1
|
Verwey WB. C-SMB 2.0: Integrating over 25 years of motor sequencing research with the Discrete Sequence Production task. Psychon Bull Rev 2024; 31:931-978. [PMID: 37848660 PMCID: PMC11192694 DOI: 10.3758/s13423-023-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/19/2023]
Abstract
An exhaustive review is reported of over 25 years of research with the Discrete Sequence Production (DSP) task as reported in well over 100 articles. In line with the increasing call for theory development, this culminates into proposing the second version of the Cognitive framework of Sequential Motor Behavior (C-SMB 2.0), which brings together known models from cognitive psychology, cognitive neuroscience, and motor learning. This processing framework accounts for the many different behavioral results obtained with the DSP task and unveils important properties of the cognitive system. C-SMB 2.0 assumes that a versatile central processor (CP) develops multimodal, central-symbolic representations of short motor segments by repeatedly storing the elements of these segments in short-term memory (STM). Independently, the repeated processing by modality-specific perceptual and motor processors (PPs and MPs) and by the CP when executing sequences gradually associates successively used representations at each processing level. The high dependency of these representations on active context information allows for the rapid serial activation of the sequence elements as well as for the executive control of tasks as a whole. Speculations are eventually offered as to how the various cognitive processes could plausibly find their neural underpinnings within the intricate networks of the brain.
Collapse
Affiliation(s)
- Willem B Verwey
- Department of Learning, Data-Analytics and Technology, Section Cognition, Data and Education, Faculty of Behavioral, Management and Social sciences, University of Twente, PO Box 217, 7500 AE, Enschede, the Netherlands.
| |
Collapse
|
2
|
Dahm SF, Rieger M. Kinesthetic vs. visual focus: No evidence for effects of practice modality in representation types after action imagery practice and action execution practice. Hum Mov Sci 2023; 92:103154. [PMID: 37844453 PMCID: PMC7615372 DOI: 10.1016/j.humov.2023.103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Action-imagery practice (AIP) is assumed to result in partly different action representations than action-execution practice (AEP). The present study investigated whether focusing on either kinesthetic or visual aspects of a task during practice amplifies or diminishes such differences between AIP and AEP. In ten sessions, four groups, using either AIP or AEP with either kinesthetic or visual focus, practiced a twelve-element sequence in a unimanual serial reaction time task. Tests involved the practice sequence, a mirror sequence, and a different sequence, each performed with the practice and transfer hand. In AIP and AEP, in both hands, reaction times (RTs) were shorter in the practice sequence than in the different sequence, indicating effector-independent visual-spatial sequence representations. Further, RTs were shorter in the practice hand than in the transfer hand in the practice sequence (but not in the different sequence), indicating effector-dependent representations in AEP and AIP. Although the representation types did not differ, learning effects were stronger in AEP than in AIP. Thus, although to a lower extent than in AEP, effector-dependent representations can be acquired using AIP. Contrary to the expectations, the focus manipulation did not have an impact on the acquired representation types. Hence, modality instructions in AIP may not have such a strong impact as commonly assumed, at least in implicit sequence learning.
Collapse
Affiliation(s)
- Stephan F Dahm
- Universität Innsbruck, Department of Psychology, Innsbruck, Austria.
| | - Martina Rieger
- UMIT TIROL - Private University of Health Sciences and Health Technology, Institute of Psychology, Hall in Tyrol, Austria
| |
Collapse
|
3
|
Dahm SF, Rieger M. Time course of learning sequence representations in action imagery practice. Hum Mov Sci 2023; 87:103050. [PMID: 36549085 PMCID: PMC7614144 DOI: 10.1016/j.humov.2022.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Action imagery practice (AIP) is effective to improve motor performance in a variety of tasks, though it is often less effective than action execution practice (AEP). In sequence learning, AIP and AEP result in the acquisition of effector-independent representations. However, it is unresolved whether effector-dependent representations can be acquired in AIP. In the present study, we investigated the acquisition of effector-independent representations and effector-dependent representations in AEP and AIP in an implicit sequence learning task (a visual serial-reaction-time task, involving a twelve-element sequence). Participants performed six sessions, each starting with tests. A practice sequence, a mirror sequence, and a different sequence were tested with the practice and transfer hand. In the first four sessions, after the tests, two groups performed either AIP (N = 50) or AEP (N = 54). Improvement in the different sequence indicated sequence-unspecific learning in both AEP and AIP. Importantly, reaction times of the practice hand became shorter in the practice sequence than in the other sequences, indicating implicit sequence learning in both, AEP and AIP. This effect was stronger in the practice hand than in the transfer hand, indicating effector-dependent sequence representations in both AEP and AIP. However, effector-dependent sequence representations were stronger in AEP than in AIP. No significant differences between groups were observed in the transfer hand, although effector-independent sequence representations were observed in AEP only. In conclusion, AIP promotes not only sequence-unspecific stimulus-response coupling and anticipations of the subsequent stimuli, but also anticipations of the subsequent responses.
