | - M Vlutters
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - E H F van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
20
|
Afschrift M, De Groote F, Jonkers I. Similar sensorimotor transformations control balance during standing and walking. PLoS Comput Biol 2021; 17:e1008369. [PMID: 34170903 PMCID: PMC8266079 DOI: 10.1371/journal.pcbi.1008369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/08/2021] [Accepted: 05/24/2021] [Indexed: 01/24/2023] Open
Abstract
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device. The stability of human standing and walking is remarkable, given that from a mechanical point of view standing and walking are highly unstable and therefore require well-coordinated control actions from the central nervous system. The nervous system continuously receives information on the state of the body through sensory inputs, which is processed to generate descending motor commands to the muscles. It remains, however, unclear how the central nervous system uses information from multiple sensors to control walking balance. In standing balance, such sensorimotor transformations have been studied. When standing balance is perturbed, previous studies suggest that the central nervous system estimates the movement of the whole body center of mass to activate muscles and control balance. Here, we investigated whether the same sensorimotor transformations underlie control of walking balance. We found that changes in muscle activity and ankle moments in response to perturbations of walking balance were indeed proportional to center of mass movement. These findings suggest that common processes underlie control of standing and walking balance. Our work is significant because it captures the result of complex underlying neural processes in a simple relation between the body’s center of mass movement and corrective joint moments that can be implemented in the control of prostheses and exoskeletons to support balance control in a human-like manner.
Collapse
Affiliation(s)
- Maarten Afschrift
- Department of Mechanical Engineering, Robotics Core Lab of Flanders Make, KU Leuven, Belgium
- * E-mail:
| | | | - Ilse Jonkers
- Department of Movement Sciences, KU Leuven, Belgium
| |
Collapse
|
21
|
Ravi DK, Bartholet M, Skiadopoulos A, Kent JA, Wickstrom J, Taylor WR, Singh NB, Stergiou N. Rhythmic auditory stimuli modulate movement recovery in response to perturbation during locomotion. J Exp Biol 2021; 224:jeb.237073. [PMID: 33536309 PMCID: PMC7938806 DOI: 10.1242/jeb.237073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
The capacity to recover after a perturbation is a well-known intrinsic property of physiological systems, including the locomotor system, and can be termed ‘resilience’. Despite an abundance of metrics proposed to measure the complex dynamics of bipedal locomotion, analytical tools for quantifying resilience are lacking. Here, we introduce a novel method to directly quantify resilience to perturbations during locomotion. We examined the extent to which synchronizing stepping with two different temporal structured auditory stimuli (periodic and 1/f structure) during walking modulates resilience to a large unexpected perturbation. Recovery time after perturbation was calculated from the horizontal velocity of the body's center of mass. Our results indicate that synchronizing stepping with a 1/f stimulus elicited greater resilience to mechanical perturbations during walking compared with the periodic stimulus (3.3 s faster). Our proposed method may help to gain a comprehensive understanding of movement recovery behavior of humans and other animals in their ecological contexts. Summary: A new method for the evaluation of intrinsic resilience during unsteady locomotion in humans and animals, analysing the relationship between the structure of movement variability and resilience.
Collapse
Affiliation(s)
- Deepak K Ravi
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Marc Bartholet
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas Skiadopoulos
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jenny A Kent
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jordan Wickstrom
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - William R Taylor
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Navrag B Singh
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Nick Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA .,Department of Environmental Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198-4388, USA
| |
Collapse
|
22
|
van Leeuwen AM, van Dieën JH, Daffertshofer A, Bruijn SM. Active foot placement control ensures stable gait: Effect of constraints on foot placement and ankle moments. PLoS One 2020; 15:e0242215. [PMID: 33332421 PMCID: PMC7746185 DOI: 10.1371/journal.pone.0242215] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022] Open
Abstract
Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.
Collapse
Affiliation(s)
- A. M. van Leeuwen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Institute of Brain and Behavior Amsterdam, Amsterdam, The Netherlands
| | - J. H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - A. Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Institute of Brain and Behavior Amsterdam, Amsterdam, The Netherlands
| | - S. M. Bruijn
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Institute of Brain and Behavior Amsterdam, Amsterdam, The Netherlands
- Biomechanics Laboratory, Fujian Medical University, Quanzhou, Fujian, PR China
| |
Collapse
|
23
|
Reimold NK, Knapp HA, Henderson RE, Wilson L, Chesnutt AN, Dean JC. Altered active control of step width in response to mediolateral leg perturbations while walking. Sci Rep 2020; 10:12197. [PMID: 32699328 PMCID: PMC7376025 DOI: 10.1038/s41598-020-69052-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
During human walking, step width is predicted by mediolateral motion of the pelvis, a relationship that can be attributed to a combination of passive body dynamics and active sensorimotor control. The purpose of the present study was to investigate whether humans modulate the active control of step width in response to a novel mechanical environment. Participants were repeatedly exposed to a force-field that either assisted or perturbed the normal relationship between pelvis motion and step width, separated by washout periods to detect the presence of potential after-effects. As intended, force-field assistance directly strengthened the relationship between pelvis displacement and step width. This relationship remained strengthened with repeated exposure to assistance, and returned to baseline afterward, providing minimal evidence for assistance-driven changes in active control. In contrast, force-field perturbations directly weakened the relationship between pelvis motion and step width. Repeated exposure to perturbations diminished this negative direct effect, and produced larger positive after-effects once the perturbations ceased. These results demonstrate that targeted perturbations can cause humans to adjust the active control that contributes to fluctuations in step width.
