1
|
Somasundram KG, Keir PJ. Effects of wrist and finger posture on finger independence. J Electromyogr Kinesiol 2024; 79:102941. [PMID: 39527855 DOI: 10.1016/j.jelekin.2024.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Intended actions of one finger produce involuntary movement or force in other fingers. Mechanical and neural factors limit finger independence. The interplay between anatomical factors, wrist and finger postures, and finger independence remain unclear. The purpose of this study was to determine the effects of wrist and metacarpophalangeal (MCP) posture on involuntary finger forces and extensor digitorum (ED) activity. Twenty participants performed submaximal isometric finger extensions in three wrist positions (30° extension, neutral, and 30° flexion) and two MCP postures (straight and 90° flexion). Involuntary index finger force increased with MCP flexion, suggesting the importance of intertendinous connections in finger independence. Consistent with previous research, ED activity was generally higher in wrist extension than neutral and flexed postures. Understanding the role of passive properties within the hand may help us improve finger rehabilitation strategies.
Collapse
Affiliation(s)
| | - Peter J Keir
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Klemm L, Kuehn E, Kalyani A, Schreiber S, Reichert C, Azañón E. Age-related differences in finger interdependence during complex hand movements. J Appl Physiol (1985) 2024; 137:181-193. [PMID: 38695353 DOI: 10.1152/japplphysiol.00606.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 07/14/2024] Open
Abstract
The well-known decrease in finger dexterity during healthy aging leads to a significant reduction in quality of life. Still, the exact patterns of altered finger kinematics of older adults in daily life are fairly unexplored. Finger interdependence is the unintentional comovement of fingers that are not intended to move, and it is known to vary across the lifespan. Nevertheless, the magnitude and direction of age-related differences in finger interdependence are ambiguous across studies and tasks and have not been explored in the context of daily life finger movements. We investigated five different free and daily-life-inspired finger movements of the right, dominant hand as well as a sequential finger tapping task of the thumb against the other fingers, in 17 younger (22-37 yr) and 17 older (62-80 yr) adults using an exoskeleton data glove for data recording. Using inferential statistics, we found that the unintentional comovement of fingers generally decreases with age in all performed daily-life-inspired movements. Finger tapping, however, showed a trend towards higher finger interdependence for older compared with younger adults. Using machine learning, we predicted the age group of a person from finger interdependence features of single movement trials significantly better than chance level for the daily-life-inspired movements, but not for finger tapping. Taken together, we show that for specific tasks, decreased finger interdependence (i.e., less comovement) could potentially act as a marker of human aging that specifically characterizes older adults' complex finger movements in daily life.NEW & NOTEWORTHY Kinematic finger movement data were analyzed with regard to age-related differences. Extensive analyses of complex and daily-life-inspired movements reveal that the direction of age effects is not uniform but task-dependent: Although older adults generally show more finger interdependence than younger adults in a simple finger tapping task, this effect is reversed for daily-life-inspired movement tasks. For these tasks, finger interdependence indices offer potential new markers to predict the age group of an individual using machine learning approaches.