Collapse
Affiliation(s)
- Stephan F. Dahm
- Institute of Psychology, Department of Psychology and Sports Medicine, UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria,Department of Psychology, Faculty of Psychology and Sports Sciences, University of Innsbruck, Austria,Corresponding author at: Division of General Psychology, Department of Psychology, Faculty of Psychology and Sports Sciences, University of Innsbruck, Universitätsstraße 5-7, Room 2S14, 6020 Innsbruck, Austria. (S.F. Dahm)
| | - Martina Rieger
- Institute of Psychology, Department of Psychology and Sports Medicine, UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tyrol, Austria
| |
Collapse
|
4
|
Mencel J, Marusiak J, Jaskólska A, Kamiński Ł, Kurzyński M, Wołczowski A, Jaskólski A, Kisiel-Sajewicz K. Motor imagery training of goal-directed reaching in relation to imagery of reaching and grasping in healthy people. Sci Rep 2022; 12:18610. [PMID: 36329083 PMCID: PMC9633838 DOI: 10.1038/s41598-022-21890-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The study aimed to determine whether four weeks of motor imagery training (MIT) of goal-directed reaching (reaching to grasp task) would affect the cortical activity during motor imagery of reaching (MIR) and grasping (MIG) in the same way. We examined cortical activity regarding event-related potentials (ERPs) in healthy young participants. Our study also evaluated the subjective vividness of the imagery. Furthermore, we aimed to determine the relationship between the subjective assessment of motor imagery (MI) ability to reach and grasp and the cortical activity during those tasks before and after training to understand the underlying neuroplasticity mechanisms. Twenty-seven volunteers participated in MIT of goal-directed reaching and two measurement sessions before and after MIT. During the sessions 128-channel electroencephalography (EEG) was recorded during MIR and MIG. Also, participants assessed the vividness of the MI tasks using a visual analog scale (VAS). The vividness of imagination improved significantly (P < .05) after MIT. A repeated measures ANOVA showed that the task (MIR/MIG) and the location of electrodes had a significant effect on the ERP's amplitude (P < .05). The interaction between the task, location, and session (before/after MIT) also had a significant effect on the ERP's amplitude (P < .05). Finally, the location of electrodes and the interaction between location and session had a significant effect on the ERP's latency (P < .05). We found that MIT influenced the EEG signal associated with reaching differently than grasping. The effect was more pronounced for MIR than for MIG. Correlation analysis showed that changes in the assessed parameters due to MIT reduced the relationship between the subjective evaluation of imagining and the EEG signal. This finding means that the subjective evaluation of imagining cannot be a simple, functional insight into the bioelectrical activity of the cerebral cortex expressed by the ERPs in mental training. The changes we noted in ERPs after MIT may benefit the use of non-invasive EEG in the brain-computer interface (BCI) context.Trial registration: NCT04048083.
Collapse
Affiliation(s)
- Joanna Mencel
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Jarosław Marusiak
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Anna Jaskólska
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Łukasz Kamiński
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Marek Kurzyński
- grid.7005.20000 0000 9805 3178Department of Field Theory, Electronic Circuits and Optoelectronics, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej Wołczowski
- grid.7005.20000 0000 9805 3178Department of Field Theory, Electronic Circuits and Optoelectronics, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Artur Jaskólski
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| | - Katarzyna Kisiel-Sajewicz
- grid.8505.80000 0001 1010 5103Department of Kinesiology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Al. I. J. Paderewskiego 35, budynek P4, 51-612 Wrocław, Poland
| |
Collapse
|
5
|
Event-Related Potentials Analysis of the Effects of Discontinuous Short-Term Fine Motor Imagery on Motor Execution. Motor Control 2022; 26:445-464. [PMID: 35472759 DOI: 10.1123/mc.2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/28/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
In this study, event-related potentials and neurobehavioral measurements were used to investigate the effects of discontinuous short-term fine motor imagery (MI), a paradigm of finger sequential MI training interspersed with no-MI that occurs within 1 hr, on fine finger motor execution. The event-related potentials revealed that there were significant differences in the P300 between the fine MI training and the no-MI training. There were also significant changes in the P200 between fine motor execution of familiar tasks after MI training and fine motor execution of unfamiliar tasks without MI training. Neurobehavioral data revealed that the fine MI enhanced fine motor execution. These findings may suggest that discontinuous short-term fine MI could be useful in improving fine motor skills.