Collapse
Affiliation(s)
- Nicholas K Reimold
- College of Health Professions, Medical University of South Carolina, 77 President St., MSC700, Charleston, SC, 29425-571, USA
| | - Holly A Knapp
- College of Health Professions, Medical University of South Carolina, 77 President St., MSC700, Charleston, SC, 29425-571, USA
| | - Rachel E Henderson
- College of Health Professions, Medical University of South Carolina, 77 President St., MSC700, Charleston, SC, 29425-571, USA
| | - Landi Wilson
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Alyssa N Chesnutt
- College of Health Professions, Medical University of South Carolina, 77 President St., MSC700, Charleston, SC, 29425-571, USA
| | - Jesse C Dean
- College of Health Professions, Medical University of South Carolina, 77 President St., MSC700, Charleston, SC, 29425-571, USA. .,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
24
|
Rosenblum U, Kribus-Shmiel L, Zeilig G, Bahat Y, Kimel-Naor S, Melzer I, Plotnik M. Novel methodology for assessing total recovery time in response to unexpected perturbations while walking. PLoS One 2020; 15:e0233510. [PMID: 32492029 PMCID: PMC7269230 DOI: 10.1371/journal.pone.0233510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Walking stability is achieved by adjusting the medio-lateral and anterior-posterior dimensions of the base of support (step length and step width, respectively) to contain an extrapolated center of mass. We aimed to calculate total recovery time after different types of perturbations during walking, and use it to compare young and older adults following different types of perturbations. Walking trials were performed in 12 young (age 26.92 ± 3.40 years) and 12 older (age 66.83 ± 1.60 years) adults. Perturbations were introduced at different phases of the gait cycle, on both legs and in anterior-posterior or medio-lateral directions, in random order. A novel algorithm was developed to determine total recovery time values for regaining stable step length and step width parameters following the different perturbations, and compared between the two participant groups under low and high cognitive load conditions, using principal component analysis (PCA). We analyzed 829 perturbations each for step length and step width. The algorithm successfully estimated total recovery time in 91.07% of the runs. PCA and statistical comparisons showed significant differences in step length and step width recovery times between anterior-posterior and medio-lateral perturbations, but no age-related differences. Initial analyses demonstrated the feasibility of comparisons based on total recovery time calculated using our algorithm.
Collapse
Affiliation(s)
- Uri Rosenblum
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lotem Kribus-Shmiel
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
| | - Shani Kimel-Naor
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
| | - Itshak Melzer
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
25
|
Zhang Y, Smeets JBJ, Brenner E, Verschueren S, Duysens J. Fast responses to stepping-target displacements when walking. J Physiol 2020; 598:1987-2000. [PMID: 32128815 PMCID: PMC7317495 DOI: 10.1113/jp278986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Key points Goal‐directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal‐directed arm movements if balance is not violated.
Abstract It is well‐known that goal‐directed hand movements can be adjusted to small changes in target location with a latency of about 100 ms. We tested whether people make similar fast adjustments when a target location for foot placement changes slightly as they walk over a flat surface. Participants walked at 3 km/h on a treadmill on which stepping stones were projected. The stones were 50 cm apart in the walking direction. Every 5–8 steps, a stepping stone was unexpectedly displaced by 2.5 cm in the medio‐lateral direction. The displacement took place during the first half of the swing phase. We found fast adjustments of the foot trajectory, with a latency of about 155 ms, initiated by changes in muscle activation 123 ms after the perturbation. The responses corrected for about 80% of the perturbation. We conclude that goal‐directed movements of the foot are controlled in a similar way to those of the hand, thus also giving very fast adjustments. Goal‐directed arm movements can be adjusted at short latency to target shifts. We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. Participants responded at short latency with an adequate gain to small shifts of the stepping targets. Movements of the feet during walking are controlled in a similar way to goal‐directed arm movements if balance is not violated.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium.,Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B J Smeets
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eli Brenner
- Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sabine Verschueren
- Department of Rehabilitation Sciences, FaBer, KU Leuven, Leuven, Belgium
| | - Jacques Duysens
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, FaBeR, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Nachmani H, Shani G, Shapiro A, Melzer I. Characteristics of First Recovery Step Response following Unexpected Loss of Balance during Walking: A Dynamic Approach. Gerontology 2020; 66:362-370. [PMID: 32069450 DOI: 10.1159/000505649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/30/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Many falls in older adults occur during walking and result in lateral falls. The ability to perform a recovery step after balance perturbation determines whether a fall will occur. AIM To investigate age-related changes in first recovery step kinematics and kinematic adaptations over a wide range of lateral perturbation magnitudes while walking. METHODS Thirty-five old (78.5 ± 5 years) and 19 young adults (26.0 ± 0.8 years) walked at their preferred walking speed on a treadmill. While walking, the subjects were exposed to announced right/left perturbations in different phases of the gait cycle that were gradually increased in order to trigger a recovery stepping response. The subjects were instructed to react naturally and try to avoid falling. Kinematic analysis was performed to analyze the first recovery step parameters (e.g., step initiation, swing duration, step length, and the estimated distance of the center of mass from the base of support [dBoS]). RESULTS Compared with younger adults, older adults displayed a significantly lower step threshold and at lower perturbation magnitudes during the experiment. Also, they showed slower compensatory step initiation, shorter step length, and dBoS with similar step recovery times. As the perturbation magnitudes increased, older adults showed very small, yet significant, decreases in the timing of the step response, and increased their step length. Younger adults did not show changes in the timing of stepping, with a tendency toward a significant increase in step length. CONCLUSIONS First compensatory step performance is impaired in older adults. In terms of the dynamic approach, older adults were more flexible, i.e., less automatic, while younger adults displayed more automatic behavior.
