1
|
Cao N, Sasaki A, Popovic MR, Nakazawa K, Milosevic M. Dose duration effect of concurrent and synchronized motor cortex theta burst stimulation and upper-limb neuromuscular electrical stimulation. Neuroscience 2025; 576:253-262. [PMID: 40320234 DOI: 10.1016/j.neuroscience.2025.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Intermittent theta burst stimulation (iTBS) can induce rapid cortical facilitation, while neuromuscular electrical stimulation (NMES) can activate sensorimotor networks to excite the central nervous system. Application of iTBS and NMES delivered concurrently at a synchronized 50 Hz frequency was recently shown to elicit greater but transient corticospinal facilitation compared to each intervention. Our current study aimed to investigate the dose-duration neuromodulation effects of concurrent and synchronized associative stimulation using iTBS-NMES. A single dose consisted of 600 pulses of iTBS applied simultaneously with 50 Hz NMES for 2 s ON/8s OFF over 192 s. Four interventions were tested on separate days in eleven able-bodied individuals: iTBS600-NMES (one dose), iTBS1200-NMES (two doses), iTBS1800-NMES (three doses), and iTBS1800 (control intervention consisting of three iTBS-alone doses without NMES). Single-pulse transcranial magnetic stimulation (TMS) of motor cortex was used to evaluate corticospinal excitability through motor evoked potentials (MEP). Paired-pulse TMS short-interval intracortical inhibition (SICI) was used to evaluate intracortical inhibition, and maximum motor responses (Mmax) were elicited by radial nerve stimulation to monitor fatigue. Assessments were completed before, immediately after, and every 10 min for total 30 min after each intervention. Our results showed significant MEP facilitation for at least 30 min only after iTBS1800-NMES intervention, while the iTBS1800 control intervention was ineffective. SICI and Mmax responses were not affected by any intervention. Our findings demonstrate that increased iTBS-NMES dose-duration extends corticospinal facilitation that likely involved the cumulative effect to overcome the homeostatic threshold with repetitive synchronized activation of cortical and peripheral inputs at the subcortical level.
Collapse
Affiliation(s)
- Na Cao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan; Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan; Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan; Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network & University of Toronto, Toronto, Ontario, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Scalia M, Borzuola R, Parrella M, Borriello G, Sica F, Monteleone F, Macaluso A. Neuromuscular electrical stimulation reduces spinal excitability in Multiple Sclerosis patients with spasticity symptoms. Mult Scler Relat Disord 2025; 99:106457. [PMID: 40286626 DOI: 10.1016/j.msard.2025.106457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The use of neuromuscular electrical stimulation (NMES) has been recently proposed in patients with neurological diseases, such as spinal cord injuries and stroke, to improve symptoms of spasticity, resulting in both increased control of voluntary movements and improved functional ability in daily activities. Despite several authors suggest that these results could be related to a reduced spinal excitability, which is known to be higher in spastic patients, no previous studies investigated the neurophysiological mechanisms underlying the effect of NMES in reducing spasticity. In addition, there are no studies in the literature adopting NMES to improve spasticity in patients with Multiple Sclerosis (MS). Therefore, this study aims at comparing acute responses in spinal excitability, as measured by H-reflex, between MS patients with and without spasticity, following three experimental conditions: 1) isometric voluntary contraction (ISO) of the ankle plantar flexor muscles; 2) NMES passively applied (pNMES) to the ankle plantar flexor muscles; and 3) NMES superimposed onto isometric voluntary contraction (NMES+) of the same muscles. METHODS 15 MS patients with spasticity (MS+) and 15 MS patients without spasticity (MS-) took part in a single experimental session, which consisted in the application of NMES to the ankle plantar-flexor muscles in the most spastic and compromised leg. Following the assessment of maximum voluntary isometric contraction (MVIC), participants were asked to perform 15 repetitions of 6 s at 20 % of MVIC, with 6 s of recovery between repetitions, during the three experimental conditions (ISO, pNMES, NMES+). Before and after each condition, soleus (SOL) H-reflex amplitudes were recorded by using surface electromyography (sEMG). RESULTS In MS+, H-reflex amplitude significantly decreased after both pNMES (p = 0.007) and NMES+ (p = 0.003), while it was unaltered after ISO (p = 0.829). In MS-, H-reflex amplitude did not change under any experimental condition (ISO: p = 0.383; pNMES: p = 0.328; NMES+: p = 0.087). CONCLUSION The reduction of H-reflex after pNMES and NMES+ can be attributed to a reduced spinal excitability in spastic MS patients, which may be attributed to presynaptic inhibition, recurrent inhibition, gamma-aminobutyric acid activity and persistent inward current. These results are highly relevant from both neurophysiological and clinical point of views, suggesting new approaches to manage spasticity symptoms in neurological patients.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Giovanna Borriello