Collapse
|
6
|
Kolářová B, Richards J, Haltmar H, Lippertová K, Connell L, Chohan A. The effect of motor imagery on quality of movement when performing reaching tasks in healthy subjects: A proof of concept. J Bodyw Mov Ther 2022; 29:161-166. [DOI: 10.1016/j.jbmt.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/07/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022]
|
7
|
Sugino H, Ushiyama J. Gymnasts' Ability to Modulate Sensorimotor Rhythms During Kinesthetic Motor Imagery of Sports Non-specific Movements Superior to Non-gymnasts. Front Sports Act Living 2021; 3:757308. [PMID: 34805979 PMCID: PMC8600039 DOI: 10.3389/fspor.2021.757308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
Previous psychological studies using questionnaires have consistently reported that athletes have superior motor imagery ability, both for sports-specific and for sports-non-specific movements. However, regarding motor imagery of sports-non-specific movements, no physiological studies have demonstrated differences in neural activity between athletes and non-athletes. The purpose of this study was to examine the differences in sensorimotor rhythms during kinesthetic motor imagery (KMI) of sports-non-specific movements between gymnasts and non-gymnasts. We selected gymnasts as an example population because they are likely to have particularly superior motor imagery ability due to frequent usage of motor imagery, including KMI as part of daily practice. Healthy young participants (16 gymnasts and 16 non-gymnasts) performed repeated motor execution and KMI of sports-non-specific movements (wrist dorsiflexion and shoulder abduction of the dominant hand). Scalp electroencephalogram (EEG) was recorded over the contralateral sensorimotor cortex. During motor execution and KMI, sensorimotor EEG power is known to decrease in the α- (8–15 Hz) and β-bands (16–35 Hz), referred to as event-related desynchronization (ERD). We calculated the maximal peak of ERD both in the α- (αERDmax) and β-bands (βERDmax) as a measure of changes in corticospinal excitability. αERDmax was significantly greater in gymnasts, who subjectively evaluated their KMI as being more vivid in the psychological questionnaire. On the other hand, βERDmax was greater in gymnasts only for shoulder abduction KMI. These findings suggest gymnasts' signature of flexibly modulating sensorimotor rhythms with no movements, which may be the basis of their superior ability of KMI for sports-non-specific movements.
Collapse
Affiliation(s)
- Hirotaka Sugino
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Junichi Ushiyama
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.,Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Fountouki A, Kotrotsiou S, Paralikas T, Malliarou M, Konstanti Z, Tsioumanis G, Theofanidis D. Professional Mental Rehearsal: the Power of "Imagination" in Nursing Skills Training. Mater Sociomed 2021; 33:174-178. [PMID: 34759773 PMCID: PMC8563057 DOI: 10.5455/msm.2021.33.174-178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mental rehearsal is a form of training used by nurse educators to enhance the performance of clinical skills. The use of imagination may facilitate cognitive and affective modification and subsequently may even reduce extraneous cognitive load. OBJECTIVE The aim of the study was to investigate the efficacy of mental rehearsal in cardiopulmonary resuscitation training of nursing students. METHODS This is a comparative study with a random sample of 52 Nurse-Assistant students who were randomly divided into two groups. A 10-minute educational video on CPR and defibrillation was shown to both groups with the experimental group having additional time to be coached on mental rehearsal. Student performance was subsequently timed and errors/overall performance recorded. Descriptive statistics and Mann-Whitney test was used for group comparisons analysis. RESULTS Students in the control group needed 8.5 minutes on average as compared to 6.2 minutes for the experimental group to complete cardiopulmonary resuscitation training. This equals to a difference of 2.5 minutes faster time for the experimental group (p<0.001). For overall mistakes the mental rehearsal group had 1.3 fewer mistakes on average (p=0.003). In terms of mistakes when executing cardiopulmonary resuscitation training there were 0.9 fewer mistakes in the experimental group (p=0.021). CONCLUSION The use of mental rehearsal might be the first step in improving the teaching of nursing skills. Differences in skill acquisition in favor of mental rehearsal are important, especially when this technique is used in the teaching of life-saving skills such as cardiopulmonary resuscitation and the use of defibrillate.
