1
|
Wada M, Nakajima S, Honda S, Takano M, Taniguchi K, Homma S, Ueda R, Tobari Y, Mimura Y, Fujii S, Mimura M, Noda Y. Decreased prefrontal glutamatergic function is associated with a reduced astrocyte-related gene expression in treatment-resistant depression. Transl Psychiatry 2024; 14:478. [PMID: 39587054 PMCID: PMC11589749 DOI: 10.1038/s41398-024-03186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024] Open
Abstract
Glutamatergic dysfunction is involved in the pathophysiology of treatment-resistant depression (TRD). However, few physiological studies have evaluated its pathophysiology in vivo in individuals with TRD. Transcranial magnetic stimulation-electroencephalography (TMS-EEG) techniques can assess intracortical facilitation (ICF), which reflects glutamatergic neurophysiological function in specific cortical regions. The objectives of this study were (1) to compare glutamatergic receptor-mediated function as indexed with ICF TMS-EEG in the dorsolateral prefrontal cortex (DLPFC) between participants with TRD and healthy controls (HCs) and (2) to explore the relationships between cell-specific gene expression levels and the group difference in glutamatergic neural propagation using virtual histology approach. Sixty participants with TRD and thirty HCs were examined with ICF TMS-EEG measure (80 single-pulse TMS and paired-pulse ICF) in the left DLPFC. Both sensor and source-level ICF measures were computed to compare them between the TRD and HC groups. Furthermore, we conducted spatial correlation analyses interregionally between ICF glutamatergic activity and cell-specific gene expression levels employing the Allen Human Brain Atlas dataset. DLPFC-ICF at the sensor level was not significantly different between the two groups, whereas DLPFC-ICF at the source level was reduced in the TRD group compared with the HC group (p = 0.026). Moreover, the reduced ICF signal propagation of TRD correlated with astrocyte-specific gene expression level (p < 0.0001). The glutamatergic neural activities indexed by ICF in the left DLPFC were decreased in participants with TRD. Additionally, a relative reduction in glutamatergic signal propagation originating from the DLPFC in TRD may be associated with astrocytic abnormality.
Collapse
Affiliation(s)
- Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Teijin Pharma Ltd., Tokyo, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Saki Homma
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Risako Ueda
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
- Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.
| |
Collapse
|
2
|
Murphy DLK, Koponen LM, Wood E, Li Y, Bukhari-Parlakturk N, Goetz SM, Peterchev AV. Reduced auditory perception and brain response with quiet TMS coil. Brain Stimul 2024; 17:1197-1207. [PMID: 39395687 DOI: 10.1016/j.brs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC). OBJECTIVE To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil. METHODS Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120 % RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal while stimulating the primary motor cortex. RESULTS RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100 % coil-specific RMT sounded like Cool-B65 at 34 % RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS- DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation. CONCLUSIONS The stimulation efficiency of qTMS-DCC matched Cool-B65 while having substantially lower perceived loudness and auditory-evoked potentials.
Collapse
Affiliation(s)
- David L K Murphy
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Lari M Koponen
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Eleanor Wood
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Yiru Li
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | | | - Stefan M Goetz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Department of Electrical and Computer Engineering, Duke University, USA; Department of Neurosurgery, Duke University School of Medicine, USA; Department of Engineering, Technical University Kaiserslautern, Germany
| | - Angel V Peterchev
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Department of Electrical and Computer Engineering, Duke University, USA; Department of Neurosurgery, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA.
| |
Collapse
|
3
|
Sheen JZ, Mazza F, Momi D, Miron JP, Mansouri F, Russell T, Zhou R, Hyde M, Fox L, Voetterl H, Assi EB, Daskalakis ZJ, Blumberger DM, Griffiths JD, Downar J. N100 as a response prediction biomarker for accelerated 1 Hz right DLPFC-rTMS in major depression. J Affect Disord 2024; 363:174-181. [PMID: 39033822 DOI: 10.1016/j.jad.2024.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is a safe and effective treatment for major depressive disorder (MDD); however, this treatment currently lacks reliable biomarkers of treatment response. TMS-evoked potentials (TEPs), measured using TMS-electroencephalography (TMS-EEG), have been suggested as potential biomarker candidates, with the N100 peak being one of the most promising. This study investigated the association between baseline N100 amplitude and 1 Hz right dorsolateral prefrontal cortex (R-DLPFC) accelerated rTMS (arTMS) treatment in MDD. METHODS Baseline TMS-EEG sessions were performed for 23 MDD patients. All patients then underwent 40 sessions of 1 Hz R-DLPFC (F4) arTMS over 5 days and a follow-up TMS-EEG session one week after the end of theses arTMS sessions. RESULTS Baseline N100 amplitude at F4 showed a strong positive association (p < .001) with treatment outcome. The association between the change in N100 amplitude (baseline to follow-up) and treatment outcome did not remain significant after Bonferroni correction (p = .06, corrected; p = .03, uncorrected). Furthermore, treatment responders had a significantly larger mean baseline F4 TEP amplitude during the N100 time frame compared to non-responders (p < .001). Topographically, after Bonferroni correction, F4 is the only electrode at which its baseline N100 amplitude showed a significant positive association (p < .001) with treatment outcome. LIMITATIONS Lack of control group and auditory masking. CONCLUSION Baseline N100 amplitude showed a strong association with treatment outcome and thus demonstrated great potential to be utilized as a cost-effective and widely adoptable biomarker of rTMS treatment in MDD.
