1
|
Cirnigliaro L, Pettinato F, Valle MS, Casabona A, Fiumara A, Vecchio M, Amico V, Rizzo R, Jaeken J, Barone R, Cioni M. Instrumented assessment of gait disturbance in PMM2-CDG adults: a feasibility analysis. Orphanet J Rare Dis 2024; 19:39. [PMID: 38308356 PMCID: PMC10837865 DOI: 10.1186/s13023-024-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are genetic diseases caused by impaired synthesis of glycan moieties linked to glycoconjugates. Phosphomannomutase 2 deficiency (PMM2-CDG), the most frequent CDG, is characterized by prominent neurological involvement. Gait disturbance is a major cause of functional disability in patients with PMM2-CDG. However, no specific gait assessment for PMM2-CDG is available. This study analyses gait-related parameters in PMM2-CDG patients using a standardized clinical assessment and instrumented gait analysis (IGA). RESULTS Seven adult patients with a molecular diagnosis of PMM2-CDG were followed-up from February 2021 to December 2022 and compared to a group of healthy control (HC) subjects, matched for age and sex. Standardized assessment of disease severity including ataxia and peripheral neuropathy along with isometric muscle strength and echo-biometry measurements at lower limbs were performed. IGA spatiotemporal parameters were obtained by means of a wearable sensor in basal conditions. PMM2-CDG patients displayed lower gait speed, stride length, cadence and symmetry index, compared to HC. Significant correlations were found among the used clinical scales and between disease severity (NCRS) scores and the gait speed measured by IGA. Variable reduction of knee extension strength and a significant decrease of lower limb muscle thickness with conserved echo intensity were found in PMM2-CDG compared to HC. CONCLUSIONS The study elucidates different components of gait disturbance in PMM2-CDG patients and shows advantages of using wearable sensor-based IGA in this frame. IGA parameters may potentially serve as quantitative measures for follow-up or outcome quantification in PMM2-CDG.
Collapse
Affiliation(s)
- Lara Cirnigliaro
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Fabio Pettinato
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Referral Centre for Inherited Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123, Catania, Italy
- Rehabilitation Unit, AOU Policlinico-San Marco, 95123, Catania, Italy
| | - Valerio Amico
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Renata Rizzo
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Jaak Jaeken
- Department of Development and Regeneration, Centre for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania - Policlinico, Via Santa Sofia, 78, 95123, Catania, Italy.
- Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy.
| | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Cioni M, Casabona A, Ferlito R, Pisasale M, Romeo DM, Messina G, Valle MS. Time course of surface electromyography during walking of children with spastic cerebral palsy treated with botulinum toxin type A and its rehabilitation implications. Clin Biomech (Bristol, Avon) 2024; 111:106147. [PMID: 37988778 DOI: 10.1016/j.clinbiomech.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The timing of the effects of botulinum toxin A on spastic muscles is not yet fully clarified. The goal of this study was to follow the temporal changes of surface electromyographic activity of lower limb muscles during walking, after a therapeutic dose of botulinum toxin A injected into the calf muscles of children with spastic cerebral palsy. METHODS A group of children with spastic equinus foot was administered botulinum toxin A into the gastrocnemius medialis and lateralis muscles. Surface electromyographic activity of the tibialis anterior, gastrocnemius medialis, rectus femoris and medial hamstrings, was recorded before botulinum toxin A injections and after 4, 8, and 16 weeks. Children walked on ground and on a treadmill at an incline of 0% and 12%. The area of electromyographic activity and the index of muscle co-contraction were calculated for specific segments of gait cycle. FINDINGS Botulinum toxin A did not modify the speed of gait on ground. ANOVA showed significant differences in electromyography during the stance phase segments with a maximum decrease between 4 and 8 weeks' post botulinum toxin A and a full recovery at 16 weeks. A significant co-contraction of rectus femoris/gastrocnemius medialis, between 0 and 20% and 35-50% of the gait cycle, was observed from the 4th to the 8th week post- botulinum toxin A for both treadmill settings. INTERPRETATION The temporal identification of deterioration/recovery of electromyographic activity as well as of muscle co-contractions, could be key elements in a rehabilitation program planning combined with botulinum toxin A.