- Neurology Unit, San Pietro Fatebenefratelli Hospital, MS Centre, 00189 Rome, Italy
| | | | | | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|
3
|
Tsugaya S, Sasaki A, Arai S, Nomura T, Milosevic M. Frequency-dependent corticospinal facilitation following tibialis anterior neuromuscular electrical stimulation. Neuroscience 2025; 566:60-71. [PMID: 39701273 DOI: 10.1016/j.neuroscience.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The optimal stimulation frequency for inducing neuromodulatory effects remains unclear. The purpose of our study was to investigate the effect of neuromuscular electrical stimulation (NMES) with different frequencies on cortical and spinal excitability. Thirteen able-bodied individuals participated in the experiment involving NMES: (i) low-frequency at 25 Hz, (ii) high-frequency at 100 Hz, and (iii) mixed-frequency at 25 and 100 Hz switched every one second. All interventions were applied on the tibialis anterior muscle using a 10 sec ON / 10 sec OFF duty cycle for 10 min, using motor-level NMES at 120 % of the individual motor threshold for each stimulating frequency. Assessments were performed at baseline, immediately after, and 30 min after the interventions. Corticospinal excitability and intracortical inhibition were examined using transcranial magnetic stimulation by assessing the motor evoked potentials and cortical silent period, respectively. Spinal motoneuron excitability and neuromuscular propagation were assessed using peripheral nerve stimulation by evaluating F-wave and maximum motor (Mmax) responses, respectively. Maximal voluntary contraction (MVC) was evaluated during isometric dorsiflexion force exertion. Motor performance was also evaluated during the ankle dorsiflexion force-matching task. Our results showed that mixed frequency was most effective in modulating corticospinal excitability, although motor performance was not affected by any intervention. The cortical silent period was prolonged and Mmax was inhibited by all frequencies, while the F-wave and MVC were unaffected. Mixed-frequency stimulation could recruit a more diverse range of motor units, which are recruited in a stimulus frequency-specific manner, than single-frequency stimulation, and thus may have affected corticospinal facilitation.
Collapse
Affiliation(s)
- Shota Tsugaya
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Atsushi Sasaki
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA
| | - Suzufumi Arai
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, FL, USA; Department of Biomedical Engineering, University of Miami, FL, USA.
| |
Collapse
|
4
|
Borzuola R, Caricati V, Parrella M, Scalia M, Macaluso A. Frequency-dependent effects of superimposed NMES on spinal excitability in upper and lower limb muscles. Heliyon 2024; 10:e40145. [PMID: 39568857 PMCID: PMC11577215 DOI: 10.1016/j.heliyon.2024.e40145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Superimposing neuromuscular electrical stimulation (NMES) on voluntary contractions has proven to be highly effective for improving muscle strength and performance. These improvements might involve specific adaptations occurring at cortical and spinal level. The effects of NMES on corticospinal activation seem to be frequency dependent and differ between upper and lower limb muscles. The aim of this study was to investigate acute responses in spinal excitability, as measured by H-reflex amplitude of flexor carpi radialis (FCR) and soleus (SOL) muscles, after NMES superimposed on voluntary contractions (NMES + ISO) at two different pulse frequencies (40 and 80 Hz). Conditions involved fifteen intermittent contractions at submaximal level. Before and after each condition, H-reflexes were elicited in FCR and SOL muscles. H-reflex amplitudes increased in FCR and SOL following both NMES + ISO at 40 and 80 Hz. The potentiation of the H-reflex was greater following the 40 Hz condition compared to 80 Hz, although no differences between muscles emerged. These findings indicated that superimposing NMES has an excitatory effect on spinal motoneurons in both upper and lower limb muscles with an overall greater response after low frequency NMES. Such facilitation could be associated to enhanced somatosensory stimuli conjunctly with higher supraspinal downward commands.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valerio Caricati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