Collapse
Affiliation(s)
- Lisa Klemm
- Department of Neurology, University Medical Center, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
- Hertie Institute for Clinical Brain Research (HIH), Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Avinash Kalyani
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Schreiber
- Department of Neurology, University Medical Center, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Christoph Reichert
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Forschungscampus STIMULATE, Magdeburg, Germany
| | - Elena Azañón
- Department of Neurology, University Medical Center, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
3
|
Popp WL, Richner L, Lambercy O, Shirota C, Barry A, Gassert R, Kamper DG. Effects of wrist posture and stabilization on precision grip force production and muscle activation patterns. J Neurophysiol 2023; 130:596-607. [PMID: 37529845 DOI: 10.1152/jn.00420.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Most of the power for generating forces in the fingers arises from muscles located in the forearm. This configuration maximizes finger joint range of motion while minimizing finger mass and inertia. The resulting multiarticular arrangement of the tendons, however, complicates independent control of the wrist and the digits. Actuating the wrist impacts sensorimotor control of the fingers and vice versa. The goal of this study was to systematically investigate interactions between isometric wrist and digit control. Specifically, we examined how the need to maintain a specified wrist posture influences precision grip. Fifteen healthy adults produced maximum precision grip force at 11 different wrist flexion/extension angles, with the arm supported, under two conditions: 1) the participant maintained the desired wrist angle while performing the precision grip and 2) a robot maintained the specified wrist angle. Wrist flexion/extension posture significantly impacted maximum precision grip force (P < 0.001), with the greatest grip force achieved when the wrist was extended 30° from neutral. External wrist stabilization by the robot led to a 20% increase in precision grip force across wrist postures. Increased force was accompanied by increased muscle activation but with an activation pattern similar to the one used when the participant had to stabilize their wrist. Thus, simultaneous wrist and finger requirements impacted performance of an isometric finger task. External wrist stabilization can promote increased precision grip force resulting from increased muscle activation. These findings have potential clinical significance for individuals with neurologically driven finger weakness, such as stroke survivors.NEW & NOTEWORTHY We explored the interdependence between wrist and fingers by assessing the influence of wrist posture and external stabilization on precision grip force generation. We found that maximum precision grip force occurred at an extended wrist posture and was 20% greater when the wrist was Externally Stabilized. The latter resulted from amplification of muscle activation patterns from the Self-Stabilized condition rather than adoption of new patterns exploiting external wrist stabilization.
Collapse
Affiliation(s)
- Werner L Popp
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Lea Richner
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Olivier Lambercy
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Camila Shirota
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Roger Gassert
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina, United States
| | - Derek G Kamper
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina, United States
- Closed-Loop Engineering for Advanced Rehabilitation Research Core, University of North Carolina at Chapel Hill/North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
4
|
Koyama S, Tatemoto T, Kumazawa N, Tanabe S, Nakagawa Y, Otaka Y. The effect of differences in powered wheelchair joystick shape on subjective and objective operability. APPLIED ERGONOMICS 2023; 107:103920. [PMID: 36306702 DOI: 10.1016/j.apergo.2022.103920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/15/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Various-shaped joysticks steer electric-powered wheelchairs (EPWs); however, an operability evaluation has not been fully conducted. This study evaluated the subjective and objective operability of various-shaped joysticks in 22 younger and 22 older adults. Participants operated an EPW on an experimental course using nine different-shaped joysticks, before ranking each joystick by their operability (1 = best, 9 = worst) as a primary outcome. Movement time (MT) and driving accuracy (DA) were also measured. Despite no significant differences in the primary outcome between joysticks, the I-shaped joystick with rounded tips (neutral grip) was ranked higher than the others. MT did not differ between joysticks, but DA was higher for the thin-columnar I-shaped joystick (pinch grip) than for the U- and T-shaped joysticks (pronated grip). MT and DA scores for young adults were significantly better than those for older adults. Further studies should be conducted to clarify possible factors related to EPW operability.
Collapse
Affiliation(s)
- Soichiro Koyama
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Japan.
| | - Tsuyoshi Tatemoto
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Japan
| | - Nobuhiro Kumazawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Japan
| | - Yuki Nakagawa
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Japan
| | - Yohei Otaka
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Japan
| |
Collapse
|
5
|
The Nature of Finger Enslaving: New Results and Their Implications. Motor Control 2021; 25:680-703. [PMID: 34530403 DOI: 10.1123/mc.2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 07/25/2021] [Indexed: 11/18/2022]
Abstract
We present a review on the phenomenon of unintentional finger action seen when other fingers of the hand act intentionally. This phenomenon (enslaving) has been viewed as a consequence of both peripheral (e.g., connective tissue links and multifinger muscles) and neural (e.g., projections of corticospinal pathways) factors. Recent studies have shown relatively large and fast drifts in enslaving toward higher magnitudes, which are not perceived by subjects. These and other results emphasize the defining role of neural factors in enslaving. We analyze enslaving within the framework of the theory of motor control with spatial referent coordinates. This analysis suggests that unintentional finger force changes result from drifts of referent coordinates, possibly reflecting the spread of cortical excitation.