Collapse
Affiliation(s)
- Jack Z Sheen
- Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Frank Mazza
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jean-Philippe Miron
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Centre Hospitalier de l'Université de Montréal (CHUM), Centre de Recherche du CHUM (CRCHUM), Montreal, QC, Canada; Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Farrokh Mansouri
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Thomas Russell
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Ryan Zhou
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Molly Hyde
- Institute of Medical Science, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, Canada
| | - Linsay Fox
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands
| | - Elie Bou Assi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC, Canada; Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Zafiris J Daskalakis
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Daniel M Blumberger
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - John D Griffiths
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| |
Collapse
|
4
|
Beck M, Heyl M, Mejer L, Vinding M, Christiansen L, Tomasevic L, Siebner H. Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex. Hum Brain Mapp 2024; 45:e70048. [PMID: 39460649 PMCID: PMC11512442 DOI: 10.1002/hbm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) triggers time-locked cortical activity that can be recorded with electroencephalography (EEG). Transcranial evoked potentials (TEPs) are widely used to probe brain responses to TMS. Here, we systematically reviewed 137 published experiments that studied TEPs elicited from TMS to the human primary motor cortex (M1) in healthy individuals to investigate the impact of methodological choices. We scrutinized prevalent methodological choices and assessed how consistently they were reported in published papers. We extracted amplitudes and latencies from reported TEPs and compared specific TEP peaks and components between studies using distinct methods. Reporting of methodological details was overall sufficient, but some relevant information regarding the TMS settings and the recording and preprocessing of EEG data were missing in more than 25% of the included experiments. The published TEP latencies and amplitudes confirm the "prototypical" TEP waveform following stimulation of M1, comprising distinct N15, P30, N45, P60, N100, and P180 peaks. However, variations in amplitude were evident across studies. Higher stimulation intensities were associated with overall larger TEP amplitudes. Active noise masking during TMS generally resulted in lower TEP amplitudes compared to no or passive masking but did not specifically impact those TEP peaks linked to long-latency sensory processing. Studies implementing independent component analysis (ICA) for artifact removal generally reported lower TEP magnitudes. In summary, some aspects of reporting practices could be improved in future TEP studies to enable replication. Methodological choices, including TMS intensity and the use of noise masking or ICA, introduce systematic differences in reported TEP amplitudes. Further investigation into the significance of these and other methodological factors and their interactions is warranted.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Marieke Heyl
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Louise Mejer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Mikkel C. Vinding
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of NeurologyCopenhagen University Hospital Bispebjerg and FrederiksbergKøbenhavnDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Murphy DLK, Koponen LM, Wood E, Li Y, Bukhari-Parlakturk N, Goetz SM, Peterchev AV. Reduced Auditory Perception and Brain Response with Quiet TMS Coil. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600400. [PMID: 39005397 PMCID: PMC11244855 DOI: 10.1101/2024.06.24.600400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
BACKGROUND Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC). OBJECTIVE To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil. METHODS Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120% RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal. RESULTS RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100% coil-specific RMT sounded like Cool-B65 at 34% RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS-DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation. CONCLUSIONS The stimulation efficiency of qTMS-DCC matched Cool-B65, while having substantially lower perceived loudness and auditory-evoked potentials. Highlights qTMS coil is subjectively and objectively quieter than conventional Cool-B65 coilqTMS coil at 100% motor threshold was as loud as Cool-B65 at 34% motor thresholdAttenuated coil noise reduced auditory N100 and P180 evoked response componentsqTMS coil enables reduction of auditory activation without masking.
Collapse
|
6
|
Xu M, Nikolin S, Moffa AM, Xu XM, Su Y, Li R, Chan HF, Loo CK, Martin DM. Prolonged intermittent theta burst stimulation targeting the left prefrontal cortex and cerebellum does not affect executive functions in healthy individuals. Sci Rep 2024; 14:11847. [PMID: 38782921 PMCID: PMC11116424 DOI: 10.1038/s41598-024-61404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Adriano M Moffa
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Xiao Min Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Yon Su
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Roger Li
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Ho Fung Chan
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Colleen K Loo
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia.
- Black Dog Institute, Sydney, Australia.
| |
Collapse
|
7
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
8
|
Strafella R, Momi D, Zomorrodi R, Lissemore J, Noda Y, Chen R, Rajji TK, Griffiths JD, Vila-Rodriguez F, Downar J, Daskalakis ZJ, Blumberger DM, Voineskos D. Identifying Neurophysiological Markers of Intermittent Theta Burst Stimulation in Treatment-Resistant Depression Using Transcranial Magnetic Stimulation-Electroencephalography. Biol Psychiatry 2023; 94:454-465. [PMID: 37084864 DOI: 10.1016/j.biopsych.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) targeting the left dorsolateral prefrontal cortex is effective for treatment-resistant depression, but the effects of iTBS on neurophysiological markers remain unclear. Here, we indexed transcranial magnetic stimulation-electroencephalography (TMS-EEG) markers, specifically, the N45 and N100 amplitudes, at baseline and post-iTBS, comparing separated and contiguous iTBS schedules. TMS-EEG markers were also compared between iTBS responders and nonresponders. METHODS TMS-EEG was analyzed from a triple-blind 1:1 randomized trial for treatment-resistant depression, comparing a separated (54-minute interval) and contiguous (0-minute interval) schedule of 2 × 600-pulse iTBS for 30 treatments. Participants underwent TMS-EEG over the left dorsolateral prefrontal cortex at baseline and posttreatment. One hundred fourteen participants had usable TMS-EEG at baseline, and 98 at posttreatment. TMS-evoked potential components (N45, N100) were examined via global mean field analysis. RESULTS The N100 amplitude decreased from baseline to posttreatment, regardless of the treatment group (F1,106 = 5.20, p = .02). There were no changes in N45 amplitude in either treatment group. In responders, the N100 amplitude decreased after iTBS (F1,102 = 11.30, p = .001, pcorrected = .0004). Responders showed higher posttreatment N45 amplitude than nonresponders (F1,94 = 4.11, p = .045, pcorrected = .016). Higher baseline N100 amplitude predicted lower post-iTBS depression scores (F4,106 = 6.28, p = .00014). CONCLUSIONS These results provide further evidence for an association between the neurophysiological effects of iTBS and treatment efficacy in treatment-resistant depression. Future studies are needed to test the predictive potential for clinical applications of TMS-EEG markers.
Collapse
Affiliation(s)
- Rebecca Strafella
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Davide Momi
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Krembil Centre for Neuroinformatics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Jennifer Lissemore
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Robert Chen
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - John D Griffiths
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Krembil Centre for Neuroinformatics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Vancouver, British Columbia, Canada; Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Downar
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Daniel M Blumberger
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Cepeda-Zapata LK, Corona-González CE, Alonso-Valerdi LM, Ibarra-Zarate DI. Binaural Beat Effects on Attention: A Study Based on the Oddball Paradigm. Brain Topogr 2023; 36:671-685. [PMID: 37490130 DOI: 10.1007/s10548-023-00990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
The impact of binaural beats (BBs) on human cognition and behavior remains and various methods have been used to measure their effect, including neurophysiological, psychometric, and human performance evaluations. The few approaches where the level of neural synchronicity and connectivity were measured by neuroimaging techniques have only been undertaken in spontaneous mode. The present research proposes an approach based on the oddball paradigm to study BB effect by estimating the level of attention induced by BBs. Evoked activity of 25 young adults between 19 and 24 years old with no hearing impairments nor clinical neurological history were analyzed. The experiment was conducted in two different sessions of 24.5 min. The first part consisted of 20-min BB stimulation in either theta (BBθ) or beta (BBβ). After the BB stimulation, an oddball paradigm was applied in each BB condition to assess the attentional effect induced by BBs. Attention enhancement is expected for BBβ with respect to BBθ. Target event related potentials (ERPs) were mainly analyzed in the time and time-frequency domains. The frequency analysis was based on continuous wavelet transform (CWT), event-related spectral perturbation (ERSP), and inter-trial phase coherence (ITPC). The study revealed that the P300 component was not significantly different between conditions (BBθ vs. BBβ). However, the target grand average ERP in BBθ condition was mainly composed of 8 Hz-frequency components, appearing before 400 ms post-stimulus, and mainly on the centro-parietal regions. In contrast, the target grand average ERP in BBβ condition was mainly composed of frequency components below 6 Hz, mainly appearing at 400 ms post-stimulus on the parieto-occipital regions. Furthermore, ERPs in the BBθ condition were more phase locked than the BBβ condition.