5
|
Takano K, Yamaguchi T, Kikuma K, Okuyama K, Katagiri N, Sato T, Tanabe S, Kondo K, Fujiwara T. Transcutaneous spinal cord stimulation phase-dependently modulates spinal reciprocal inhibition induced by pedaling in healthy individuals. Exp Brain Res 2024; 242:2645-2652. [PMID: 39331051 DOI: 10.1007/s00221-024-06926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Reciprocal inhibition (RI) between leg muscles is crucial for smooth movement. Pedaling is a rhythmic movement that can increase RI in healthy individuals. Transcutaneous spinal cord stimulation (tSCS) stimulates spinal neural circuits by targeting the afferent fibers. Pedaling with simultaneous tSCS may modulate the plasticity of the spinal neural circuit and alter neural activity based on movement and muscle engagement. This study investigated the RI changes after pedaling and tSCS and determined the phase of pedaling in which tSCS should be applied for optimal RI modulation in healthy individuals. Eleven subjects underwent three interventions: pedaling combined with tSCS during the early phase of lower extension (phase 1), pedaling combined with tSCS during the late phase of lower flexion (phase 4) of the pedaling cycle, and pedaling combined with sham tSCS. The RI from the tibialis anterior to the soleus muscle was assessed before, immediately after, 15 min, and 30 min after the intervention. RI increased immediately after phase 4 and pedaling combined with sham tSCS, whereas no changes were observed after phase 1. These results demonstrate that tSCS modulates RI changes induced by pedaling in a stimulus phase-dependent manner in healthy individuals. However, the mechanism involved in this intervention needs to be explored to achieve higher efficacy.
Collapse
Affiliation(s)
- Keita Takano
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kano Kikuma
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Kohei Okuyama
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Takatsugu Sato
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Kunitsugu Kondo
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Chiba, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Physical Therapy, Juntendo University, Faculty of Health Science, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Steele AG, Vette AH, Martin C, Masani K, Sayenko DG. Synergistic effects of transcutaneous spinal stimulation and neuromuscular electrical stimulation on lower limb force production: Time to deliver. PLoS One 2024; 19:e0296613. [PMID: 39213293 PMCID: PMC11364223 DOI: 10.1371/journal.pone.0296613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Transcutaneous spinal stimulation (TSS) and neuromuscular electrical stimulation (NMES) can facilitate self-assisted standing in individuals with paralysis. However, individual variability in responses to each modality may limit their effectiveness in generating the necessary leg extension force for full body weight standing. To address this challenge, we proposed combining TSS and NMES to enhance leg extensor muscle activation, with optimizing timing adjustment to maximize the interaction between the two modalities. METHODS To assess the effects of TSS and NMES on knee extension and plantarflexion force, ten neurologically intact participants underwent three conditions: (1) TSS control, (2) NMES control, and (3) TSS + NMES. TSS was delivered between the T10 and L2 vertebrae, while NMES was delivered to the skin over the right knee extensors and plantarflexors. TSS and NMES were administered using a 15 Hz train of three 0.5 ms biphasic pulses. During the TSS + NMES condition, the timing between modalities was adjusted in increments of ¼ the interval within a 15 Hz frequency, i.e., 66, 49.5, 33, 16.5, and 1 ms. RESULTS NMES combined with TSS, produced synergistic effects even on non-targeted muscle groups, thereby promoting leg extension across multiple joints in the kinematic chain. The sequence of NMES or TSS trains relative to each other did not significantly impact motor output. Notably, a delay of 16.5 to 49.5 ms between interleaved TSS and NMES pulses, each delivered at 15 Hz, results in more robust and synergistic responses in knee extensors and plantarflexors. CONCLUSIONS By adjusting the timing between TSS and NMES, we can optimize the combined use of these modalities for functional restoration. Our findings highlight the potential of integrated TSS and NMES protocols to enhance motor function, suggesting promising avenues for therapeutic applications, particularly in the rehabilitation of individuals with SCI.