Collapse
Affiliation(s)
- Hadas Nachmani
- Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guy Shani
- Department of Information Systems, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Shapiro
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itshak Melzer
- Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,
| |
Collapse
|
27
|
Tokur D, Grimmer M, Seyfarth A. Review of balance recovery in response to external perturbations during daily activities. Hum Mov Sci 2020; 69:102546. [DOI: 10.1016/j.humov.2019.102546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 10/12/2019] [Accepted: 11/12/2019] [Indexed: 11/16/2022]
|
28
|
Nouredanesh M, Tung J. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately? COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 182:105003. [PMID: 31465977 DOI: 10.1016/j.cmpb.2019.105003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/22/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Falls are the leading cause of fatal and non-fatal injuries among seniors worldwide. While laboratory evidence supports the view that impaired ability to execute compensatory balance responses (CBRs) is linked to an increased risk of falling, existing unsupervised fall risk assessment methods are mainly focused on detecting changes in spatio-temporal gait parameters over time rather than naturally-occurring CBR events. To address the gap in available methods, this paper compares the capability of machine learning-based models trained on the kinematic data from inertial measurement units (IMU) and surface electromyography (sEMG) features to detect lateral CBRs, to ultimately address detection of CBRs in free-living conditions. Moreover, we propose a novel "Hybrid" feature set, which considers cross-correlation and temporal similarities between the normalized kinematic and sEMG signals. METHODS Focusing on frontal plane perturbations, a classifier to automatically: 1) detect lateral CBRs during normal gait, and 2) identify type (i.e., crossover, sidestep) using data from three wearable IMUs and 4 sEMG signals from the thigh (i.e., biceps femoris, rectus femoris) and lower leg muscles (i.e., gastrocnemious, tibialis anterior) was developed. In total, 600 trials (including 358 lateral CBRs) from 7 young, healthy adults were analyzed. The effects of feature type (IMU, sEMG, Hybrid) and sensor placement on the random forest-based classifier performance were investigated. RESULTS CBR detection (i.e., CBR vs normal gait) accuracies (leave-one-subject-out cross validation) were 83.95% and 99.21% using sEMG-based and IMU-based features, respectively, which dropped to 72.17% and 84.83% for the multiclass identification (i.e., side-step vs cross-over vs normal gait) problem. Findings yielded shank as the best overall location for the multiclass problem, and chest as the most accurate for CBR detection. In general, adding sEMG and Hybrid features to IMUs yielded incremental improvements in CBR detection and type identification (87.03% leave-one-subject-out cross-validation for type identification). CONCLUSION The findings of this study demonstrate that IMU-based features are favourable over sEMG and Hybrid features for the task of CBR detection, with incremental value for type identification. Evidence presented suggests that Hybrid features may increase performance for other wearable sensor applications (e.g. activity recognition systems).
Collapse
Affiliation(s)
- Mina Nouredanesh
- Neural and Rehabilitation Engineering Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada
| | - James Tung
- Neural and Rehabilitation Engineering Laboratory, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
| |
Collapse
|
29
|
Patil NS, Dingwell JB, Cusumano JP. Correlations of pelvis state to foot placement do not imply within-step active control. J Biomech 2019; 97:109375. [PMID: 31668906 DOI: 10.1016/j.jbiomech.2019.109375] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Experimental studies of human walking have shown that within an individual step, variations in the center of mass (CoM) state can predict corresponding variations in the next foot placement. This has been interpreted by some to indicate the existence of active control in which the nervous system uses the CoM state at or near mid-stance to regulate subsequent foot placement. However, the passive dynamics of the moving body and/or moving limbs also contribute (perhaps strongly) to foot placement, and thus to its variation. The extent to which correlations of CoM state to foot placement reflect the effects of within-step active control, those of passive dynamics, or some combination of both, remains an important and still open question. Here, we used an open-loop-stable 2D walking model to show that this predictive ability cannot by itself be taken as evidence of within-step active control. In our simulations, we too find high correlations between the CoM state and subsequent foot placement, but these correlations are entirely due to passive dynamics as our system has no active control, either within a step or between steps. This demonstrates that any inferences made from such correlations about within-step active control require additional supporting evidence beyond the correlations themselves. Thus, these within-step predictive correlations leave unresolved the relative importance of within-step active control as compared to passive dynamics, meaning that such methods should be used to characterize control in human walking only with caution.
Collapse
Affiliation(s)
- Navendu S Patil
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jonathan B Dingwell
- Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph P Cusumano
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
30
|
Bruijn SM, van Dieën JH. Control of human gait stability through foot placement. J R Soc Interface 2019; 15:rsif.2017.0816. [PMID: 29875279 PMCID: PMC6030625 DOI: 10.1098/rsif.2017.0816] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
During human walking, the centre of mass (CoM) is outside the base of support for most of the time, which poses a challenge to stabilizing the gait pattern. Nevertheless, most of us are able to walk without substantial problems. In this review, we aim to provide an integrative overview of how humans cope with an underactuated gait pattern. A central idea that emerges from the literature is that foot placement is crucial in maintaining a stable gait pattern. In this review, we explore this idea; we first describe mechanical models and concepts that have been used to predict how foot placement can be used to control gait stability. These concepts, such as for instance the extrapolated CoM concept, the foot placement estimator concept and the capture point concept, provide explicit predictions on where to place the foot relative to the body at each step, such that gait is stabilized. Next, we describe empirical findings on foot placement during human gait in unperturbed and perturbed conditions. We conclude that humans show behaviour that is largely in accordance with the aforementioned concepts, with foot placement being actively coordinated to body CoM kinematics during the preceding step. In this section, we also address the requirements for such control in terms of the sensory information and the motor strategies that can implement such control, as well as the parts of the central nervous system that may be involved. We show that visual, vestibular and proprioceptive information contribute to estimation of the state of the CoM. Foot placement is adjusted to variations in CoM state mainly by modulation of hip abductor muscle activity during the swing phase of gait, and this process appears to be under spinal and supraspinal, including cortical, control. We conclude with a description of how control of foot placement can be impaired in humans, using ageing as a primary example and with some reference to pathology, and we address alternative strategies available to stabilize gait, which include modulation of ankle moments in the stance leg and changes in body angular momentum, such as rapid trunk tilts. Finally, for future research, we believe that especially the integration of consideration of environmental constraints on foot placement with balance control deserves attention.