Collapse
Affiliation(s)
- Luis Kevin Cepeda-Zapata
- Tecnológico de Monterrey, School of Engineering and Sciences Monterrey, Av. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, NL, Mexico
| | - César E Corona-González
- Tecnológico de Monterrey, School of Engineering and Sciences Monterrey, Av. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, NL, Mexico
| | - Luz María Alonso-Valerdi
- Tecnológico de Monterrey, School of Engineering and Sciences Monterrey, Av. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, NL, Mexico
| | - David I Ibarra-Zarate
- Tecnológico de Monterrey, School of Engineering and Sciences Monterrey, Av. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, NL, Mexico.
| |
Collapse
|
10
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
11
|
Gupta D, Du X, Summerfelt A, Hong LE, Choa FS. Brain Connectivity Signature Extractions from TMS Invoked EEGs. SENSORS (BASEL, SWITZERLAND) 2023; 23:4078. [PMID: 37112420 PMCID: PMC10146617 DOI: 10.3390/s23084078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
(1) Background: The correlations between brain connectivity abnormality and psychiatric disorders have been continuously investigated and progressively recognized. Brain connectivity signatures are becoming exceedingly useful for identifying patients, monitoring mental health disorders, and treatment. By using electroencephalography (EEG)-based cortical source localization along with energy landscape analysis techniques, we can statistically analyze transcranial magnetic stimulation (TMS)-invoked EEG signals, for obtaining connectivity among different brain regions at a high spatiotemporal resolution. (2) Methods: In this study, we analyze EEG-based source localized alpha wave activity in response to TMS administered to three locations, namely, the left motor cortex (49 subjects), left prefrontal cortex (27 subjects), and the posterior cerebellum, or vermis (27 subjects) by using energy landscape analysis techniques to uncover connectivity signatures. We then perform two sample t-tests and use the (5 × 10-5) Bonferroni corrected p-valued cases for reporting six reliably stable signatures. (3) Results: Vermis stimulation invoked the highest number of connectivity signatures and the left motor cortex stimulation invoked a sensorimotor network state. In total, six out of 29 reliable, stable connectivity signatures are found and discussed. (4) Conclusions: We extend previous findings to localized cortical connectivity signatures for medical applications that serve as a baseline for future dense electrode studies.
Collapse
Affiliation(s)
- Deepa Gupta
- Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Fow-Sen Choa
- Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA
| |
Collapse
|
12
|
Mosayebi-Samani M, Agboada D, Mutanen TP, Haueisen J, Kuo MF, Nitsche MA. Transferability of cathodal tDCS effects from the primary motor to the prefrontal cortex: A multimodal TMS-EEG study. Brain Stimul 2023; 16:515-539. [PMID: 36828302 DOI: 10.1016/j.brs.2023.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Desmond Agboada
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Psychology, Federal Armed Forces University Munich, Neubiberg, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076, Aalto, Espoo, Finland
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany.
| |
Collapse
|
13
|
Gassmann L, Gordon PC, Ziemann U. Assessing effective connectivity of the cerebellum with cerebral cortex using TMS-EEG. Brain Stimul 2022; 15:1354-1369. [PMID: 36180039 DOI: 10.1016/j.brs.2022.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebellum provides important input to the cerebral cortex but its assessment is difficult. Cerebellar brain inhibition tested by paired-coil transcranial magnetic stimulation (TMS) is limited to the motor cortex. Here we sought to measure responses to cerebellar TMS (cbTMS) throughout the cerebral cortex using electroencephalography (EEG). METHODS Single-pulse TMS was applied with an induced upward current to the right cerebellar hemisphere in 46 healthy volunteers while recording EEG. Multiple control conditions, including TMS of right occipital cortex, cbTMS with induced downward current, and a sham condition modified specifically for cbTMS were tested to provide evidence for the specificity of the EEG responses evoked by cbTMS with an upward induced current. RESULTS Distinct EEG response components could be specifically attributed to cbTMS, namely a left-hemispheric prefrontal positive deflection 25 ms after cbTMS, and a subsequent left-hemispheric parietal negative deflection peaking at 45 ms. In the time-frequency-response analysis, cbTMS induced a left-hemispheric prefrontal power increase in the high-beta frequency band. These responses were not seen in the control and sham conditions. CONCLUSIONS The EEG responses observed in this highly controlled experimental design may cautiously be attributed to reflect specific signatures of the activation of the cerebello-dentato-thalamo-cortical pathway by cbTMS. Therefore, these responses may provide biomarkers for assessing the integrity of this pathway, a proposition that will need further testing in clinical populations.
Collapse
Affiliation(s)
- Lukas Gassmann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro Caldana Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
14
|
Takano M, Wada M, Zomorrodi R, Taniguchi K, Li X, Honda S, Tobari Y, Mimura Y, Nakajima S, Kitahata R, Mimura M, Daskalakis ZJ, Blumberger DM, Noda Y. Investigation of Spatiotemporal Profiles of Single-Pulse TMS-Evoked Potentials with Active Stimulation Compared with a Novel Sham Condition. BIOSENSORS 2022; 12:814. [PMID: 36290951 PMCID: PMC9599895 DOI: 10.3390/bios12100814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Identifying genuine cortical stimulation-elicited electroencephalography (EEG) is crucial for improving the validity and reliability of neurophysiology using transcranial magnetic stimulation (TMS) combined with EEG. In this study, we evaluated the spatiotemporal profiles of single-pulse TMS-elicited EEG response administered to the left dorsal prefrontal cortex (DLPFC) in 28 healthy participants, employing active and sham stimulation conditions. We hypothesized that the early component of TEP would be activated in active stimulation compared with sham stimulation. We specifically analyzed the (1) stimulus response, (2) frequency modulation, and (3) phase synchronization of TMS-EEG data at the sensor level and the source level. Compared with the sham condition, the active condition induced a significant increase in TMS-elicited EEG power in the 30-60 ms time interval in the stimulation area at the sensor level. Furthermore, in the source-based analysis, the active condition induced significant increases in TMS-elicited response in the 30-60 ms compared with the sham condition. Collectively, we found that the active condition could specifically activate the early component of TEP compared with the sham condition. Thus, the TMS-EEG method that was applied to the DLPFC could detect the genuine neurophysiological cortical responses by properly handling potential confounding factors such as indirect response noises.