Collapse
Affiliation(s)
| | | | | | | | - Zoe Konstanti
- Laboratory Teaching Staff, Nursing Department, University of Ioannina, Greece
| | | | | |
Collapse
|
9
|
Verwey WB, Wright DL, Immink MA. A multi-representation approach to the contextual interference effect: effects of sequence length and practice. PSYCHOLOGICAL RESEARCH 2021; 86:1310-1331. [PMID: 34136942 PMCID: PMC9090686 DOI: 10.1007/s00426-021-01543-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/31/2021] [Indexed: 01/04/2023]
Abstract
The present study investigated the long-term benefit of Random-Practice (RP) over Blocked-Practice (BP) within the contextual interference (CI) effect for motor learning. We addressed the extent to which motor sequence length and practice amount factors moderate the CI effect given that previous reports, often in applied research, have reported no long-term advantage from RP. Based on predictions arising from the Cognitive framework of Sequential Motor Behavior (C-SMB) and using the Discrete Sequence Production (DSP) task, two experiments were conducted to compare limited and extended practice amounts of 4- and 7-key sequences under RP and BP schedules. Twenty-four-hour delayed retention performance confirmed the C-SMB prediction that the CI-effect occurs only with short sequences that receive little practice. The benefit of RP with limited practice was associated with overnight motor memory consolidation. Further testing with single-stimulus as well as novel and unstructured (i.e., random) sequences indicated that limited practice under RP schedules enhances both reaction and chunking modes of sequence execution with the latter mode benefitting from the development of implicit and explicit forms of sequence representation. In the case of 7-key sequences, extended practice with RP and BP schedules provided for equivalent development of sequence representations. Higher explicit awareness of sequence structures was associated with faster completion of practiced but also of novel and unstructured sequences.
Collapse
Affiliation(s)
- Willem B Verwey
- Department of Learning, Data-Analytics and Technology Cognition, Data and Education Section, Faculty of Behavioural, Management and Social Sciences, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands. .,Department of Kinesiology, Texas A&M University, College Station, TX, USA.
| | - David L Wright
- Department of Kinesiology, Texas A&M University, College Station, TX, USA
| | - Maarten A Immink
- Sport, Health, Activity, Performance and Exercise Research Centre Flinders University, Adelaide, Australia
| |
Collapse
|
10
|
Mencel J, Jaskólska A, Marusiak J, Kamiński Ł, Kurzyński M, Wołczowski A, Jaskólski A, Kisiel-Sajewicz K. Motor Imagery Training of Reaching-to-Grasp Movement Supplemented by a Virtual Environment in an Individual With Congenital Bilateral Transverse Upper-Limb Deficiency. Front Psychol 2021; 12:638780. [PMID: 33828507 PMCID: PMC8019807 DOI: 10.3389/fpsyg.2021.638780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022] Open
Abstract
This study explored the effect of kinesthetic motor imagery training on reaching-to-grasp movement supplemented by a virtual environment in a patient with congenital bilateral transverse upper-limb deficiency. Based on a theoretical assumption, it is possible to conduct such training in this patient. The aim of this study was to evaluate whether cortical activity related to motor imagery of reaching and motor imagery of grasping of the right upper limb was changed by computer-aided imagery training (CAIT) in a patient who was born without upper limbs compared to a healthy control subject, as characterized by multi-channel electroencephalography (EEG) signals recorded before and 4, 8, and 12 weeks after CAIT. The main task during CAIT was to kinesthetically imagine the execution of reaching-to-grasp movements without any muscle activation, supplemented by computer visualization of movements provided by a special headset. Our experiment showed that CAIT can be conducted in the patient with higher vividness of imagery for reaching than grasping tasks. Our results confirm that CAIT can change brain activation patterns in areas related to motor planning and the execution of reaching and grasping movements, and that the effect was more pronounced in the patient than in the healthy control subject. The results show that CAIT has a different effect on the cortical activity related to the motor imagery of a reaching task than on the cortical activity related to the motor imagery of a grasping task. The change observed in the activation patterns could indicate CAIT-induced neuroplasticity, which could potentially be useful in rehabilitation or brain-computer interface purposes for such patients, especially before and after transplantation. This study was part of a registered experiment (ID: NCT04048083).