Collapse
Affiliation(s)
- Sjoerd M Bruijn
- Department of Human Movement Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
31
|
Bilateral temporal control determines mediolateral margins of stability in symmetric and asymmetric human walking. Sci Rep 2019; 9:12494. [PMID: 31467362 PMCID: PMC6715793 DOI: 10.1038/s41598-019-49033-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Human bipedal gait requires active control of mediolateral dynamic balance to stay upright. The margin of stability is considered a measure of dynamic balance, and larger margins are by many authors assumed to reflect better balance control. The inverted pendulum model of gait indicates that changes in the mediolateral margin of stability are related to changes in bilateral single support times. We propose updated equations for the mediolateral margin of stability in temporally symmetric and asymmetric gait, which now include the single support times of both legs. Based on these equations, we study the relation between bilateral single support times and the mediolateral margin of stability in symmetric, asymmetric, and adaptive human gait. In all conditions, the mediolateral margin of stability during walking followed predictably from bilateral single support times, whereas foot placement co-varied less with the mediolateral margin of stability. Overall, these results demonstrate that the bilateral temporal regulation of gait profoundly affects the mediolateral margin of stability. By exploiting the passive dynamics of bipedal gait, bilateral temporal control may be an efficient mechanism to safeguard dynamic stability during walking, and keep an inherently unstable moving human body upright.
Collapse
|
32
|
Kent JA, Sommerfeld JH, Mukherjee M, Takahashi KZ, Stergiou N. Locomotor patterns change over time during walking on an uneven surface. ACTA ACUST UNITED AC 2019; 222:jeb.202093. [PMID: 31253712 DOI: 10.1242/jeb.202093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
Abstract
During walking, uneven surfaces impose new demands for controlling balance and forward progression at each step. It is unknown to what extent walking may be refined given an amount of stride-to-stride unpredictability at the distal level. Here, we explored the effects of an uneven terrain surface on whole-body locomotor dynamics immediately following exposure and after a familiarization period. Eleven young, unimpaired adults walked for 12 min on flat and uneven terrain treadmills. The whole-body center of mass excursion range (COMexc) and peak velocity (COMvel), step length and width were estimated. On first exposure to uneven terrain, we saw significant increases in medial-lateral COMexc and lateral COMvel, and in the variability of COMexc, COMvel and foot placement in both anterior-posterior and medial-lateral directions. Increases in step width and decreases in step length supported the immediate adoption of a cautious, restrictive solution on uneven terrain. After familiarization, step length increased and the variability of anterior-posterior COMvel and step length reduced, while step width and lateral COMvel reduced, alluding to a refinement of movement and a reduction of conservative strategies over time. However, the variability of medial-lateral COMexc and lateral COMvel increased, consistent with the release of previously constrained degrees of freedom. Despite this increase in variability, a strong relationship between step width and medial-lateral center of mass movement was maintained. Our results indicate that movement strategies of unimpaired adults when walking on uneven terrain can evolve over time with longer exposure to the surface.
Collapse
Affiliation(s)
- Jenny A Kent
- Division of Biomechanics and Research Development, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA
| | - Joel H Sommerfeld
- Division of Biomechanics and Research Development, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA
| | - Mukul Mukherjee
- Division of Biomechanics and Research Development, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA
| | - Kota Z Takahashi
- Division of Biomechanics and Research Development, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA
| | - Nicholas Stergiou
- Division of Biomechanics and Research Development, University of Nebraska at Omaha, 6160 University Drive, Omaha, NE 68182-0860, USA.,College of Public Health, 984355 University of Nebraska Medical Center, Omaha, NE 68198-4355, USA
| |
Collapse
|
33
|
Influence of Treadmill Speed and Perturbation Intensity on Selection of Balancing Strategies during Slow Walking Perturbed in the Frontal Plane. Appl Bionics Biomech 2019; 2019:1046459. [PMID: 31281413 PMCID: PMC6589317 DOI: 10.1155/2019/1046459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 11/27/2022] Open
Abstract
Background Common understanding is that adequate foot placement (stepping strategy) is crucial in maintaining stability during walking at normal speed. The aim of this study was to investigate strategies that humans use to cope with lateral perturbations during very slow walking. Methods Ten healthy individuals underwent an experimental protocol whereby a set of perturbations directed inward (medially to a stance leg) and outward (laterally to a stance leg) of three intensities (F1 = 5%, F2 = 10%, and F3 = 15% of body weight), applied at three instances of a stance phase, were delivered in random order to the pelvis using a balance assessment robot while walking on a treadmill at three walking speeds (S1 = 0.4, S2 = 0.6, and S3 = 0.8 m/s). We analyzed the peak center of mass displacements; step length, step width, and step times; and the lateral component of ground reaction force for perturbations that were delivered at the beginning of the gait cycle. Results Responses after inward perturbations were similar at all tested speeds and consistently employed stepping strategy that was further facilitated by a shortened stance. Wider and shorter steps were applied with increased perturbation intensity. Responses following outward perturbations were more complex. At S1, hip strategy (impulse-like increase of mediolateral ground reaction force) augmented with ankle strategy (mediolateral shift of the center of pressure) mainly contributed to responses already during the stance phase. The stance duration was significantly longer for all perturbation intensities. At S2, the relative share of hip strategy was reduced while with increased perturbation intensity, stepping strategy was gradually added. The stance duration was significantly longer for F1 and F2. At S3, stepping strategy was mainly used while the duration of stance was similar to the one in unperturbed walking. Responses following both inward and outward perturbations at all speeds were characterized by temporary slowing down movement in a sagittal plane that was more pronounced with increased perturbation intensity. Conclusions This study provides novel insights into balancing strategies used at slower walking speeds which may be more relevant to understand the challenges of gait stability following perturbations in the frontal plane in clinical populations.