Collapse
Affiliation(s)
- Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
- Teijin Pharma Limited, Tokyo 191-8512, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Xuemei Li
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Health, University of California San Diego, San Diego, CA 92161, USA
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Rosenbrock H, Dorner-Ciossek C, Giovannini R, Schmid B, Schuelert N. Effects of the Glycine Transporter-1 Inhibitor Iclepertin (BI 425809) on Sensory Processing, Neural Network Function, and Cognition in Animal Models Related to Schizophrenia. J Pharmacol Exp Ther 2022; 382:223-232. [PMID: 35661632 DOI: 10.1124/jpet.121.001071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunction leading to neural network dysfunction is thought to play an important role in the pathophysiology of cognitive impairment associated with schizophrenia (CIAS). Increasing extracellular concentrations of the NMDA receptor co-agonist glycine through inhibition of glycine transporter-1 (GlyT1) has the potential to treat CIAS by improving cortical network function through enhanced glutamatergic signaling. Indeed, the novel GlyT1 inhibitor iclepertin (BI 425809) improved cognition in a recent clinical study in patients with schizophrenia. The present study tested the ability of iclepertin to reverse deficits in auditory sensory processing and cortical network function induced by the uncompetetive NMDA receptor antagonist, MK-801, using electroencephalography (EEG) to measure auditory event-related potentials (AERPs) and 40 Hz auditory steady-state response (ASSR). In addition, improvements in memory performance with iclepertin were evaluated using the T-maze spontaneous alternation test in MK-801-treated mice and the social recognition test in naïve rats. Iclepertin reversed MK-801-induced deficits in the AERP readouts N1 amplitude and N1 gating, as well as reversing deficits in 40 Hz ASSR power and intertrial coherence. Additionally, iclepertin significantly attenuated an MK-801-induced increase in basal gamma power. Furthermore, iclepertin reversed MK-801-induced working memory deficits in mice and improved social recognition memory performance in rats. Overall, this study demonstrates that inhibition of GlyT1 is sufficient to attenuate MK-801-induced deficits in translatable EEG parameters relevant to schizophrenia. Moreover, iclepertin showed memory-enhancing effects in rodent cognition tasks, further demonstrating the potential for GlyT1 inhibition to treat CIAS. SIGNIFICANCE STATEMENT: Despite the significant patient burden caused by cognitive impairment associated with schizophrenia, there are currently no approved pharmacotherapies. In this preclinical study, the novel glycine transporter inhibitor iclepertin (BI 425809) reversed sensory processing deficits and neural network dysfunction evoked by inhibition of N-methyl-D-aspartate receptors and enhanced working memory performance and social recognition in rodents. These findings support previous clinical evidence for the procognitive effects of iclepertin.
Collapse
Affiliation(s)
- Holger Rosenbrock
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Riccardo Giovannini
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernhard Schmid
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Niklas Schuelert
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
16
|
Rostami M, Zomorrodi R, Rostami R, Hosseinzadeh GA. Impact of methodological variability on EEG responses evoked by transcranial magnetic stimulation: a meta-analysis. Clin Neurophysiol 2022; 142:154-180. [DOI: 10.1016/j.clinph.2022.07.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
17
|
Sasaki R, Hand BJ, Liao WY, Rogasch NC, Fernandez L, Semmler JG, Opie GM. Utilising TMS-EEG to Assess the Response to Cerebellar-Brain Inhibition. CEREBELLUM (LONDON, ENGLAND) 2022:10.1007/s12311-022-01419-y. [PMID: 35661100 DOI: 10.1007/s12311-022-01419-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cerebellar-brain inhibition (CBI) is a transcranial magnetic stimulation (TMS) paradigm indexing excitability of cerebellar projections to motor cortex (M1). Stimulation involved with CBI is often considered to be uncomfortable, and alternative ways to index connectivity between cerebellum and the cortex would be valuable. We therefore sought to assess the utility of electroencephalography in conjunction with TMS (combined TMS-EEG) to record the response to CBI. A total of 33 volunteers (25.7 ± 4.9 years, 20 females) participated across three experiments. These investigated EEG responses to CBI induced with a figure-of-eight (F8; experiment 1) or double cone (DC; experiment 2) conditioning coil over cerebellum, in addition to multisensory sham stimulation (experiment 3). Both F8 and DC coils suppressed early TMS-evoked EEG potentials (TEPs) produced by TMS to M1 (P < 0.05). Furthermore, the TEP produced by CBI stimulation was related to the motor inhibitory response to CBI recorded in a hand muscle (P < 0.05), but only when using the DC coil. Multisensory sham stimulation failed to modify the M1 TEP. Cerebellar conditioning produced changes in the M1 TEP that were not apparent following sham stimulation, and that were related to the motor inhibitory effects of CBI. Our findings therefore suggest that it is possible to index the response to CBI using TMS-EEG. In addition, while both F8 and DC coils appear to recruit cerebellar projections, the nature of these may be different.
Collapse
Affiliation(s)
- R Sasaki
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - B J Hand
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - W Y Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - N C Rogasch
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - L Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - J G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - G M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
18
|
Identifying novel biomarkers with TMS-EEG - Methodological possibilities and challenges. J Neurosci Methods 2022; 377:109631. [PMID: 35623474 DOI: 10.1016/j.jneumeth.2022.109631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/09/2022] [Accepted: 05/21/2022] [Indexed: 12/17/2022]
Abstract
Biomarkers are essential for understanding the underlying pathologies in brain disorders and for developing effective treatments. Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an emerging neurophysiological tool that can be used for biomarker development. This method can identify biomarkers associated with the function and dynamics of the inhibitory and excitatory neurotransmitter systems and effective connectivity between brain areas. In this review, we outline the current state of the TMS-EEG biomarker field by summarizing the existing protocols and the possibilities and challenges associated with this methodology.
Collapse
|
19
|
Hoy KE, Emonson MRL, Bailey NW, Humble G, Coyle H, Rogers C, Fitzgerald PB. Investigating Neurophysiological Markers of Symptom Severity in Alzheimer's Disease. J Alzheimers Dis 2021; 85:309-321. [PMID: 34806601 DOI: 10.3233/jad-210401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive decline in cognitive functioning for which there is a stark lack of effective treatments. Investigating the neurophysiological markers of symptom severity in AD may aid in the identification of alternative treatment targets. OBJECTIVE In the current study, we used a multimodal approach to investigate the association between functional connectivity (specifically between scalp electrodes placed over frontal and parietal regions) and symptom severity in AD, and to explore the relationship between connectivity and cortical excitability. METHODS 40 people with AD (25 mild severity, 15 moderate severity) underwent neurobiological assessment (resting state electroencephalography (EEG) and prefrontal transcranial magnetic stimulation (TMS) with EEG) and cognitive assessment. Neurobiological outcomes were resting state functional connectivity and TMS-evoked potentials. Cognitive outcomes were scores on the Alzheimer's Disease Assessment Scale-Cognitive Subscale, Mini-Mental Status Examination, and a measure of episodic verbal learning. RESULTS Greater contralateral functional theta connectivity between frontal scalp electrodes and parietal scalp electrodes was associated with poorer cognitive performance. In addition, significant correlations were seen between the contralateral theta connectivity and the N100 and P60 TMS-evoked potentials measured from electrodes over the left dorsolateral prefrontal cortex. CONCLUSION Together these findings provide initial support for the use of a multimodal neurophysiological approaches to investigate potential therapeutic targets in AD. Suggestions for future research are discussed.