Collapse
Affiliation(s)
- Alexander G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Albert H. Vette
- Department of Mechanical Engineering, Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, Alberta, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
| | - Catherine Martin
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- KITE Research Institute–University Health Network, Toronto, ON, Canada
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, United States of America
| |
Collapse
|
7
|
Arai S, Sasaki A, Tsugaya S, Nomura T, Milosevic M. Inhibition of tibialis anterior spinal reflex circuits using frequency-specific neuromuscular electrical stimulation. Artif Organs 2024; 48:891-901. [PMID: 38436108 DOI: 10.1111/aor.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) can generate muscle contractions and elicit excitability of neural circuits. However, the optimal stimulation frequency for effective neuromodulation remains unclear. METHODS Eleven able-bodied individuals participated in our study to examine the effects of: (1) low-frequency NMES at 25 Hz, (2) high-frequency NMES at 100 Hz; and (3) mixed-frequency NMES at 25 and 100 Hz switched every second. NMES was delivered to the right tibialis anterior (TA) muscle for 1 min in each condition. The order of interventions was pseudorandomized between participants with a washout of at least 15 min between conditions. Spinal reflexes were elicited using single-pulse transcutaneous spinal cord stimulation applied over the lumbar enlargement to evoke responses in multiple lower-limb muscles bilaterally and maximum motor responses (Mmax) were elicited in the TA muscle by stimulating the common peroneal nerve to assess fatigue at the baseline and immediately, 5, 10, and 15 min after each intervention. RESULTS Our results showed that spinal reflexes were significantly inhibited immediately after the mixed-frequency NMES, and for at least 15 min in follow-up. Low-frequency NMES inhibited spinal reflexes 5 min after the intervention, and also persisted for at least 10 min. These effects were present only in the stimulated TA muscle, while other contralateral and ipsilateral muscles were unaffected. Mmax responses were not affected by any intervention. CONCLUSIONS Our results indicate that even a short-duration (1 min) NMES intervention using low- and mixed-frequency NMES could inhibit spinal reflex excitability of the TA muscle without inducing fatigue.
Collapse
Affiliation(s)
- Suzufumi Arai
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
| | - Atsushi Sasaki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Shota Tsugaya
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
8
|
Scalia M, Borzuola R, Parrella M, Borriello G, Sica F, Monteleone F, Maida E, Macaluso A. Neuromuscular Electrical Stimulation Does Not Influence Spinal Excitability in Multiple Sclerosis Patients. J Clin Med 2024; 13:704. [PMID: 38337396 PMCID: PMC10856365 DOI: 10.3390/jcm13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Neuromuscular electrical stimulation (NMES) has beneficial effects on physical functions in Multiple sclerosis (MS) patients. However, the neurophysiological mechanisms underlying these functional improvements are still unclear. This study aims at comparing acute responses in spinal excitability, as measured by soleus Hoffmann reflex (H-reflex), between MS patients and healthy individuals, under three experimental conditions involving the ankle planta flexor muscles: (1) passive NMES (pNMES); (2) NMES superimposed onto isometric voluntary contraction (NMES+); and (3) isometric voluntary contraction (ISO). (2) Methods: In total, 20 MS patients (MS) and 20 healthy individuals as the control group (CG) took part in a single experimental session. Under each condition, participants performed 15 repetitions of 6 s at 20% of maximal voluntary isometric contraction, with 6 s of recovery between repetitions. Before and after each condition, H-reflex amplitudes were recorded. (3) Results: In MS, H-reflex amplitude did not change under any experimental condition (ISO: p = 0.506; pNMES: p = 0.068; NMES+: p = 0.126). In CG, H-reflex amplitude significantly increased under NMES+ (p = 0.01), decreased under pNMES (p < 0.000) and was unaltered under ISO (p = 0.829). (4) Conclusions: The different H-reflex responses between MS and CG might reflect a reduced ability of MS patients in modulating spinal excitability.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Giovanna Borriello
- Neurology Unit, San Pietro Fatebenefratelli Hospital, MS Centre, 00189 Rome, Italy
| | - Francesco Sica
- Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.S.); (F.M.)