Collapse
|
6
|
Schneider TR, Hermsdörfer J. Intention to be force efficient improves high-level anticipatory coordination of finger positions and forces in young and elderly adults. J Neurophysiol 2021; 125:1663-1680. [PMID: 33689482 DOI: 10.1152/jn.00499.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful object manipulation requires anticipatory high-level control of finger positions and forces to prevent object slip and tilt. Unlike young adults, who efficiently scale grip forces (GFs) according to surface conditions, old adults were reported to exert excessive grip forces. In this study, we theoretically show how grip force economy depends on the modulation of the centers of pressure on opposing grip surfaces (ΔCoP) according to object properties. In a grasp-to-lift study with young and elderly participants, we investigated how the instruction to lift the object with efficient GF influences the anticipation of torques, ΔCoP and GF control during complex variations of mass distributions and surface properties. Provision of the explicit instruction to strive for force efficiency prompted both age groups to optimize their ΔCoP modulation, although to a lesser degree in the elderly, and also led to a refinement of torque anticipation for a right-sided weight distribution in the young, but not the elderly participants. Consequently, marked drops in GF levels resulted. Furthermore, participants enhanced ΔCoP modulation and lowered GF safety ratios in challenging surface conditions. Higher GF in the elderly was due to decreased skin-surface friction but also worse ΔCoP modulation for lateralized mass distributions when trying to be force efficient. In contrast, safety margins were not elevated in the elderly, suggesting preserved GF control. Our findings demonstrate how task goals influence high-level motor control of object manipulation differentially in young and elderly participants and highlight the necessity to control for both instructions and friction when investigating GF control.NEW & NOTEWORTHY Previous studies have shown that forces are covaried as a function of centers of pressure (CoPs) to exert adequate torques. Here, we demonstrate that force-efficient object manipulation requires the modulation of CoPs and show that providing the instruction to be force efficient and challenging surface conditions elicits a GF safety ratio reduction as well as an optimization of anticipatory CoP modulation and torques in the young and, to a lesser degree, in the elderly.
Collapse
Affiliation(s)
- Thomas Rudolf Schneider
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany.,Department of Neurology, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | - Joachim Hermsdörfer
- Chair of Human Movement Science, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Perturbation-induced fast drifts in finger enslaving. Exp Brain Res 2021; 239:891-902. [PMID: 33423068 DOI: 10.1007/s00221-020-06027-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
We explored changes in finger forces and in an index of unintentional finger force production (enslaving) under a variety of visual feedback conditions and positional finger perturbations. In particular, we tested a hypothesis that enslaving would show a consistent increase with time at characteristic times of about 1-2 s. Young healthy subjects performed accurate force production tasks under visual feedback on the total force of the instructed fingers (index and ring) or enslaved fingers (middle and little). Finger feedback was covertly alternated between master and enslaved fingers in a random fashion. The feedback could be presented over the first 5 s of the trial only or over the whole trial duration (21 s). After 5 s, the fingers were lifted by 1 cm, and after 15 s, the fingers were lowered to the initial position. The force of the instructed fingers drifted toward lower magnitudes in all conditions except the one with continuous feedback on that force. The force of enslaved fingers showed variable behavior across conditions. In all conditions, the index of enslaving showed a consistent increase with the time constant varying between 1 and 3 s. We interpret the results as pointing at the spread of excitation to enslaved fingers (possibly, in the cortical M1 areas). The relatively fast changes in enslaving under positional finger perturbations suggest that quick changes of the input into M1 from pre-M1 areas can accelerate the hypothesized spread of cortical excitation.