Collapse
Affiliation(s)
- Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Melanie R L Emonson
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Neil W Bailey
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Gregory Humble
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Hannah Coyle
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Caitlyn Rogers
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth Healthcare and Monash University Department of Psychiatry, Camberwell, Victoria, Australia
| |
Collapse
|
20
|
Gordon PC, Jovellar DB, Song Y, Zrenner C, Belardinelli P, Siebner HR, Ziemann U. Recording brain responses to TMS of primary motor cortex by EEG - utility of an optimized sham procedure. Neuroimage 2021; 245:118708. [PMID: 34743050 PMCID: PMC8752966 DOI: 10.1016/j.neuroimage.2021.118708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Optimized sham TMS-EEG is introduced and tested. Sham combined auditory and supramaximal electrical somatosensory stimulation. Subjects reported equal sensory perception during sham and real TMS. Subtraction revealed evoked EEG potentials and beta-band power specific to real TMS. The optimized sham procedure is relevant in research and therapeutic settings.
Introduction Electroencephalography (EEG) is increasingly used to investigate brain responses to transcranial magnetic stimulation (TMS). A relevant issue is that TMS is associated with considerable auditory and somatosensory stimulation, causing peripherally evoked potentials (PEPs) in the EEG, which contaminate the direct cortical responses to TMS (TEPs). All previous attempts to control for PEPs suffer from significant limitations. Objective/Hypothesis To design an optimized sham procedure to control all sensory input generated by subthreshold real TMS targeting the hand area of the primary motor cortex (M1), enabling reliable separation of TEPs from PEPs. Methods In 23 healthy (16 female) subjects, we recorded EEG activity evoked by an optimized sham TMS condition which masks and matches auditory and somatosensory co-stimulation during the real TMS condition: auditory control was achieved by noise masking and by using a second TMS coil that was placed on top of the real TMS coil and produced a calibrated sound pressure level. Somatosensory control was obtained by electric stimulation (ES) of the scalp with intensities sufficient to saturate somatosensory input. ES was applied in both the sham and real TMS conditions. Perception of auditory and somatosensory inputs in the sham and real TMS conditions were compared by psychophysical testing. Transcranially evoked EEG signal changes were identified by subtraction of EEG activity in the sham condition from EEG activity in the real TMS condition. Results Perception of auditory and somatosensory inputs in the sham vs. real TMS conditions was comparable. Both sham and real TMS evoked a series of similar EEG signal deflections and induced broadband power increase in oscillatory activity. Notably, the present procedure revealed EEG potentials and a transient increase in beta band power at the site of stimulation that were only present in the real TMS condition. Discussion The results validate the effectiveness of our optimized sham approach. Despite the presence of typical responses attributable to sensory input, the procedure provided evidence for direct cortical activation by subthreshold TMS of M1. The findings are relevant for future TMS-EEG experiments that aim at measuring regional brain target engagement controlled by an optimized sham procedure.
Collapse
Affiliation(s)
- Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - D Blair Jovellar
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - YuFei Song
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
21
|
Development of an Advanced Sham Coil for Transcranial Magnetic Stimulation and Examination of Its Specifications. J Pers Med 2021; 11:jpm11111058. [PMID: 34834410 PMCID: PMC8617996 DOI: 10.3390/jpm11111058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) neurophysiology has been widely applied worldwide, but it is often contaminated by confounders other than cortical stimulus-evoked activities. Although advanced sham coils that elaborately mimic active stimulation have recently been developed, their performance is not examined in detail. Developing such sham coils is crucial to improve the accuracy of TMS neurophysiology. Herein, we examined the specifications of the sham coil by comparison with the active coil. The magnetic flux and click sound pressure changes were measured when the stimulus intensity was varied from 10% to 100% maximum stimulator output (MSO), and the changes in coil surface temperature over time with continuous stimulation at 50% MSO for each coil. The magnetic flux change at the center of the coil showed a peak of 12.51 (kT/s) for the active coil, whereas it was 0.41 (kT/s) for the sham coil. Although both coils showed a linear change in magnetic flux as the stimulus intensity increased, due to the difference in coil winding structure, the sham coil took less than half the time to overheat and had 5 dB louder coil click sounds than the active coil. The sham coil showed a sufficiently small flux change at the center of the coil, but the flux change from the periphery of the coil was comparable to that of the active coil. Future use of high-quality sham coil will extend our understanding of the TMS neurophysiology of the cortex at the stimulation site.
Collapse
|
22
|
Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Rajji TK, Chen R, Voineskos D, Daskalakis AA, Blumberger DM, Daskalakis ZJ. Differentiating transcranial magnetic stimulation cortical and auditory responses via single pulse and paired pulse protocols: A TMS-EEG study. Clin Neurophysiol 2021; 132:1850-1858. [PMID: 34147010 DOI: 10.1016/j.clinph.2021.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE We measured the neurophysiological responses of both active and sham transcranial magnetic stimulation (TMS) for both single pulse (SP) and paired pulse (PP; long interval cortical inhibition (LICI)) paradigms using TMS-EEG (electroencephalography). METHODS Nineteen healthy subjects received active and sham (coil 90° tilted and touching the scalp) SP and PP TMS over the left dorsolateral prefrontal cortex (DLPFC). We measured excitability through SP TMS and inhibition (i.e., cortical inhibition (CI)) through PP TMS. RESULTS Cortical excitability indexed by area under the curve (AUC(25-275ms)) was significantly higher in the active compared to sham stimulation (F(1,18) = 43.737, p < 0.001, η2 = 0.708). Moreover, the amplitude of N100-P200 complex was significantly larger (F(1,18) = 9.118, p < 0.01, η2 = 0.336) with active stimulation (10.38 ± 9.576 µV) compared to sham (4.295 ± 2.323 µV). Significant interaction effects were also observed between active and sham stimulation for both the SP and PP (i.e., LICI) cortical responses. Finally, only active stimulation (CI = 0.64 ± 0.23, p < 0.001) resulted in significant cortical inhibition. CONCLUSION The significant differences between active and sham stimulation in both excitatory and inhibitory neurophysiological responses showed that active stimulation elicits responses from the cortex that are different from the non-specific effects of sham stimulation. SIGNIFICANCE Our study reaffirms that TMS-EEG represents an effective tool to evaluate cortical neurophysiology with high fidelity.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anastasios A Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Fernandez L, Biabani M, Do M, Opie GM, Hill AT, Barham MP, Teo WP, Byrne LK, Rogasch NC, Enticott PG. Assessing cerebellar-cortical connectivity using concurrent TMS-EEG: a feasibility study. J Neurophysiol 2021; 125:1768-1787. [PMID: 33788622 DOI: 10.1152/jn.00617.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Combined single-pulse transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been used to probe the features of local networks in the cerebral cortex. Here, we investigated whether we can use this approach to explore long-range connections between the cerebellum and cerebral cortex. Ten healthy adults received single-pulse suprathreshold TMS to the cerebellum and an occipital/parietal control site with double-cone and figure-of-eight coils while cerebral activity was recorded. A multisensory electrical control condition was used to simulate the sensation of the double-cone coil at the cerebellar site. Two cleaning pipelines were compared, and the spatiotemporal relationships of the EEG output between conditions were examined at sensor and source levels. Cerebellar stimulation with the double-cone coil resulted in large artifact in the EEG trace. The addition of SOUND filtering to the cleaning pipeline improved the signal such that further analyses could be undertaken. The cortical potentials evoked by the active TMS conditions showed strong relationships with the responses to the multisensory control condition after ∼50 ms. A distinct parietal component at ∼42 ms was found following cerebellar double-cone stimulation. Although evoked potentials differed across all conditions at early latencies, it is unclear as to whether these represented TMS-related network activation of the cerebellarthalamocortical tract, or whether components were dominated by sensory contamination and/or coil-driven artifact. This study highlights the need for caution when interpreting outcomes from cerebellar TMS-EEG studies.NEW & NOTEWORTHY This is the first study to systematically assess the feasibility of obtaining TMS-evoked potentials from cerebellar stimulation with concurrent EEG. An innovative control condition using electrical stimulation was modified to mimic the sensory aspects of cerebellar stimulation with a double-cone coil, and a state-of-the art cleaning pipeline was trialled. The extent of artifact contamination in signals from stimulation of a cerebellar and an occipital/parietal control site using two TMS coil types was highlighted.