| | | | - Elisabetta Maida
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| |
Collapse
|
9
|
Effects of trunk neuromuscular electrical stimulation on the motor circuits of able-bodied individuals. Exp Brain Res 2023; 241:979-990. [PMID: 36918420 PMCID: PMC10082097 DOI: 10.1007/s00221-023-06585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Upper- and lower-limb neuromuscular electrical stimulation (NMES) is known to modulate the excitability of the neural motor circuits. However, it remains unclear whether short-duration trunk muscle NMES could achieve similar neuromodulation effects. We assessed motor evoked potentials (MEPs) elicited through transcranial magnetic stimulation of the primary motor cortex representation of the trunk extensor muscles to evaluate corticospinal excitability. Moreover, cervicomedullary motor evoked potentials (CMEPs) were assessed through cervicomedullary junction magnetic stimulation to evaluate subcortical excitability. Twelve able-bodied individuals participated in the MEP study, and another twelve in the CMEP study. During the interventions, NMES was applied bilaterally to activate the erector spinae muscle and produce intermittent contractions (20 s ON/20 s OFF) for a total of 20 min while participants remained seated. Assessments were performed: (i) before; (ii) during (in brief periods when NMES was OFF); and (iii) immediately after the interventions to compare MEP or CMEP excitability. Our results showed that MEP responses were not affected by trunk NMES, while CMEP responses were facilitated for approximately 8 min during the intervention, and returned to baseline before the end of the 20 min stimulating period. Our findings therefore suggest that short-duration NMES of the trunk extensor muscles likely does not affect the corticospinal excitability, but it has a potential to facilitate subcortical neural circuits immediately after starting the intervention. These findings indicate that short-duration application of NEMS may be helpful in rehabilitation to enhance neuromodulation of the trunk subcortical neural motor circuits.
Collapse
|
10
|
Koseki T, Kudo D, Yoshida K, Nito M, Takano K, Jin M, Tanabe S, Sato T, Katoh H, Yamaguchi T. Combined neuromuscular electrical stimulation and transcutaneous spinal direct current stimulation increases motor cortical plasticity in healthy humans. Front Neurosci 2023; 16:1034451. [PMID: 37091256 PMCID: PMC10115158 DOI: 10.3389/fnins.2022.1034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
IntroductionNeuromuscular electrical stimulation (NMES) induces neural plasticity of the central nervous system (CNS) and improves motor function in patients with CNS lesions. However, the extended stimulus duration of NMES reduces its clinical applicability. Transcutaneous spinal direct current stimulation (tsDCS), which increases afferent input, may enhance the effects and reduce the stimulus duration of NMES. This study investigated the excitability of the motor cortex, somatosensory cortex, and spinal motor neurons after the combined stimulation of NMES and tsDCS.MethodsAmong the 55 participants in this study, 24 were allocated to experiment 1, 15 to experiment 2, and 16 to experiment 3. They received intervention for 20 min on different days: (1) NMES combined with tsDCS (NMES + tsDCS), (2) NMES combined with sham tsDCS (NMES + sham tsDCS), and (3) sham NMES combined with tsDCS (sham NMES + tsDCS). NMES was delivered to the right common peroneal nerve at 25 Hz with the intensity at 120% of the motor threshold. For tsDCS, the cathodal electrode was positioned on the thoracic 10th–12th vertebral levels, and the anodal electrode was located on the right shoulder. The stimulus intensity was 2.5 mA. In experiment 1, motor evoked potentials (MEPs) and short-latency intracortical inhibition (SICI) were measured by transcranial magnetic stimulation up to 60 min after stimulation. The spinal motor neurons’ excitability was assessed by recording the posterior root muscle reflex (PRMR) induced via transcutaneous spinal cord stimulation in experiment 2, and the primary somatosensory cortex excitability was evaluated by recording the somatosensory evoked potentials (SEPs) in experiment 3 up to 15 min after stimulation.ResultsCompared to before the stimulation, NMES + tsDCS significantly increased MEP for 60 min or more, and significantly decreased SICI immediately after. Conversely contrast, the PRMR significantly decreased immediately after, and SEPs were unchanged.DiscussionThese results suggest that simultaneous afferent inputs from different stimulus positions critically induce primary motor cortex plasticity. The combined stimulation of NMES with tsDCS may facilitate the development of a new neurorehabilitation technique.