Collapse
Affiliation(s)
- Joanna Mencel
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Anna Jaskólska
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Jarosław Marusiak
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Łukasz Kamiński
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Marek Kurzyński
- Department of Systems and Computer Networks, Faculty of Electronics, Wrocław University of Science and Technology, Wrocław, Poland
| | - Andrzej Wołczowski
- Department of Fundamental Cybernetics and Robotics, Institute of Computer Engineering, Control and Robotics, Wrocław University of Science and Technology, Wrocław, Poland
| | - Artur Jaskólski
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Katarzyna Kisiel-Sajewicz
- Department of Kinesiology, Faculty of Physiotherapy, University School of Physical Education in Wrocław, Wrocław, Poland
| |
Collapse
|
11
|
Van der Lubbe RHJ, Sobierajewicz J, Jongsma MLA, Verwey WB, Przekoracka-Krawczyk A. Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence. Int J Psychophysiol 2021; 164:71-86. [PMID: 33647383 DOI: 10.1016/j.ijpsycho.2021.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/23/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Results of several neuroimaging studies support the functional equivalence model, which states that motor imagery (MI) and motor execution (ME) involve the same processes, except for the final execution component. In contrast, the motor-cognitive model implies that MI additionally involves frontal executive control processes. However, according to some authors MI may actually be more comparable to motor preparation (MP). In the current electroencephalographic study, a version of the discrete sequence production paradigm was employed in which human participants initially had to prepare a sequence of five finger movements that subsequently had to be executed, imagined, or withheld. MI, ME, and MP were compared by computing event-related (de)-synchronization in the theta, alpha/mu, and beta bands. Results revealed a major increase in frontal theta power during MI as compared to ME and MP. At the end of the examined intervals, a posterior reduction in alpha power was present during ME and MP, but not during MI. Finally, above sensorimotor areas a decrease in beta power was observed that was most pronounced in the case of ME. The increase of frontal theta activity during MI may reflect increased effort, while the absence of a reduction in posterior alpha power suggests no major involvement of visuospatial attention and/or visual imagery. The present findings favor the motor-cognitive model, as it predicts extra involvement of frontal executive processes during MI.
Collapse
Affiliation(s)
- Rob H J Van der Lubbe
- Cognitive Psychology and Ergonomics, Faculty of Behavior, Management, and Social Sciences, University of Twente, the Netherlands; Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; Laboratory of Vision and Neuroscience, NanoBiomedical Center, Adam Mickiewicz University, Poznań, Poland.
| | - Jagna Sobierajewicz
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; Laboratory of Vision and Neuroscience, NanoBiomedical Center, Adam Mickiewicz University, Poznań, Poland
| | - Marijtje L A Jongsma
- Behavioral Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Willem B Verwey
- Cognitive Psychology and Ergonomics, Faculty of Behavior, Management, and Social Sciences, University of Twente, the Netherlands
| | - Anna Przekoracka-Krawczyk
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland; Laboratory of Vision and Neuroscience, NanoBiomedical Center, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
12
|
Yu Z, Li L, Wang Z, Lv H, Song J. The study of cortical lateralization and motor performance evoked by external visual stimulus during continuous training. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3089735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Cuenca-Martínez F, Suso-Martí L, León-Hernández JV, La Touche R. The Role of Movement Representation Techniques in the Motor Learning Process: A Neurophysiological Hypothesis and a Narrative Review. Brain Sci 2020; 10:brainsci10010027. [PMID: 31906593 PMCID: PMC7016972 DOI: 10.3390/brainsci10010027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 01/27/2023] Open
Abstract
We present a neurophysiological hypothesis for the role of motor imagery (MI) and action observation (AO) training in the motor learning process. The effects of movement representation in the brain and those of the cortical–subcortical networks related to planning, executing, adjusting, and automating real movements share a similar neurophysiological activity. Coupled with the influence of certain variables related to the movement representation process, this neurophysiological activity is a key component of the present hypothesis. These variables can be classified into four domains: physical, cognitive–evaluative, motivational–emotional, and direct-modulation. The neurophysiological activity underlying the creation and consolidation of mnemonic representations of motor gestures as a prerequisite to motor learning might differ between AO and MI. Together with variations in cognitive loads, these differences might explain the differing results in motor learning. The mirror neuron system appears to function more efficiently through AO training than MI, and AO is less demanding in terms of cognitive load than MI. AO might be less susceptible to the influence of variables related to movement representation.
Collapse
Affiliation(s)
- Ferran Cuenca-Martínez
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-740-1980 (ext. 310)
| | - Luis Suso-Martí
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Department of Physiotherapy, Cardenal Herrera University-CEU, CEU Universities, 46115 Valencia, Spain
| | - Jose Vicente León-Hernández
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Roy La Touche
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain; (J.V.L.-H.); (R.L.T.)