Collapse
Affiliation(s)
- Lara Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| | - Mana Biabani
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| | - George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| | - Michael P Barham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| | - Wei-Peng Teo
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technical University, Singapore, 637616
| | - Linda K Byrne
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| | - Nigel C Rogasch
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Victoria, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Victoria, Australia
| |
Collapse
|
24
|
Jarczok TA, Roebruck F, Pokorny L, Biermann L, Roessner V, Klein C, Bender S. Single-Pulse TMS to the Temporo-Occipital and Dorsolateral Prefrontal Cortex Evokes Lateralized Long Latency EEG Responses at the Stimulation Site. Front Neurosci 2021; 15:616667. [PMID: 33790732 PMCID: PMC8006291 DOI: 10.3389/fnins.2021.616667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS)–evoked potentials (TEPs) allow for probing cortical functions in health and pathology. However, there is uncertainty whether long-latency TMS-evoked potentials reflect functioning of the targeted cortical area. It has been suggested that components such as the TMS-evoked N100 are stereotypical and related to nonspecific sensory processes rather than transcranial effects of the changing magnetic field. In contrast, TEPs that vary according to the targeted brain region and are systematically lateralized toward the stimulated hemisphere can be considered to reflect activity in the stimulated brain region resulting from transcranial electromagnetic induction. Methods TMS with concurrent 64-channel electroencephalography (EEG) was sequentially performed in homologous areas of both hemispheres. One sample of healthy adults received TMS to the dorsolateral prefrontal cortex; another sample received TMS to the temporo-occipital cortex. We analyzed late negative TEP deflections corresponding to the N100 component in motor cortex stimulation. Results TEP topography varied according to the stimulation target site. Long-latency negative TEP deflections were systematically lateralized (higher in ipsilateral compared to contralateral electrodes) in electrodes over the stimulated brain region. A calculation that removes evoked components that are not systematically lateralized relative to the stimulated hemisphere revealed negative maxima located around the respective target sites. Conclusion TEPs contain long-latency negative components that are lateralized toward the stimulated hemisphere and have their topographic maxima at the respective stimulation sites. They can be differentiated from co-occurring components that are invariable across different stimulation sites (probably reflecting coactivation of peripheral sensory afferences) according to their spatiotemporal patterns. Lateralized long-latency TEP components located at the stimulation site likely reflect activity evoked in the targeted cortex region by direct transcranial effects and are therefore suitable for assessing cortical functions.
Collapse
Affiliation(s)
- Tomasz A Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friederike Roebruck
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Clinic for Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Roos D, Biermann L, Jarczok TA, Bender S. Local Differences in Cortical Excitability - A Systematic Mapping Study of the TMS-Evoked N100 Component. Front Neurosci 2021; 15:623692. [PMID: 33732105 PMCID: PMC7959732 DOI: 10.3389/fnins.2021.623692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) with simultaneous electroencephalography applied to the primary motor cortex provides two parameters for cortical excitability: motor evoked potentials (MEPs) and TMS-evoked potentials (TEPs). This study aimed to evaluate the effects of systematic coil shifts on both the TEP N100 component and MEPs in addition to the relationship between both parameters. In 12 healthy adults, the center of a standardized grid was fixed above the hot spot of the target muscle of the left primary motor cortex. Twelve additional positions were arranged in a quadratic grid with positions between 5 and 10 mm from the hot spot. At each of the 13 positions, TMS single pulses were applied. The topographical maximum of the resulting N100 was located ipsilateral and slightly posterior to the stimulation site. A source analysis revealed an equivalent dipole localized more deeply than standard motor cortex coordinates that could not be explained by a single seeded primary motor cortex dipole. The N100 topography might not only reflect primary motor cortex activation, but also sum activation of the surrounding cortex. N100 amplitude and latency decreased significantly during stimulation anterior-medial to the hot spot although MEP amplitudes were smaller at all other stimulation sites. Therefore, N100 amplitudes might be suitable for detecting differences in local cortical excitability. The N100 topography, with its maximum located posterior to the stimulation site, possibly depends on both anatomical characteristics of the stimulated cortex and differences in local excitability of surrounding cortical areas. The less excitable anterior cortex might contribute to a more posterior maximum. There was no correlation between N100 and MEP amplitudes, but a single-trial analysis revealed a trend toward larger N100 amplitudes in trials with larger MEPs. Thus, functionally efficient cortical excitation might increase the probability of higher N100 amplitudes, but TEPs are also generated in the absence of MEPs.
Collapse
Affiliation(s)
- Daniela Roos
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tomasz A Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Meekings S, Scott SK. Error in the Superior Temporal Gyrus? A Systematic Review and Activation Likelihood Estimation Meta-Analysis of Speech Production Studies. J Cogn Neurosci 2020; 33:422-444. [PMID: 33326327 DOI: 10.1162/jocn_a_01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evidence for perceptual processing in models of speech production is often drawn from investigations in which the sound of a talker's voice is altered in real time to induce "errors." Methods of acoustic manipulation vary but are assumed to engage the same neural network and psychological processes. This paper aims to review fMRI and PET studies of altered auditory feedback and assess the strength of the evidence these studies provide for a speech error correction mechanism. Studies included were functional neuroimaging studies of speech production in neurotypical adult humans, using natural speech errors or one of three predefined speech manipulation techniques (frequency altered feedback, delayed auditory feedback, and masked auditory feedback). Seventeen studies met the inclusion criteria. In a systematic review, we evaluated whether each study (1) used an ecologically valid speech production task, (2) controlled for auditory activation caused by hearing the perturbation, (3) statistically controlled for multiple comparisons, and (4) measured behavioral compensation correlating with perturbation. None of the studies met all four criteria. We then conducted an activation likelihood estimation meta-analysis of brain coordinates from 16 studies that reported brain responses to manipulated over unmanipulated speech feedback, using the GingerALE toolbox. These foci clustered in bilateral superior temporal gyri, anterior to cortical fields typically linked to error correction. Within the limits of our analysis, we conclude that existing neuroimaging evidence is insufficient to determine whether error monitoring occurs in the posterior superior temporal gyrus regions proposed by models of speech production.