Collapse
Affiliation(s)
- Matteo Cioni
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Antonino Casabona
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Ferlito
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Medicine and Health Science "Vincenzo Tiberio" University of Molise, Campobasso, Italy
| | - Mariangela Pisasale
- Casa di Cura Igea, Department of Neurorehabilitation Sciences, Milano, Italy
| | - Domenico Marco Romeo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Giulia Messina
- Pediatric Residency Program, Pediatric Unit, University Hospital Policlinico G. Rodolico - San Marco and University of Catania, Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Inoue K, Asaka M, Lee S, Ishikawa K, Yanagihara D. Gait disorders induced by photothrombotic cerebellar stroke in mice. Sci Rep 2023; 13:15805. [PMID: 37737224 PMCID: PMC10516889 DOI: 10.1038/s41598-023-42817-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Patients with cerebellar stroke display relatively mild ataxic gaits. These motor deficits often improve dramatically; however, the neural mechanisms of this improvement have yet to be elucidated. Previous studies in mouse models of gait ataxia, such as ho15J mice and cbln1-null mice, have shown that they have a dysfunction of parallel fiber-Purkinje cell synapses in the cerebellum. However, the effects of cerebellar stroke on the locomotor kinematics of wild-type mice are currently unknown. Here, we performed a kinematic analysis of gait ataxia caused by a photothrombotic stroke in the medial, vermal, and intermediate regions of the cerebellum of wild-type mice. We used the data and observations from this analysis to develop a model that will allow locomotive prognosis and indicate potential treatment regimens following a cerebellar stroke. Our analysis showed that mice performed poorly in a ladder rung test after a stroke. During walking on a treadmill, the mice with induced cerebellar stroke had an increased duty ratio of the hindlimb caused by shortened duration of the swing phase. Overall, our findings suggest that photothrombotic cerebellar infarction and kinematic gait analyses will provide a useful model for quantification of different types of acute management of cerebellar stroke in rodents.
Collapse
Affiliation(s)
- Keisuke Inoue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Rehabilitation, JA Toride Medical Center, Toride, Japan
| | - Meiko Asaka
- Cognition and Behavior Joint Research Laboratory, RIKEN center for Brain Science, Wako, Japan
| | - Sachiko Lee
- Department of Rehabilitation Sciences, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dai Yanagihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- Cognition and Behavior Joint Research Laboratory, RIKEN center for Brain Science, Wako, Japan.
| |
Collapse
|
4
|
Russo C, Valle MS, Malaguarnera L, Romano IR, Malaguarnera L. Comparison of Vitamin D and Resveratrol Performances in COVID-19. Nutrients 2023; 15:nu15112639. [PMID: 37299603 DOI: 10.3390/nu15112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Over the last few years, we have experienced the infection generated by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) often resulting in an exaggerated immune reaction and systemic inflammation. The preferred treatments against SARS-CoV-2 were those that mitigated immunological/inflammatory dysfunction. A variety of observational epidemiological studies have reported that vitamin D deficiency is often a crucial factor in many inflammatory diseases and autoimmune diseases, as well as the susceptibility to contract infectious diseases, including acute respiratory infections. Similarly, resveratrol regulates immunity, modifying the gene expression and the release of proinflammatory cytokines in the immune cells. Therefore, it plays an immunomodulatory role that can be beneficial in the prevention and development of non-communicable diseases associated with inflammation. Since both vitamin D and resveratrol also act as immunomodulators in inflammatory pathologies, many studies have paid particular attention to an integrated treatment of either vitamin D or resveratrol in the immune reaction against SARS-CoV-2 infections. This article offers a critical evaluation of published clinical trials that have examined the use of vitamin D or resveratrol as adjuncts in COVID-19 management. Furthermore, we aimed to compare the anti-inflammatory and antioxidant properties linked to the modulation of the immune system, along with antiviral properties of both vitamin D and resveratrol.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Luisa Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
5
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
6
|