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Instituto de Neurociencia y Dolor Craneofacial (INDCRAN), 28008 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28029 Madrid, Spain
| |
Collapse
|
14
|
Christakou A, Vasileiadis G, Kapreli E. Motor imagery as a method of maintaining performance in pianists during forced non-practice: a single case study. Physiother Theory Pract 2019; 37:540-548. [PMID: 31267825 DOI: 10.1080/09593985.2019.1636917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Musicians suffer from upper limb playing-related musculoskeletal disorders that often oblige them to periodic inactivity. Objectives: To assess the effectiveness of motor imagery as a means of practice when the physical piano practice is restricted. Methods: A 17-year-old healthy pianist participated in a single subject case study with a multiple baseline design (ABC design). Performance ability was assessed during a period of the no practice, then a period of performing motor imagery and again during a period of another no practice. Assessments were performed subjectively by a professional piano teacher and objectively by the Synthesia software. Three visual analog scales were used to record stress, fatigue, and general psychological state. The participant's motor imagery ability was recorded by the use of the Movement Imagery Questionnaire. Results: There was a statistically significant reduction in performance after no practice. There was no change in performance during motor imagery intervention. The pianist's scores moderately correlated with the general psychological state. The Synthesia scoring presented high correlations with professional piano teacher scoring. Conclusions: Motor imagery seemed to have a positive effect in maintaining the musician's performance level. Synthesia shows promise as an outcome measure for assessing music performance, although further research is needed.
Collapse
Affiliation(s)
- Anna Christakou
- Physiotherapy Department, University of Western Attica, Athens, Greece, General Hospital of Athens "Euagelismos", Greece
| | | | - Eleni Kapreli
- Physiotherapy Department, TEI of Sterea Ellada, Lamia, Greece
| |
Collapse
|
15
|
Silva LPD, Duarte MPDS, Souza CDCBD, Lins CCDSA, Coriolano MDGWDS, Lins OG. Efeitos da prática mental associada à fisioterapia motora sobre a marcha e o risco de quedas na doença de Parkinson: estudo piloto. FISIOTERAPIA E PESQUISA 2019. [DOI: 10.1590/1809-2950/17012926022019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O objetivo deste estudo piloto, realizado em um hospital universitário de referência em Pernambuco, foi avaliar os efeitos da prática mental associada à fisioterapia motora sobre a marcha e o risco de queda em pessoas com doença de Parkinson. A amostra da pesquisa foi composta por 18 sujeitos, de ambos os sexos, com doença de Parkinson idiopática, divididos em grupo experimental (8 indivíduos) e controle (10 indivíduos). Ambos os grupos realizaram 15 sessões de 40 minutos de fisioterapia motora, duas vezes por semana. No grupo de intervenção, a fisioterapia foi associada a prática mental (15 minutos). Em relação às variáveis de desfecho primário, o tempo de execução do timed up and go e do teste de caminhada de 10 metros reduziu, mas a diferença não foi significativa. Em relação à velocidade, cadência e escore do dynamic gait index, houve aumento após a intervenção no grupo experimental, com diferença significativa (p=0,02). O número de passos foi mantido em ambos os grupos. Os resultados sugerem que a prática mental associada à fisioterapia motora reduz o risco de quedas em comparação com a fisioterapia motora aplicada isoladamente.
Collapse
|
16
|
Malone E. Challenges & Issues: Evidence-Based Clinical Skills Teaching and Learning: What Do We Really Know? JOURNAL OF VETERINARY MEDICAL EDUCATION 2019; 46:379-398. [PMID: 31145646 DOI: 10.3138/jvme.0717-094r1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent programmatic focus on skills development in veterinary medicine means that many programs are devoting increased time to formal clinical skills teaching. This expansion makes it essential that we use the time as effectively as possible. This review examines current practices and veterinary training principles using the broader field of evidence-based motor skills learning as a lens. In many areas, current practices may be hindering learning. Proposed practices include using videos and discussions for pre-laboratory training, focusing on a single complex skill at a time, using more near-peer instructors rather than faculty, including assessments in each teaching or practice session, and encouraging supervised distributed practice by incorporating practice sessions into the formal curriculum. Ensuring mastery of a few core skills rather than exposure to many may be the new goal. Further research is urgently needed on block versus spiral curricula, optimum instructor-to-student ratios, learning and practice schedules, hours required for proficiency, and the benefits of exercise on motor skills learning.