Collapse
|
34
|
Vlutters M, van Asseldonk EHF, van der Kooij H. Ankle muscle responses during perturbed walking with blocked ankle joints. J Neurophysiol 2019; 121:1711-1717. [PMID: 30864874 DOI: 10.1152/jn.00752.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ankle joint muscles can contribute to balance during walking by modulating the center of pressure and ground reaction forces through an ankle moment. This is especially effective in the sagittal plane through ankle plantar- or dorsiflexion. If the ankle joints were to be physically blocked to make an ankle strategy ineffective, there would be no functional contribution of these muscles to balance during walking, nor would these muscles generate afferent output regarding ankle joint rotation. Consequently, ankle muscle activation for the purpose of balance control would be expected to disappear. We have performed an experiment in which subjects received anteroposterior pelvis perturbations during walking while their ankle joints could not contribute to the balance recovery. The latter was realized by physically blocking the ankle joints through a pair of modified ankle-foot orthoses. In this article we present the lower limb muscle activity responses in reaction to these perturbations. Of particular interest are the tibialis anterior and gastrocnemius medialis muscles, which could not contribute to the balance recovery through the ankle joint or encode muscle length changes caused by ankle joint rotation. Yet, these muscles showed long-latency responses, ~100 ms after perturbation onset. The response amplitudes were dependent on the perturbation magnitude and direction, as well as the state of the leg. The results imply that ankle muscle responses can be evoked without changes in proprioceptive information of those muscles through ankle rotation. This suggest a more centralized regulation of balance control, not strictly related to the ankle joint kinematics. NEW & NOTEWORTHY Walking human subjects received forward-backward perturbations at the pelvis while wearing "pin-shoes," a pair of modified ankle-foot orthoses that physically blocked ankle joint movement and reduced the base of support of each foot to a single point. The lower leg muscles showed long-latency perturbation-dependent activity changes, despite having no functional contributions to balance control through the ankle joint and not having been subjected to muscle length changes through ankle joint rotation.
Collapse
Affiliation(s)
- Mark Vlutters
- Department of Biomechanical Engineering, University of Twente , Enschede , The Netherlands
| | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente , Enschede , The Netherlands
| |
Collapse
|
35
|
Afschrift M, van Deursen R, De Groote F, Jonkers I. Increased use of stepping strategy in response to medio-lateral perturbations in the elderly relates to altered reactive tibialis anterior activity. Gait Posture 2019; 68:575-582. [PMID: 30654320 DOI: 10.1016/j.gaitpost.2019.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/26/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The influence of aging on reactive control of balance during walking has been mainly investigated in the sagittal plane, whereas balance control in response to frontal plane perturbations is largely unexplored in the elderly. This is remarkable, given that walking mainly requires active control in the frontal plane. An extensive gait perturbation protocol was used to test whether reactive control of walking balance changes with aging and whether these changes are more pronounced in the frontal than in the sagittal plane. RESEARCH QUESTION Do alterations in reactive muscle activity cause an age-related shift in stepping strategy in response to perturbations in the frontal and sagittal planes during walking? METHOD A treadmill-based perturbation protocol imposed frontal and sagittal plane perturbations of different magnitudes during different phases of the gait cycle. Motion capture and electromyography measured the response to the different perturbations in a group of eighteen young and ten older adults. RESULTS Only for a small subset of the perturbations, reactive muscle activity and kinematic strategies differed between young and older subjects. When perturbation magnitude increased, the older adults relied more on a stepping strategy for inward directed frontal plane perturbations and for sagittal plane perturbation just before heelstrike. Tibialis anterior activity increased less in the older compared to the young subjects. Using simulations, we related tibialis anterior activity to backward and outward movement of the center of pressure in the stance foot and confirmed its contribution to the ankle strategy. We concluded that deficient tibialis anterior activity predisposes elderly to use stepping rather than lateral ankle strategies to control balance. SIGNIFICANCE Rehabilitation targets for fall prevention in elderly need to also focus on ankle muscle reactivity.
Collapse
|
36
|
Eckardt N, Rosenblatt NJ. Healthy aging does not impair lower extremity motor flexibility while walking across an uneven surface. Hum Mov Sci 2018; 62:67-80. [DOI: 10.1016/j.humov.2018.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/16/2018] [Accepted: 09/15/2018] [Indexed: 02/06/2023]
|
37
|
Lower extremity joint-level responses to pelvis perturbation during human walking. Sci Rep 2018; 8:14621. [PMID: 30279499 PMCID: PMC6168500 DOI: 10.1038/s41598-018-32839-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 09/11/2018] [Indexed: 11/15/2022] Open
Abstract
The human leg joints play a major role in balance control during walking. They facilitate leg swing, and modulate the ground (re)action forces to prevent a fall. The aim of this study is to provide and explore data on perturbed human walking to gain a better understanding of balance recovery during walking through joint-level control. Healthy walking subjects randomly received anteroposterior and mediolateral pelvis perturbations at the instance of toe-off. The open-source modeling tool OpenSim was used to perform inverse kinematics and inverse dynamics analysis. We found hip joint involvement in accelerating and then halting leg swing, suggesting active preparation for foot placement. Additionally, responses in the stance leg’s ankle and hip joints contribute to balance recovery by decreasing the body’s velocity in the perturbation direction. Modulation also occurs in the plane perpendicular to the perturbation direction, to safeguard balance in both planes. Finally, the recorded muscle activity suggests both spinal and supra-spinal mediated contributions to balance recovery, scaling with perturbation magnitude and direction. The presented data provide a unique and multi-joint insight in the complexity of both frontal and sagittal plane balance control during human walking in terms of joint angles, moments, and power, as well as muscle EMG responses.
