1
|
Dahm SF, Sachse P. Let's do it: Response times in Mental Paper Folding and its execution. Q J Exp Psychol (Hove) 2025; 78:731-743. [PMID: 38616184 PMCID: PMC11905326 DOI: 10.1177/17470218241249727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Action imagery is the ability to mentally simulate the execution of an action without physically performing it. Action imagery is assumed to rely at least partly on similar mechanisms as action execution. Therefore, we expected that imagery and execution durations would be constrained by the number of folds in a Paper Folding Task. Analogously, individual differences in execution durations were expected to be reflected in imagery durations. Twenty-eight participants performed two imagery conditions (computer vs. paper) and one execution condition (paper) where two-dimensional grids of a three-dimensional cube were (mentally) folded to determine whether two selected edges overlapped or not. As expected, imagery performance and execution performance were strongly correlated and decreased with the number of folds. Further, the number of folds influenced imagery durations even more than execution durations. This may be due to the additional cognitive load in imagery that emerges when tracking the folds to follow up with the next ones. The results indicate that Mental Paper Folding predominantly involves dynamic visual representations that are not functionally associated with one's own movements as in action imagery.
Collapse
Affiliation(s)
- Stephan Frederic Dahm
- Department of Psychology, Faculty of Psychology and Sports Sciences, University of Innsbruck, Innsbruck, Austria
| | - Pierre Sachse
- Department of Psychology, Faculty of Psychology and Sports Sciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Mu oscillations and motor imagery performance: A reflection of intra-individual success, not inter-individual ability. Hum Mov Sci 2021; 78:102819. [PMID: 34051665 DOI: 10.1016/j.humov.2021.102819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
Mu oscillations (8-13 Hz), recorded over the human motor cortex, have been shown to consistently suppress during both the imagination and performance of movements; however, its functional significance in the imagery process is currently unclear. Here we examined human electroencephalographic (EEG) oscillations in the context of motor imagery performance as measured by imagery success within participants and imagery ability between participants. We recorded continuous EEG activity while participants performed the Test of Ability in Movement Imagery (TAMI), an objective test of motor imagery task. Results demonstrated that mu oscillatory activity significantly decreased during successful as compared to unsuccessful imagery trials. However, the extent of reduction in mu oscillations did not correlate with overall imagery ability as measured by the total TAMI score. These findings provide further support for the involvement of mu oscillations in indexing motor imagery performance and suggest that mu oscillations may reflect important processes related to imagery accuracy, processes likely related to those underlying overt motor production and motor understanding.
Collapse
|
3
|
Munzert J, Krüger B. Task-Specificity of Muscular Responses During Motor Imagery: Peripheral Physiological Effects and the Legacy of Edmund Jacobson. Front Psychol 2018; 9:1869. [PMID: 30356730 PMCID: PMC6189391 DOI: 10.3389/fpsyg.2018.01869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/12/2018] [Indexed: 12/03/2022] Open
Abstract
Motor imagery has become a key issue in cognitive neuroscience and particularly in fMRI research. However, peripheral physiological effects of motor imagery were already being studied a century ago with some research hypotheses even tracing back to Washburn (1916). This review focuses on research by Edmund Jacobson in the early 1930s. Jacobsen demonstrated that peripheral physiological effects rely on task-specific instructions: Bending the right arm elicits muscular responses in the right biceps, but not in the muscles of other limbs. This review discusses how Jacobsen examined this issue in a series of studies. This scientific spadework is worth recalling here because of its methodological innovations and its forward-looking discussion that even today, continues to be relevant for prospective research on this topic.