Collapse
|
27
|
Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation-a Systematic Review of Combined TMS and EEG Studies. THE CEREBELLUM 2020; 19:309-335. [PMID: 31907864 DOI: 10.1007/s12311-019-01093-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.
Collapse
|
28
|
Boroda E, Sponheim SR, Fiecas M, Lim KO. Transcranial direct current stimulation (tDCS) elicits stimulus-specific enhancement of cortical plasticity. Neuroimage 2020; 211:116598. [DOI: 10.1016/j.neuroimage.2020.116598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
|
29
|
Rogasch NC, Zipser C, Darmani G, Mutanen TP, Biabani M, Zrenner C, Desideri D, Belardinelli P, Müller-Dahlhaus F, Ziemann U. The effects of NMDA receptor blockade on TMS-evoked EEG potentials from prefrontal and parietal cortex. Sci Rep 2020; 10:3168. [PMID: 32081901 PMCID: PMC7035341 DOI: 10.1038/s41598-020-59911-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Measuring the brain’s response to transcranial magnetic stimulation (TMS) with electroencephalography (EEG) offers unique insights into the cortical circuits activated following stimulation, particularly in non-motor regions where less is known about TMS physiology. However, the mechanisms underlying TMS-evoked EEG potentials (TEPs) remain largely unknown. We assessed TEP sensitivity to changes in excitatory neurotransmission mediated by n-methyl-d-aspartate (NMDA) receptors following stimulation of non-motor regions. In fourteen male volunteers, resting EEG and TEPs from prefrontal (PFC) and parietal (PAR) cortex were measured before and after administration of either dextromethorphan (NMDA receptor antagonist) or placebo across two sessions in a double-blinded pseudo-randomised crossover design. At baseline, there were amplitude differences between PFC and PAR TEPs across a wide time range (15–250 ms), however the signals were correlated after ~80 ms, suggesting early peaks reflect site-specific activity, whereas late peaks reflect activity patterns less dependent on the stimulated sites. Early TEP peaks were not reliably altered following dextromethorphan compared to placebo, although findings were less clear for later peaks, and low frequency resting oscillations were reduced in power. Our findings suggest that early TEP peaks (<80 ms) from PFC and PAR reflect stimulation site specific activity that is largely insensitive to changes in NMDA receptor-mediated neurotransmission.
Collapse
Affiliation(s)
- Nigel C Rogasch
- Brain, Mind and Society Research Hub, School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia. .,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. .,Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Carl Zipser
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ghazaleh Darmani
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tuomas P Mutanen
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Mana Biabani
- Brain, Mind and Society Research Hub, School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Christoph Zrenner
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Debora Desideri
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Gault JM, Thompson JA, Maharajh K, Hosokawa P, Stevens KE, Olincy A, Liedtke EI, Ojemann A, Ojemann S, Abosch A. Striatal and Thalamic Auditory Response During Deep Brain Stimulation for Essential Tremor: Implications for Psychosis. Neuromodulation 2020; 23:478-488. [PMID: 32022409 DOI: 10.1111/ner.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The P50, a positive auditory-evoked potential occurring 50 msec after an auditory click, has been characterized extensively with electroencephalography (EEG) to detect aberrant auditory electrophysiology in disorders like schizophrenia (SZ) where 61-74% have an auditory gating deficit. The P50 response occurs in primary auditory cortex and several thalamocortical regions. In rodents, the gated P50 response has been identified in the reticular thalamic nucleus (RT)-a deep brain structure traversed during deep brain stimulation (DBS) targeting of the ventral intermediate nucleus (VIM) of the thalamus to treat essential tremor (ET) allowing for interspecies comparison. The goal was to utilize the unique opportunity provided by DBS surgery for ET to map the P50 response in multiple deep brain structures in order to determine the utility of intraoperative P50 detection for facilitating DBS targeting of auditory responsive subterritories. MATERIALS AND METHODS We developed a method to assess P50 response intraoperatively with local field potentials (LFP) using microelectrode recording during routine clinical electrophysiologic mapping for awake DBS surgery in seven ET patients. Recording sites were mapped into a common stereotactic space. RESULTS Forty significant P50 responses of 155 recordings mapped to the ventral thalamus, RT and CN head/body interface at similar rates of 22.7-26.7%. P50 response exhibited anatomic specificity based on distinct positions of centroids of positive and negative responses within brain regions and the fact that P50 response was not identified in the recordings from either the internal capsule or the dorsal thalamus. CONCLUSIONS Detection of P50 response intraoperatively may guide DBS targeting RT and subterritories within CN head/body interface-DBS targets with the potential to treat psychosis and shown to modulate schizophrenia-like aberrancies in mouse models.
Collapse
Affiliation(s)
- Judith M Gault
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Keeran Maharajh
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Patrick Hosokawa
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Karen E Stevens
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Erin I Liedtke
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Alex Ojemann
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.,Department of Neurology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
31
|
Freedberg M, Reeves JA, Hussain SJ, Zaghloul KA, Wassermann EM. Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric. PLoS One 2020; 15:e0216185. [PMID: 31929531 PMCID: PMC6957143 DOI: 10.1371/journal.pone.0216185] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022] Open
Abstract
The ability to interpret transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) is limited by artifacts, such as auditory evoked responses produced by discharge of the TMS coil. TEPs generated from direct cortical stimulation should vary in their topographical activity pattern according to stimulation site and differ from responses to sham stimulation. Responses that do not show these effects are likely to be artifactual. In 20 healthy volunteers, we delivered active and sham TMS to the right prefrontal, left primary motor, and left posterior parietal cortex and compared the waveform similarity of TEPs between stimulation sites and active and sham TMS using a cosine similarity-based analysis method. We identified epochs after the stimulus when the spatial pattern of TMS-evoked activation showed greater than random similarity between stimulation sites and sham vs. active TMS, indicating the presence of a dominant artifact. To do this, we binarized the derivatives of the TEPs recorded from 30 EEG channels and calculated cosine similarity between conditions at each time point with millisecond resolution. Only TEP components occurring before approximately 80 ms differed across stimulation sites and between active and sham, indicating site and condition-specific responses. We therefore conclude that, in the absence of noise masking or other measures to decrease neural artifact, TEP components before about 80 ms can be safely interpreted as stimulation location-specific responses to TMS, but components beyond this latency should be interpreted with caution due to high similarity in their topographical activity pattern.