Liang JH, Alevy J, Akhanov V, Seo R, Massey CA, Jiang D, Zhou J, Sillitoe RV, Noebels JL, Samuel MA. Kctd7 deficiency induces myoclonic seizures associated with Purkinje cell death and microvascular defects. Dis Model Mech 2022; 15:dmm049642. [PMID: 35972048 PMCID: PMC9509889 DOI: 10.1242/dmm.049642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the potassium channel tetramerization domain-containing 7 (KCTD7) gene are associated with a severe neurodegenerative phenotype characterized by childhood onset of progressive and intractable myoclonic seizures accompanied by developmental regression. KCTD7-driven disease is part of a large family of progressive myoclonic epilepsy syndromes displaying a broad spectrum of clinical severity. Animal models of KCTD7-related disease are lacking, and little is known regarding how KCTD7 protein defects lead to epilepsy and cognitive dysfunction. We characterized Kctd7 expression patterns in the mouse brain during development and show that it is selectively enriched in specific regions as the brain matures. We further demonstrate that Kctd7-deficient mice develop seizures and locomotor defects with features similar to those observed in human KCTD7-associated diseases. We also show that Kctd7 is required for Purkinje cell survival in the cerebellum and that selective degeneration of these neurons is accompanied by defects in cerebellar microvascular organization and patterning. Taken together, these results define a new model for KCTD7-associated epilepsy and identify Kctd7 as a modulator of neuron survival and excitability linked to microvascular alterations in vulnerable regions.
Collapse
Affiliation(s)
- Justine H. Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Viktor Akhanov
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Seo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cory A. Massey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joy Zhou
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeffrey L. Noebels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie A. Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Identifying the Effects of Age and Speed on Whole-Body Gait Symmetry by Using a Single Wearable Sensor. SENSORS 2022; 22:s22135001. [PMID: 35808494 PMCID: PMC9269851 DOI: 10.3390/s22135001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023]
Abstract
Studies on gait symmetry in healthy population have mainly been focused on small range of age categories, neglecting Teenagers (13–18 years old) and Middle-Aged persons (51–60 years old). Moreover, age-related effects on gait symmetry were found only when the symmetry evaluation was based on whole-body acceleration than on spatiotemporal parameters of the gait cycle. Here, we provide a more comprehensive analysis of this issue, using a Symmetry Index (SI) based on whole-body acceleration recorded on individuals aged 6 to 84 years old. Participants wore a single inertial sensor placed on the lower back and walked for 10 m at comfortable, slow and fast speeds. The SI was computed using the coefficient of correlation of whole-body acceleration measured at right and left gait cycles. Young Adults (19–35 years old) and Adults (36–50 years old) showed stable SI over the three speed conditions, while Children (6–12 years old), Teenagers (13–18 years old), Middle-Aged persons and Elderly (61–70 and 71–84 years old) exhibited lower SI values when walking at fast speed. Overall, this study confirms that whole-body gait symmetry is lower in Children and in Elderly persons over 60 years of age, showing, for the first time, that asymmetries appear also during teenage period and in Middle-Aged persons (51–60 years old).
Collapse
|
8
|
Grillner S, El Manira A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol Rev 2019; 100:271-320. [PMID: 31512990 DOI: 10.1152/physrev.00015.2019] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The vertebrate control of locomotion involves all levels of the nervous system from cortex to the spinal cord. Here, we aim to cover all main aspects of this complex behavior, from the operation of the microcircuits in the spinal cord to the systems and behavioral levels and extend from mammalian locomotion to the basic undulatory movements of lamprey and fish. The cellular basis of propulsion represents the core of the control system, and it involves the spinal central pattern generator networks (CPGs) controlling the timing of different muscles, the sensory compensation for perturbations, and the brain stem command systems controlling the level of activity of the CPGs and the speed of locomotion. The forebrain and in particular the basal ganglia are involved in determining which motor programs should be recruited at a given point of time and can both initiate and stop locomotor activity. The propulsive control system needs to be integrated with the postural control system to maintain body orientation. Moreover, the locomotor movements need to be steered so that the subject approaches the goal of the locomotor episode, or avoids colliding with elements in the environment or simply escapes at high speed. These different aspects will all be covered in the review.