Collapse
|
8
|
Single finger movements in the aging hand: changes in finger independence, muscle activation patterns and tendon displacement in older adults. Exp Brain Res 2019; 237:1141-1154. [PMID: 30783716 DOI: 10.1007/s00221-019-05487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
With aging, hand mobility and manual dexterity decline, even under healthy circumstances. To assess how aging affects finger movement control, we compared elderly and young subjects with respect to (1) finger movement independence, (2) neural control of extrinsic finger muscles and (3) finger tendon displacements during single finger flexion. In twelve healthy older (age 68-84) and nine young (age 22-29) subjects, finger kinematics were measured to assess finger movement enslaving and the range of independent finger movement. Muscle activation was assessed using a multi-channel electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). FDS tendon displacements of the index, middle and ring fingers were measured using ultrasound. In older subjects compared to the younger subjects, we found: (1) increased enslaving of the middle finger during index finger flexion (young: 25.6 ± 12.4%, elderly: 47.0 ± 25.1%; p = 0.018), (2) a lower range of independent movement of the index finger (youngmiddle = 74.0%, elderlymiddle: 45.9%; p < 0.001), (3) a more evenly distributed muscle activation pattern over the finger-specific FDS and ED muscle regions and (4) a lower slope at the beginning of the finger movement to tendon displacement relationship, presenting a distinct period with little to no tendon displacement. Our study indicates that primarily the movement independence of the index finger is affected by aging. This can partly be attributed to a muscle activation pattern that is more evenly distributed over the finger-specific FDS and ED muscle regions in the elderly.
Collapse
|
9
|
Carment L, Abdellatif A, Lafuente-Lafuente C, Pariel S, Maier MA, Belmin J, Lindberg PG. Manual Dexterity and Aging: A Pilot Study Disentangling Sensorimotor From Cognitive Decline. Front Neurol 2018; 9:910. [PMID: 30420830 PMCID: PMC6215834 DOI: 10.3389/fneur.2018.00910] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Manual dexterity measures can be useful for early detection of age-related functional decline and for prediction of cognitive decline. However, what aspects of sensorimotor function to assess remains unclear. Manual dexterity markers should be able to separate impairments related to cognitive decline from those related to healthy aging. In this pilot study, we aimed to compare manual dexterity components in patients diagnosed with cognitive decline (mean age: 84 years, N = 11) and in age comparable cognitively intact elderly subjects (mean age: 78 years, N = 11). In order to separate impairments due to healthy aging from deficits due to cognitive decline we also included two groups of healthy young adults (mean age: 26 years, N = 10) and middle-aged adults (mean age: 41 years, N = 8). A comprehensive quantitative evaluation of manual dexterity was performed using three tasks: (i) visuomotor force tracking, (ii) isochronous single finger tapping with auditory cues, and (iii) visuomotor multi-finger tapping. Results showed a highly significant increase in force tracking error with increasing age. Subjects with cognitive decline had increased finger tapping variability and reduced ability to select the correct tapping fingers in the multi-finger tapping task compared to cognitively intact elderly subjects. Cognitively intact elderly subjects and those with cognitive decline had prolonged force release and reduced independence of finger movements compared to young adults and middle-aged adults. The findings suggest two different patterns of impaired manual dexterity: one related to cognitive decline and another related to healthy aging. Manual dexterity tasks requiring updating of performance, in accordance with (temporal or spatial) task rules maintained in short-term memory, are particularly affected in cognitive decline. Conversely, tasks requiring online matching of motor output to sensory cues were affected by age, not by cognitive status. Remarkably, no motor impairments were detected in patients with cognitive decline using clinical scales of hand function. The findings may have consequences for the development of manual dexterity markers of cognitive decline.
Collapse
Affiliation(s)
- Loic Carment
- Inserm U894, Université Paris Descartes, Paris, France
| | - Abir Abdellatif
- Plateforme de Recherche Clinique en Gériatrie, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Carmelo Lafuente-Lafuente
- Service de Gériatrie à orientation Cardiologique et Neurologique, Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Sylvie Pariel
- Département de soins ambulatoires, Hôpitaux universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | - Marc A Maier
- FR3636 CNRS, Université Paris Descartes, Paris, France.,Department of Life Sciences, Université Paris Diderot, Paris, France
| | - Joël Belmin
- Service de Gériatrie à orientation Cardiologique et Neurologique, Sorbonne Université, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, APHP, Ivry-sur-Seine, France
| | | |
Collapse
|
10
|
Maas H, Veeger HEJD, Stegeman DF. Understanding the constraints of finger motor control. J Electromyogr Kinesiol 2017; 38:182-186. [PMID: 29089176 DOI: 10.1016/j.jelekin.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands.
| | - H E J Dirkjan Veeger
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands; Department of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Dick F Stegeman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands; Donders Institute of Brain, Cognition and Behaviour, Department of Neurology and Clinical Neurophysiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|