Collapse
|
38
|
Arvin M, Hoozemans MJM, Pijnappels M, Duysens J, Verschueren SM, van Dieën JH. Where to Step? Contributions of Stance Leg Muscle Spindle Afference to Planning of Mediolateral Foot Placement for Balance Control in Young and Old Adults. Front Physiol 2018; 9:1134. [PMID: 30246780 PMCID: PMC6110888 DOI: 10.3389/fphys.2018.01134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023] Open
Abstract
Stable gait requires active control of the mediolateral (ML) kinematics of the body center of mass (CoM) and the base of support (BoS) in relation to each other. Stance leg hip abductor (HA) muscle spindle afference may be used to guide contralateral swing foot placement and adequately position the BoS in relation to the CoM. We studied the role of HA spindle afference in control of ML gait stability in young and older adults by means of muscle vibration. Healthy young (n = 12) and older (age > 65 years, n = 18) adults walked on a treadmill at their preferred speed. In unperturbed trials, individual linear models using each subject's body CoM position and velocity at mid-swing as inputs accurately predicted foot placement at the end of the swing phase in the young [mean R2 = 0.73 (SD 0.11)], but less so in the older adults [mean R2 = 0.60 (SD 0.14)]. In vibration trials, HA afference was perturbed either left or right by vibration (90 Hz) in a random selection of 40% of the stance phases. After vibrated stance phases, but not after unvibrated stance phases in the same trials, the foot was placed significantly more inward than predicted by individual models for unperturbed gait. The effect of vibration was stronger in young adults, suggesting that older adults rely less on HA spindle afference. These results show that HA spindle afference in the stance phase of gait contributes to the control of subsequent ML foot placement in relation to the kinematics of the CoM, to stabilize gait in the ML direction and that this pocess is impaired in older adults.
Collapse
Affiliation(s)
- Mina Arvin
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Marco J. M. Hoozemans
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Mirjam Pijnappels
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Jacques Duysens
- Department of Movement Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Sabine M. Verschueren
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
39
|
Afschrift M, Pitto L, Aerts W, van Deursen R, Jonkers I, De Groote F. Modulation of gluteus medius activity reflects the potential of the muscle to meet the mechanical demands during perturbed walking. Sci Rep 2018; 8:11675. [PMID: 30076327 PMCID: PMC6076241 DOI: 10.1038/s41598-018-30139-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/18/2018] [Indexed: 11/09/2022] Open
Abstract
Mediolateral stability during walking can be controlled by adjustment of foot placement. Reactive activity of gluteus medius (GM) is modulated during the gait cycle. However, the mechanisms behind the modulation are yet unclear. We measured reactive GM activity and kinematics in response to a mediolateral platform translation during different phases of the gait cycle. Forward simulations of perturbed walking were used to evaluate the isolated effect of the perturbation and the GM response on gait stability. We showed that the potential of GM to adjust lateral foot placement and prevent collisions during swing varies during the gait cycle and explains the observed modulation. The observed increase in stance, swing or combined GM activity causes an outward foot placement and therefore compensates for the loss of stability caused by a perturbation early in the gait cycle. GM activity of the swing leg in response to a platform translation late in the gait cycle counteracts foot placement, but prevents collision of the swing foot with the stance leg. This study provides insights in the neuromechanics of reactive control of gait stability and proposes a novel method to distinguish between the effect of perturbation force and reactive muscle activity on gait stability.
Collapse
Affiliation(s)
| | - Lorenzo Pitto
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Wouter Aerts
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | | - Ilse Jonkers
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
40
|
Miller SE, Segal AD, Klute GK, Neptune RR. Hip recovery strategy used by below-knee amputees following mediolateral foot perturbations. J Biomech 2018; 76:61-67. [DOI: 10.1016/j.jbiomech.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/13/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
|
41
|
Abstract
The neural control of balance during locomotion is currently not well understood, even in the light of considerable advances in research on balance during standing. In this paper, we lay out the control problem for this task and present a list of different strategies available to the central nervous system to solve this problem. We discuss the biomechanics of the walking body, using a simplified model that iteratively gains degrees of freedom and complexity. Each addition allows for different control strategies, which we introduce in turn: foot placement shift, ankle strategy, hip strategy, and push-off modulation. The dynamics of the biomechanical system are discussed using the phase space representation, which allows illustrating the mechanical effect of the different control mechanisms. This also enables us to demonstrate the effects of common general stability strategies, such as increasing step width and cadence.
Collapse
|
42
|
Buurke TJW, Lamoth CJC, Vervoort D, van der Woude LHV, den Otter R. Adaptive control of dynamic balance in human gait on a split-belt treadmill. J Exp Biol 2018; 221:jeb.174896. [DOI: 10.1242/jeb.174896] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/11/2018] [Indexed: 11/20/2022]
Abstract
Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait.