Collapse
|
17
|
Do musicians learn a fine sequential hand motor skill differently than non-musicians? PLoS One 2018; 13:e0207449. [PMID: 30462721 PMCID: PMC6248955 DOI: 10.1371/journal.pone.0207449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/31/2018] [Indexed: 12/19/2022] Open
Abstract
Do professional musicians learn a fine sequential hand motor skill more efficiently than non-musicians? Is this also the case when they perform motor imagery, which implies that they only mentally simulate these movements? Musicians and non-musicians performed a Go/NoGo discrete sequence production (DSP) task, which allows to separate sequence-specific from a-specific learning effects. In this task five stimuli, to be memorized during a preparation interval, signaled a response sequence. In a practice phase, different response sequences had to be either executed, imagined, or inhibited, which was indicated by different response cues. In a test phase, responses were required to familiar (previously executed, imagined, or inhibited) and unfamiliar sequences. In both phases, response times and response accuracy were measured while the electroencephalogram (EEG) was only registered during the practice phase to compare activity between motor imagery, motor execution, and motor inhibition for both groups. Results in the practice phase revealed that musicians learned the response sequences faster and more accurately than non-musicians although no difference in initiation time was found. EEG analyses revealed similar lateralized activity during learning a motor skill for both groups. Our results from the test phase showed better sequence-a-specific learning effects (i.e., faster response times and increased accuracy) for musicians than for non-musicians. Moreover, we revealed that non-musicians benefit more from physical execution while learning a required motor sequence, whereas sequence-specific learning effects due to learning with motor imagery were very similar for musicians and non-musicians.
Collapse
|
18
|
Sobierajewicz J, Jaśkowski W, Van der Lubbe RHJ. Does Transcranial Direct Current Stimulation Affect the Learning of a Fine Sequential Hand Motor Skill with Motor Imagery? J Mot Behav 2018; 51:451-465. [PMID: 30240335 DOI: 10.1080/00222895.2018.1513395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Learning a fine sequential hand motor skill, like playing the piano or learning to type, improves not only due to physical practice, but also due to motor imagery. Previous studies revealed that transcranial direct current stimulation (tDCS) and motor imagery independently affect motor learning. In the present study, we investigated whether tDCS combined with motor imagery above the primary motor cortex influences sequence-specific learning. Four groups of participants were involved: an anodal, cathodal, sham stimulation, and a control group (without stimulation). A modified discrete sequence production (DSP) task was employed: the Go/NoGo DSP task. After a sequence of spatial cues, a response sequence had to be either executed, imagined, or withheld. This task allows to estimate both non-specific learning and sequence-specific learning effects by comparing the execution of unfamiliar sequences, familiar imagined, familiar withheld, and familiar executed sequences in a test phase. Results showed that the effects of anodal tDCS were already developing during the practice phase, while no effects of tDCS on sequence-specific learning were visible during the test phase. Results clearly showed that motor imagery itself influences sequence learning, but we also revealed that tDCS does not increase the influence of motor imagery on sequence learning.
Collapse
Affiliation(s)
- Jagna Sobierajewicz
- a Laboratory of Vision Science and Optometry, Faculty of Physics , Adam Mickiewicz University , Poznan , Poland .,b Vision and Neuroscience Laboratory , NanoBioMedical Centre, Adam Mickiewicz University , Poznan , Poland
| | - Wojciech Jaśkowski
- c Institute of Computing Science, Poznan University of Technology , Poznan , Poland
| | - Rob H J Van der Lubbe
- a Laboratory of Vision Science and Optometry, Faculty of Physics , Adam Mickiewicz University , Poznan , Poland .,d Cognitive Psychology and Ergonomics , University of Twente , Enschede , The Netherlands
| |
Collapse
|
19
|
Mateo S, Reilly KT, Collet C, Rode G. Descriptive pilot study of vividness and temporal equivalence during motor imagery training after quadriplegia. Ann Phys Rehabil Med 2018; 61:300-308. [PMID: 29944923 DOI: 10.1016/j.rehab.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Motor imagery (MI) training is often used to improve physical practice (PP), and the functional equivalence between imagined and practiced movements is widely considered essential for positive training outcomes. OBJECTIVE We previously showed that a 5-week MI training program improved tenodesis grasp in individuals with C6-C7 quadriplegia. Here we investigated whether functional equivalence changed during the course of this training program. METHODS In this descriptive pilot study, we retrospectively analyzed data for 6 individuals with C6-C7 quadriplegia (spinal cord injured [SCI]) and 6 healthy age-matched controls who trained for 5 weeks in visual and kinesthetic motor imagery or visualization of geometric shapes (controls). Before training, we assessed MI ability by using the Kinesthetic and Visual Imagery Questionnaire (KVIQ). We analyzed functional equivalence by vividness measured on a visual analog scale (0-100) and MI/PP time ratios computed from imagined and physically practiced movement durations measured during MI training. These analyses were re-run considering that half of the participants with quadriplegia were good imagers and the other half were poor imagers based on KVIQ scores. To investigate generalization of training effects, we analyzed MI/PP ratios for an untrained pointing task before (3 baseline measures), immediately after, and 2 months after training. RESULTS During MI training, imagery vividness increased significantly. Only the good imagers evolved toward temporal equivalence during training. Good imagers were also the only participants who showed changes in temporal equivalence on the untrained pointing task. CONCLUSION This is the first study reporting improvement in functional equivalence during an MI training program that improved tenodesis grasp in individuals with C6-C7 quadriplegia. We recommend that clinical MI programs focus primarily on vividness and suggest that feedback about movement duration could potentially improve temporal equivalence, which could in turn lead to further improvement in PP.