Collapse
Affiliation(s)
- Jörn Munzert
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| | - Britta Krüger
- Neuromotor Behavior Laboratory, Department of Psychology and Sport Science, Institute of Sport Science, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Tacchino A, Saiote C, Brichetto G, Bommarito G, Roccatagliata L, Cordano C, Battaglia MA, Mancardi GL, Inglese M. Motor Imagery as a Function of Disease Severity in Multiple Sclerosis: An fMRI Study. Front Hum Neurosci 2018; 11:628. [PMID: 29375340 PMCID: PMC5768615 DOI: 10.3389/fnhum.2017.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/08/2017] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) is defined as mental execution without any actual movement. While healthy adults usually show temporal equivalence, i.e., isochrony, between the mental simulation of an action and its actual performance, neurological disorders are associated with anisochrony. Unlike in patients with stroke and Parkinson disease, only a few studies have investigated differences of MI ability in multiple sclerosis (MS). However, the relationship among disease severity, anisochrony and brain activation patterns during MI has not been investigated yet. Here, we propose to investigate MI in MS patients using fMRI during a behavioral task executed with dominant/non-dominant hand and to evaluate whether anisochrony is associated with disease severity. Thirty-seven right-handed MS patients, 17 with clinically isolated syndrome (CIS) suggestive of MS and 20 with relapsing-remitting MS (RR-MS) and 20 right-handed healthy controls (HC) underwent fMRI during a motor task consisting in the actual or imaged movement of squeezing a foam ball with the dominant and non-dominant hand. The same tasks were performed outside the MRI room to record the number of actual and imagined ball squeezes, and calculate an Index of performance (IP) based on the ratio between actual and imagined movements. IP showed that a progressive loss of ability in simulating actions (i.e., anisochrony) more pronounced for non-dominant hand, was found as function of the disease course. Moreover, anisochrony was associated with activation of occipito-parieto-frontal areas that were more extensive at the early stages of the disease, probably in order to counteract the changes due to MS. However, the neural engagement of compensatory brain areas becomes more difficult with more challenging tasks, i.e., dominant vs. non-dominant hand, with a consequent deficit in behavioral performance. These results show a strict association between MI performance and disease severity, suggesting that, at early stages of the disease, anisochrony in MI could be considered as surrogate behavioral marker of MS severity.
Collapse
Affiliation(s)
- Andrea Tacchino
- Scientific Research Area, Italian MS Foundation (FISM), Genoa, Italy
| | - Catarina Saiote
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Giulia Bommarito
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), IRCCS San Martino University Hospital and IST, Genoa, Italy.,Neuroradiology Department, IRCCS San Martino University Hospital and IST, Genoa, Italy
| | - Christian Cordano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Gian L Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
O'Shea H, Moran A. Does Motor Simulation Theory Explain the Cognitive Mechanisms Underlying Motor Imagery? A Critical Review. Front Hum Neurosci 2017; 11:72. [PMID: 28261079 PMCID: PMC5313484 DOI: 10.3389/fnhum.2017.00072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/06/2017] [Indexed: 01/19/2023] Open
Abstract
Motor simulation theory (MST; Jeannerod, 2001) purports to explain how various action-related cognitive states relate to actual motor execution. Specifically, it proposes that motor imagery (MI; imagining an action without executing the movements involved) shares certain mental representations and mechanisms with action execution, and hence, activates similar neural pathways to those elicited during the latter process. Furthermore, MST postulates that MI works by rehearsing neural motor systems off-line via a hypothetical simulation process. In this paper, we review evidence cited in support of MST and evaluate its efficacy in understanding the cognitive mechanisms underlying MI. In doing so, we delineate the precise postulates of simulation theory and clarify relevant terminology. Based on our cognitive-level analysis, we argue firstly that the psychological mechanisms underlying MI are poorly understood and require additional conceptual and empirical analysis. In addition, we identify a number of potentially fruitful lines of inquiry for future investigators of MST and MI.
Collapse
Affiliation(s)
- Helen O'Shea
- School of Psychology, University College Dublin Dublin, Ireland
| | - Aidan Moran
- School of Psychology, University College Dublin Dublin, Ireland
| |
Collapse
|