Collapse
Affiliation(s)
- Tom J. W. Buurke
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
| | - Claudine J. C. Lamoth
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
| | - Danique Vervoort
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
| | - Lucas H. V. van der Woude
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
- University of Groningen, University Medical Center Groningen, Center for Rehabilitation, The Netherlands
| | - Rob den Otter
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, The Netherlands
| |
Collapse
|
43
|
Hof AL, Duysens J. Responses of human ankle muscles to mediolateral balance perturbations during walking. Hum Mov Sci 2017; 57:69-82. [PMID: 29174418 DOI: 10.1016/j.humov.2017.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 11/19/2022]
Abstract
During walking our balance is maintained by muscle action. In part these muscle actions automatically respond to the imbalance. This paper considers responses to balance perturbations in muscles around the ankle, peroneus longus (PL), tibialis anterior (TA) and soleus (SO). It is investigated if their action is related to previously observed balance mechanisms: the 'braking reaction' and the mediolateral ankle strategy. Subjects walked on a treadmill and received pushes to the left and pulls to the right in various phases of the gait cycle. Muscle actions were divided into medium latency R1 (100-150 ms), long latency R2 (170-250 ms), and late action R3 (270-350 ms). Short latency responses, before 100 ms, were not observed but later responses were prominent. With inward perturbations (e.g. pushes to the left shortly before or during stance of the right foot) responses in RPL were seen. The forward roll-over of the CoP was briefly stalled in mid stance, so that the heel was not lifted. Stance was shortened. With outward perturbations, pushes to the left shortly before or during stance of the left foot, responses in all three muscles, LTA, LSO, and LPL were seen. Our interpretation is that these muscle activations induce a 'braking reaction' but could also contribute to the 'mediolateral ankle strategy'. The resultant balance correction is small but fast, and so diminishes the need for later corrections by the stepping strategy.
Collapse
Affiliation(s)
- A L Hof
- Center for Human Movement Sciences, University of Groningen, PO Box 196, 9700AD Groningen, The Netherlands; Center for Rehabilitation, University Medical Center Groningen, PO Box 30001, 9700RB Groningen, The Netherlands.
| | - J Duysens
- Department of Kinesiology, KU-Leuven, B3001 Leuven, Belgium
| |
Collapse
|
44
|
Zadravec M, Olenšek A, Matjačić Z. The comparison of stepping responses following perturbations applied to pelvis during overground and treadmill walking. Technol Health Care 2017; 25:781-790. [PMID: 28582936 DOI: 10.3233/thc-160798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Treadmills are used frequently in rehabilitation enabling neurologically impaired subjects to train walking while being assisted by therapists. Numerous studies compared walking on treadmill and overground for unperturbed but not also perturbed conditions. OBJECTIVE The objective of this study was to compare stepping responses (step length, step width and step time) during overground and treadmill walking in a group of healthy subjects where balance assessment robots applied perturbing pushes to the subject's pelvis in sagittal and frontal planes. METHODS During walking in both balance assessment robots (overground and treadmill-based) with applied perturbations the stepping responses of a group of seven healthy subjects were assessed with a motion tracking camera. RESULTS The results show high degree of similarity of stepping responses between overground and treadmill walking for all perturbation directions. Both devices reproduced similar experimental conditions with relatively small standard deviations in the unperturbed walking as well as in perturbed walking. CONCLUSIONS Based on these results we may conclude that stepping responses following perturbations can be studied on an instrumented treadmill where ground reaction forces can be readily assessed which is not the case during perturbed overground walking.
Collapse
|
45
|
Matjačić Z, Zadravec M, Olenšek A. An effective balancing response to lateral perturbations at pelvis level during slow walking requires control in all three planes of motion. J Biomech 2017; 60:79-90. [DOI: 10.1016/j.jbiomech.2017.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/14/2017] [Accepted: 06/13/2017] [Indexed: 11/29/2022]
|
46
|
Dean JC, Embry AE, Stimpson KH, Perry LA, Kautz SA. Effects of hip abduction and adduction accuracy on post-stroke gait. Clin Biomech (Bristol, Avon) 2017; 44:14-20. [PMID: 28285142 PMCID: PMC5420502 DOI: 10.1016/j.clinbiomech.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gait instability often limits post-stroke function, although the mechanisms underlying this instability are not entirely clear. Our recent work has suggested that one possible factor contributing to post-stroke gait instability is a reduced ability to accurately control foot placement. The purpose of the present experiments was to investigate whether post-stroke gait function is related to the ability to accurately abduct and adduct the hip, as required for accurate foot placement. METHODS 35 chronic stroke survivors and 12 age-matched controls participated in this experiment. Participants performed hip oscillation trials designed to quantify hip abduction/adduction accuracy, in which they lay supine and moved their leg through a prescribed range of motion in time with a metronome. Stroke survivors also performed overground walking trials at their self-selected speed. FINDINGS 28 of the 35 stroke survivors had sufficient active range of motion to perform the prescribed hip oscillation task. In comparison to controls, these 28 stroke survivors were significantly less accurate at matching the abduction target, matching the adduction target, and moving in time with the metronome. Across these stroke survivors, a multiple regression revealed that only paretic hip abduction accuracy made a unique contribution to predicting paretic step width and paretic step period, metrics of gait performance. INTERPRETATION The present results demonstrate that the ability to accurately abduct the hip is related to post-stroke gait performance, as predicted from a model-based gait stabilization strategy. Therefore, interventions designed to improve lower limb movement accuracy may hold promise for restoring post-stroke gait stability.
Collapse
Affiliation(s)
- Jesse C Dean
- Ralph H. Johnson VAMC, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina (MUSC), Charleston, SC, USA; Department of Health Sciences and Research, MUSC, Charleston, SC, USA.