Collapse
Affiliation(s)
- Sébastien Mateo
- Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Université de Lyon, Université Lyon 1, 69676 Lyon, France; Plate-forme Mouvement et Handicap, Hospices Civils de Lyon, hôpital Henry Gabrielle, 69000 Lyon, France; École Normale Supérieure de Lyon, CNRS UMR5672, Université de Lyon, Université Lyon 1, 69007 Lyon, France; Laboratoire interuniversitaire de la biologie de la motricité LIBM, équipe d'Accueil 7424, Université de Lyon, Université Lyon 1, 69622 Villeurbanne cedex, France.
| | - Karen T Reilly
- Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Université de Lyon, Université Lyon 1, 69676 Lyon, France
| | - Christian Collet
- Laboratoire interuniversitaire de la biologie de la motricité LIBM, équipe d'Accueil 7424, Université de Lyon, Université Lyon 1, 69622 Villeurbanne cedex, France
| | - Gilles Rode
- Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Université de Lyon, Université Lyon 1, 69676 Lyon, France; Plate-forme Mouvement et Handicap, Hospices Civils de Lyon, hôpital Henry Gabrielle, 69000 Lyon, France
| |
Collapse
|
20
|
Sobierajewicz J, Przekoracka-Krawczyk A, Jaśkowski W, van der Lubbe RHJ. How effector-specific is the effect of sequence learning by motor execution and motor imagery? Exp Brain Res 2017; 235:3757-3769. [PMID: 28965127 PMCID: PMC5671521 DOI: 10.1007/s00221-017-5096-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/21/2017] [Indexed: 12/04/2022]
Abstract
The aim of the present study was twofold. First, we wanted to examine how effector specific the effect of sequence learning by motor execution is, and second, we wanted to compare this effect with learning by motor imagery. We employed a Go/NoGo discrete sequence production task in which in each trial a spatial sequence of five stimuli was presented. After a Go signal the corresponding spatial response sequence had to be executed, while after a NoGo signal, the response sequence had to be mentally imagined. For the training phase, participants were divided into two groups. In the index finger group, participants had to respond (physically or mentally) with the left or right index finger, while in the hand group they had to respond with four fingers of the left or right hand. In a final test phase both execution modes were compared and all trials had to be executed. Response times and the percentage of correct responses were determined to establish learning effects. Results showed that sequence learning effects as assessed in the test phase were independent of the effector used during the training phase. Results revealed the presence of aspecific learning effects in the case of learning a required motor task with an index finger, but sequence-specific learning effects, both due to motor execution and to motor imagery, were not effector specific.
Collapse
Affiliation(s)
- Jagna Sobierajewicz
- Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland. .,Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland.
| | - Anna Przekoracka-Krawczyk
- Vision and Neuroscience Laboratory, NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Vision Science and Optometry, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
| | - Wojciech Jaśkowski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Rob H J van der Lubbe
- Cognitive Psychology and Ergonomics, University of Twente, Enschede, The Netherlands.,Department of Cognitive Psychology, University of Finance and Management, Warsaw, Poland
| |
Collapse
|
21
|
Sobierajewicz J, Szarkiewicz S, Przekoracka-Krawczyk A, Jaśkowski W, van der Lubbe R. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill? Adv Cogn Psychol 2016; 12:179-192. [PMID: 28154614 PMCID: PMC5280057 DOI: 10.5709/acp-0197-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 07/13/2016] [Indexed: 11/23/2022] Open
Abstract
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.
Collapse
Affiliation(s)
- Jagna Sobierajewicz
- Department of Cognitive Psychology, University of Finance and
Management, Warsaw, Poland
| | - Sylwia Szarkiewicz
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam
Mickiewicz University, Poznan, Poland
| | - Anna Przekoracka-Krawczyk
- Laboratory of Vision Science and Optometry, Faculty of Physics, Adam
Mickiewicz University, Poznan, Poland
| | - Wojciech Jaśkowski
- Institute of Computing Science, Poznan University of Technology,
Poznan, Poland
| | - Rob van der Lubbe
- Cognitive Psychology and Ergonomics, University of Twente, Enschede,
The Netherlands
| |
Collapse
|