Collapse
Affiliation(s)
- Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
Miterko LN, White JJ, Lin T, Brown AM, O'Donovan KJ, Sillitoe RV. Persistent motor dysfunction despite homeostatic rescue of cerebellar morphogenesis in the Car8 waddles mutant mouse. Neural Dev 2019; 14:6. [PMID: 30867000 PMCID: PMC6417138 DOI: 10.1186/s13064-019-0130-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Purkinje cells play a central role in establishing the cerebellar circuit. Accordingly, disrupting Purkinje cell development impairs cerebellar morphogenesis and motor function. In the Car8wdl mouse model of hereditary ataxia, severe motor deficits arise despite the cerebellum overcoming initial defects in size and morphology. Methods To resolve how this compensation occurs, we asked how the loss of carbonic anhydrase 8 (CAR8), a regulator of IP3R1 Ca2+ signaling in Purkinje cells, alters cerebellar development in Car8wdl mice. Using a combination of histological, physiological, and behavioral analyses, we determined the extent to which the loss of CAR8 affects cerebellar anatomy, neuronal firing, and motor coordination during development. Results Our results reveal that granule cell proliferation is reduced in early postnatal mutants, although by the third postnatal week there is enhanced and prolonged proliferation, plus an upregulation of Sox2 expression in the inner EGL. Modified circuit patterning of Purkinje cells and Bergmann glia accompany these granule cell adjustments. We also find that although anatomy eventually normalizes, the abnormal activity of neurons and muscles persists. Conclusions Our data show that losing CAR8 only transiently restricts cerebellar growth, but permanently damages its function. These data support two current hypotheses about cerebellar development and disease: (1) Sox2 expression may be upregulated at sites of injury and contribute to the rescue of cerebellar structure and (2) transient delays to developmental processes may precede permanent motor dysfunction. Furthermore, we characterize waddles mutant mouse morphology and behavior during development and propose a Sox2-positive, cell-mediated role for rescue in a mouse model of human motor diseases. Electronic supplementary material The online version of this article (10.1186/s13064-019-0130-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Joshua J White
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Amanda M Brown
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kevin J O'Donovan
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, 10996, USA.,Burke Neurological Institute, Weill Cornell Medicine, White Plains, 10605, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Department of Neuroscience, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA. .,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Guang H, Ji L. Proprioceptive Recognition with Artificial Neural Networks Based on Organizations of Spinocerebellar Tract and Cerebellum. Int J Neural Syst 2019; 29:1850056. [PMID: 30776987 DOI: 10.1142/s0129065718500569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Muscle kinematics and kinetics are nonlinearly encoded by proprioceptors, and the changes in muscle length and velocity are integrated into Ia afferent. Besides, proprioceptive signals from multiple muscles are probably mixed in afferent pathways, which all lead to difficulties in proprioceptive recognition for the cerebellum. In this study, the artificial neural networks, whose organizations are biologically based on the spinocerebellar tract and cerebellum, are utilized to decode the proprioceptive signals. Consistent with the controversy of the proprioceptive division in the dorsal spinocerebellar tract, the spinocerebellar tract networks incorporated two distinct inferences, (1) the centralized networks, which mixed Ia, II, and Ib and processed them together; (2) the decentralized networks, which processed Ia, II, and Ib afferents separately. The cerebellar networks were based on the Marr-Albus model to recognize the kinematic states. The networks were trained by a specific movement, and the trained networks were subsequently required to predict kinematic states of six movements. The results demonstrated that the centralized networks, which were more consistent with the physiological findings in recent years, had better recognition accuracy than the decentralized networks, and the networks were still effective even when proprioceptive afferents from multiple muscles were integrated.
Collapse
Affiliation(s)
- Hui Guang
- 1Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linhong Ji
- 1Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|