| | - Aaron E Embry
- Ralph H. Johnson VAMC, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina (MUSC), Charleston, SC, USA; Department of Health Sciences and Research, MUSC, Charleston, SC, USA
| | - Katy H Stimpson
- Ralph H. Johnson VAMC, Charleston, SC, USA; Department of Health Sciences and Research, MUSC, Charleston, SC, USA
| | - Lindsay A Perry
- Ralph H. Johnson VAMC, Charleston, SC, USA; Department of Health Sciences and Research, MUSC, Charleston, SC, USA; University of St. Augustine for Health Sciences, 1 University Blvd., St. Augustine, FL 32806, USA
| | - Steven A Kautz
- Ralph H. Johnson VAMC, Charleston, SC, USA; Division of Physical Therapy, Medical University of South Carolina (MUSC), Charleston, SC, USA; Department of Health Sciences and Research, MUSC, Charleston, SC, USA
| |
Collapse
|
47
|
The Neuromuscular Origins of Kinematic Variability during Perturbed Walking. Sci Rep 2017; 7:808. [PMID: 28400615 PMCID: PMC5429788 DOI: 10.1038/s41598-017-00942-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/20/2017] [Indexed: 11/26/2022] Open
Abstract
We investigated the neuromuscular contributions to kinematic variability and thus step to step adjustments in posture and foot placement across a range of walking speeds in response to optical flow perturbations of different amplitudes using a custom virtual environment. We found that perturbations significantly increased step width, decreased step length, and elicited larger trunk sway compared to normal walking. However, perturbation-induced effects on the corresponding variabilities of these measurements were much more profound. Consistent with our hypotheses, we found that: (1) perturbations increased EMG activity of the gluteus medius and postural control muscles during leg swing, and increased antagonist leg muscle coactivation during limb loading in early stance, and (2) changes in the magnitude of step to step adjustments in postural sway and lateral foot placement positively correlated with those of postural control and gluteus medius muscle activities, respectively, in response to perturbations. However, (3) interactions between walking speed and susceptibility to perturbations, when present, were more complex than anticipated. Our study provides important mechanistic neuromuscular insight into walking balance control and important reference values for the emergence of balance impairment.
Collapse
|
48
|
Hsu LJ, Zelenin PV, Lyalka VF, Vemula MG, Orlovsky GN, Deliagina TG. Neural mechanisms of single corrective steps evoked in the standing rabbit. Neuroscience 2017; 347:85-102. [PMID: 28215990 PMCID: PMC5374252 DOI: 10.1016/j.neuroscience.2017.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/25/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement toward the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord.
Collapse
Affiliation(s)
- L-J Hsu
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - P V Zelenin
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - V F Lyalka
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - M G Vemula
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - G N Orlovsky
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden
| | - T G Deliagina
- Department of Neuroscience, Karolinska Institute, Stockholm SE-17177, Sweden.
| |
Collapse
|
49
|
Song S, Geyer H. Evaluation of a Neuromechanical Walking Control Model Using Disturbance Experiments. Front Comput Neurosci 2017; 11:15. [PMID: 28381996 PMCID: PMC5361655 DOI: 10.3389/fncom.2017.00015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/28/2017] [Indexed: 01/01/2023] Open
Abstract
Neuromechanical simulations have been used to study the spinal control of human locomotion which involves complex mechanical dynamics. So far, most neuromechanical simulation studies have focused on demonstrating the capability of a proposed control model in generating normal walking. As many of these models with competing control hypotheses can generate human-like normal walking behaviors, a more in-depth evaluation is required. Here, we conduct the more in-depth evaluation on a spinal-reflex-based control model using five representative gait disturbances, ranging from electrical stimulation to mechanical perturbation at individual leg joints and at the whole body. The immediate changes in muscle activations of the model are compared to those of humans across different gait phases and disturbance magnitudes. Remarkably similar response trends for the majority of investigated muscles and experimental conditions reinforce the plausibility of the reflex circuits of the model. However, the model's responses lack in amplitude for two experiments with whole body disturbances suggesting that in these cases the proposed reflex circuits need to be amplified by additional control structures such as location-specific cutaneous reflexes. A model that captures these selective amplifications would be able to explain both steady and reactive spinal control of human locomotion. Neuromechanical simulations that investigate hypothesized control models are complementary to gait experiments in better understanding the control of human locomotion.
Collapse
Affiliation(s)
- Seungmoon Song
- Robotics Institute, Carnegie Mellon University Pittsburgh, PA, USA
| | - Hartmut Geyer
- Robotics Institute, Carnegie Mellon University Pittsburgh, PA, USA
| |
Collapse
|
50
|
Reimann H, Fettrow TD, Thompson ED, Agada P, McFadyen BJ, Jeka JJ. Complementary mechanisms for upright balance during walking. PLoS One 2017; 12:e0172215. [PMID: 28234936 PMCID: PMC5325219 DOI: 10.1371/journal.pone.0172215] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/01/2017] [Indexed: 12/16/2022] Open
Abstract
Lateral balance is a critical factor in keeping the human body upright during walking. Two important mechanisms for balance control are the stepping strategy, in which the foot placement is changed in the direction of a sensed fall to modulate how the gravitational force acts on the body, and the lateral ankle strategy, in which the body mass is actively accelerated by an ankle torque. Currently, there is minimal evidence about how these two strategies complement one another to achieve upright balance during locomotion. We use Galvanic vestibular stimulation (GVS) to induce the sensation of a fall at heel-off during gait initiation. We found that young healthy adults respond to the illusory fall using both the lateral ankle strategy and the stepping strategy. The stance foot center of pressure (CoP) is shifted in the direction of the perceived fall by ≈2.5 mm, starting ≈247 ms after stimulus onset. The foot placement of the following step is shifted by ≈15 mm in the same direction. The temporal delay between these two mechanisms suggests that they independently contribute to upright balance during locomotion, potentially in a serially coordinated manner. Modeling results indicate that without the lateral ankle strategy, a much larger step width is required to maintain upright balance, suggesting that the small but early CoP shift induced by the lateral ankle strategy is critical for upright stability during locomotion. The relative importance of each mechanism and how neurological disorders may affect their implementation remain an open question.
Collapse
Affiliation(s)
- Hendrik Reimann
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
- * E-mail:
| | - Tyler D. Fettrow
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
| | - Elizabeth D. Thompson
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States of America
| | - Peter Agada
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
| | - Bradford J. McFadyen
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Université Laval, Québec, Canada
- Department of Rehabilitation, Université Laval, Québec, Canada
| | - John J. Jeka
- Department of Kinesiology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|