Collapse
Affiliation(s)
- Michael Freedberg
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
- * E-mail:
| | - Jack A. Reeves
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Sara J. Hussain
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Kareem A. Zaghloul
- Functional and Restorative Neurosurgery Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| | - Eric M. Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States of America
| |
Collapse
|
32
|
Biabani M, Fornito A, Mutanen TP, Morrow J, Rogasch NC. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul 2019; 12:1537-1552. [DOI: 10.1016/j.brs.2019.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022] Open
|
33
|
Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. Impact of concurrent task performance on transcranial direct current stimulation (tDCS)-Induced changes in cortical physiology and working memory. Cortex 2019; 113:37-57. [DOI: 10.1016/j.cortex.2018.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/09/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
|
34
|
Saari J, Kallioniemi E, Tarvainen M, Julkunen P. Oscillatory TMS-EEG-Responses as a Measure of the Cortical Excitability Threshold. IEEE Trans Neural Syst Rehabil Eng 2019; 26:383-391. [PMID: 29432109 DOI: 10.1109/tnsre.2017.2779135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive tool to perturb brain activity. In TMS studies, the stimulation intensity (SI) is commonly normalized to the resting motor threshold (rMT) that produces muscle responses in 50% of stimulations applied to the motor cortex (M1). Since rMT is influenced by spinal excitability and coil-to-cortex distance, responses recorded from the cortex, instead of a peripheral muscle, could provide a more accurate marker for cortical excitability. Combining TMS with electroencephalography (EEG) enables the measurement of brain-wide cortical reactivity to TMS. We quantified TMS-induced changes in oscillatory power and the phase of EEG with event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). We studied the SI-dependency of ERSP and ITC responses by stimulating the dominant M1 of ten healthy volunteers using single-pulse TMS with 150 pulses at 60%, 80%, 100%, and 120% of rMT. We found SI-dependent ERSP and ITC responses in M1, most notably with the wide-band (8-70 Hz) early ITC responses averaged 20-60 ms after TMS. With approximately linear SI-dependence, the early ITC response was consistent between SIs (intraclass correlation = 0.78, ). Our results reveal the potential of oscillatory EEG responses, in place of rMT, as a measure of the cortical excitability threshold in M1.
Collapse
|
35
|
Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 2018; 185:300-312. [PMID: 30347282 DOI: 10.1016/j.neuroimage.2018.10.052] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) excites populations of neurons in the stimulated cortex, and the resulting activation may spread to connected brain regions. The distributed cortical response can be recorded with electroencephalography (EEG). Since TMS also stimulates peripheral sensory and motor axons and generates a loud "click" sound, the TMS-evoked EEG potentials (TEPs) reflect not only neural activity induced by transcranial neuronal excitation but also neural activity due to somatosensory and auditory processing. In 17 healthy young individuals, we systematically assessed the contribution of multisensory peripheral stimulation to TEPs using a TMS-compatible EEG system. Real TMS was delivered with a figure-of-eight coil over the left para-median posterior parietal cortex or superior frontal gyrus with the coil being oriented perpendicularly or in parallel to the target gyrus. We also recorded the EEG responses evoked by realistic sham stimulation over the posterior parietal and superior frontal cortex, mimicking the auditory and somatosensory sensations evoked by real TMS. We applied state-of-the-art procedures to attenuate somatosensory and auditory confounds during real TMS, including the placement of a foam layer underneath the coil and auditory noise masking. Despite these precautions, the temporal and spatial features of the cortical potentials evoked by real TMS at the prefrontal and parietal site closely resembled the cortical potentials evoked by realistic sham TMS, both for early and late TEP components. Our findings stress the need to include a peripheral multisensory control stimulation in the design of TMS-EEG studies to enable a dissociation between truly transcranial and non-transcranial components of TEPs.
Collapse
Affiliation(s)
- Virginia Conde
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Clinical Neuroscience Laboratory, Institute of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Irina Akopian
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Konrad Stanek
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Guilherme B Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Til Ole Bergmann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Institute for Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark.
| |
Collapse
|
36
|
TMS evoked N100 reflects local GABA and glutamate balance. Brain Stimul 2018; 11:1071-1079. [PMID: 29759942 DOI: 10.1016/j.brs.2018.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 05/02/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Animal studies suggest that synchronized electrical activities in the brain are regulated by the primary inhibitory and excitatory neurotransmitters gamma-aminobutyric acid (GABA) and glutamate, respectively. Identifying direct evidence that this same basic chemical-electrical neuroscience principle operates in the human brains is critical for translation of neuroscience to pathological research. OBJECTIVE/HYPOTHESIS We hypothesize that the background neurochemical concentrations may affect the cortical excitability probed by transcranial magnetic stimulation (TMS). METHODS We used TMS with simultaneous evoked potential recording to probe the cortical excitability and determined how background frontal cortical GABA and glutamate levels measured using magnetic resonance spectroscopy (MRS) modulate frontal electrical activities. RESULTS We found that TMS-evoked N100 reflects a balance between GABA-inhibitory and glutamate-excitatory levels. About 46% of individual variances in frontal N100 can be explained by their glutamate/GABA ratio (r = -0.68, p = 0.001). Both glutamate (r = -0.51, p = 0.019) and GABA (r = 0.55, p = 0.01) significantly contributed to this relationship but in opposite directions. CONCLUSION The current finding encourages additional mechanistic studies to develop TMS evoked N100 as a potential electrophysiological biomarker for translating the known inhibitory GABAergic vs. excitatory glutamatergic chemical-electrical principle from animal brain studies to human brain studies.
Collapse
|
37
|
Association of the N100 TMS-evoked potential with attentional processes: A motor cortex TMS–EEG study. Brain Cogn 2018; 122:9-16. [DOI: 10.1016/j.bandc.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
|
38
|
Kobayashi B, Cook IA, Hunter AM, Minzenberg MJ, Krantz DE, Leuchter AF. Can neurophysiologic measures serve as biomarkers for the efficacy of repetitive transcranial magnetic stimulation treatment of major depressive disorder? Int Rev Psychiatry 2017; 29:98-114. [PMID: 28362541 DOI: 10.1080/09540261.2017.1297697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for Major Depressive Disorder (MDD). There are clinical data that support the efficacy of many different approaches to rTMS treatment, and it remains unclear what combination of stimulation parameters is optimal to relieve depressive symptoms. Because of the costs and complexity of studies that would be necessary to explore and compare the large number of combinations of rTMS treatment parameters, it would be useful to establish reliable surrogate biomarkers of treatment efficacy that could be used to compare different approaches to treatment. This study reviews the evidence that neurophysiologic measures of cortical excitability could be used as biomarkers for screening different rTMS treatment paradigms. It examines evidence that: (1) changes in excitability are related to the mechanism of action of rTMS; (2) rTMS has consistent effects on measures of excitability that could constitute reliable biomarkers; and (3) changes in excitability are related to the outcomes of rTMS treatment of MDD. An increasing body of evidence indicates that these neurophysiologic measures have the potential to serve as reliable biomarkers for screening different approaches to rTMS treatment of MDD.
Collapse
Affiliation(s)
- Brian Kobayashi
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Ian A Cook
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA.,d Department of Bioengineering , University of California Los Angeles , Los Angeles , CA , USA
| | - Aimee M Hunter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Michael J Minzenberg
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - David E Krantz
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| | - Andrew F Leuchter
- a David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,b Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine , University of California Los Angeles , Los Angeles , CA , USA.,c Neuromodulation Division , Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles , Los Angeles , CA , USA
| |
Collapse
|