Collapse
Affiliation(s)
- Tadaki Koseki
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Daisuke Kudo
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Kaito Yoshida
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Mitsuhiro Nito
- Department of Anatomy and Structural Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Keita Takano
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Masafumi Jin
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Toshiaki Sato
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Hiroshi Katoh
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- *Correspondence: Tomofumi Yamaguchi,
| |
Collapse
|
11
|
Yamaguchi A, Sasaki A, Popovic MR, Milosevic M, Nakazawa K. Low-level voluntary input enhances corticospinal excitability during ankle dorsiflexion neuromuscular electrical stimulation in healthy young adults. PLoS One 2023; 18:e0282671. [PMID: 36888637 PMCID: PMC10045604 DOI: 10.1371/journal.pone.0282671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Previous evidence indicated that interventions with combined neuromuscular electrical stimulation (NMES) and voluntary muscle contractions could have superior effects on corticospinal excitability when the produced total force is larger than each single intervention. However, it is unclear whether the superior effects exist when the produced force is matched between the interventions. Ten able-bodied individuals performed three intervention sessions on separate days: (i) NMES-tibialis anterior (TA) stimulation; (ii) NMES+VOL-TA stimulation combined with voluntary ankle dorsiflexion; (iii) VOL-voluntary ankle dorsiflexion. Each intervention was exerted at the same total output of 20% of maximal force and applied intermittently (5 s ON / 19 s OFF) for 16 min. Motor evoked potentials (MEP) of the right TA and soleus muscles and maximum motor response (Mmax) of the common peroneal nerve were assessed: before, during, and for 30 min after each intervention. Additionally, the ankle dorsiflexion force-matching task was evaluated before and after each intervention. Consequently, the TA MEP/Mmax during NMES+VOL and VOL sessions were significantly facilitated immediately after the interventions started until the interventions were over. Compared to NMES, larger facilitation was observed during NMES+VOL and VOL sessions, but no difference was found between them. Motor control was not affected by any interventions. Although superior combined effects were not shown compared to voluntary contractions alone, low-level voluntary contractions combined with NMES resulted in facilitated corticospinal excitability compared to NMES alone. This suggests that the voluntary drive could improve the effects of NMES even during low-level contractions, even if motor control is not affected.
Collapse
Affiliation(s)
- Akiko Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyodaku, Tokyo, Japan
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Milos R. Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute, Toronto Rehabilitation Institute—University Health Network, Toronto, Ontario, Canada
- CRANIA, University Health Network & University of Toronto, Toronto, Ontario, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguroku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Effective corticospinal excitability neuromodulation elicited by short-duration concurrent and synchronized associative cortical and neuromuscular stimulations. Neurosci Lett 2022; 790:136910. [DOI: 10.1016/j.neulet.2022.136910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022]
|
13
|
Cao N, Sasaki A, Yuasa A, Popovic MR, Milosevic M, Nakazawa K. Short-term facilitation effects elicited by cortical priming through theta burst stimulation and functional electrical stimulation of upper-limb muscles. Exp Brain Res 2022; 240:1565-1578. [PMID: 35359173 DOI: 10.1007/s00221-022-06353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Non-invasive theta burst stimulation (TBS) can elicit facilitatory or inhibitory changes in the central nervous system when applied intermittently (iTBS) or continuously (cTBS). Conversely, neuromuscular electrical stimulation (NMES) can activate the muscles to send a sensory volley, which is also known to affect the excitability of the central nervous system. We investigated whether cortical iTBS (facilitatory) or cTBS (inhibitory) priming can affect subsequent NMES-induced corticospinal excitability. A total of six interventions were tested, each with 11 able-bodied participants: cortical priming followed by NMES (iTBS + NMES and cTBS + NMES), NMES only (iTBSsham + NMES and cTBSsham + NMES), and cortical priming only (iTBS + rest and cTBS + rest). After iTBS or cTBS priming, NMES was used to activate right extensor capri radialis (ECR) muscle intermittently for 10 min (5 s ON/5 s OFF). Single-pulse transcranial magnetic stimulation motor evoked potentials (MEPs) and maximum motor response (Mmax) elicited by radial nerve stimulation were compared before and after each intervention for 30 min. Our results showed that associative facilitatory iTBS + NMES intervention elicited greater MEP facilitation that lasted for at least 30 min after the intervention, while none of the interventions alone were effective to produce effects. We conclude that facilitatory iTBS priming can make the central nervous system more susceptible to changes elicited by NMES through sensory recruitment to enhance facilitation of corticospinal plasticity, while cTBS inhibitory priming efficacy could not be confirmed.
Collapse
Affiliation(s)
- Na Cao
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Akiko Yuasa
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.,KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada.,CRANIA, University Health Network and University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan.
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
14
|
Matsuo H, Kubota M, Hori Y, Izubuchi Y, Takahashi A, Watanabe S, Nakajima H, Matsumine A. Combining transcranial direct current stimulation and peripheral electrical stimulation to improve upper limb function in a patient with acute central cord syndrome: a case report. J Int Med Res 2022; 50:3000605221083248. [PMID: 35352598 PMCID: PMC8973073 DOI: 10.1177/03000605221083248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report the immediate improvement of weakened muscles after combined treatment with transcranial direct current stimulation (tDCS) and peripheral electrical stimulation (PES) in a patient with acute central cord syndrome (CCS) who presented with severe upper limb motor dysfunction. A 70-year-old man sustained CCS with severe motor deficits in the left upper limb, which did not improve with conventional training until 6 days after injury. On the seventh day after the injury, the left upper limb was targeted with combined tDCS (1 mA for 20 minutes/day, anode on the right, cathode on the left) and PES (deltoid and wrist extensors, 20 minutes/day at the motor threshold), and his performance score immediately improved from 0 to 6 on the Box and Block test. After four sessions, the left upper limb function improved to 32 on the Box and Block test, and manual muscle test scores of the stimulated deltoid and wrist extensors improved from 1 to 2. This improvement of the left upper limb led to improved self-care activities such as eating and changing clothes. Exercise combined with tDCS and PES may be a novel treatment for upper limb movement deficits after acute CCS.
Collapse
Affiliation(s)
- Hideaki Matsuo
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Masafumi Kubota
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Physical Therapy, Graduate Course of Rehabilitation Science, School of Health Sciences, College of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasue Hori
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Yuya Izubuchi
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Ai Takahashi
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan.,Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
15
|
Fang CY, Lien ASY, Tsai JL, Yang HC, Chan HL, Chen RS, Chang YJ. The Effect and Dose-Response of Functional Electrical Stimulation Cycling Training on Spasticity in Individuals With Spinal Cord Injury: A Systematic Review With Meta-Analysis. Front Physiol 2021; 12:756200. [PMID: 34867459 PMCID: PMC8640241 DOI: 10.3389/fphys.2021.756200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background: To investigate the effect and dose-response of functional electrical stimulation cycling (FES-cycling) training on spasticity in the individuals with spinal cord injury (SCI). Method: Five electronic databases [PubMed, Scopus, Medline (Proquest), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)] were searched before September 2021. The human trials and studies of English language were only included. Two authors independently reviewed and extracted the searched studies. The primary outcome measure was spasticity assessed by Modified Ashworth Scale or Ashworth Scale for lower limbs. The secondary outcome measures were walking abilities, such as 6 Min Walk Test (6MWT), Timed Up and Go (TUG), and lower limbs muscle strength (LEMS). A subgroup analysis was performed to investigate the efficacious threshold number of training sessions. A meta-regression analysis was used to examine the linear relationship between the training sessions and the effect on spasticity. Results: A total of 764 studies were identified. After screening, 12 selected studies were used for the qualitative synthesis, in which eight of them were quantitatively analyzed. Eight studies included ninety-nine subjects in total with SCI (male: female = 83:16). The time since injury was from less than 4 weeks to 17 years. The age ranged from 20 to 67 years. American Spinal Injury Association (ASIA) impairment level of the number of participants was 59 for ASIA A, 11 for ASIA B, 18 for ASIA C, and 11 for ASIA D. There were 43 subjects with tetraplegia and 56 subjects with paraplegia. Spasticity decreased significantly (95% CI = - 1.538 to - 0.182, p = 0.013) in favor of FES-cycling training. The walking ability and LEMS also improved significantly in favor of FES-cycling training. The subgroup analysis showed that spasticity decreased significantly only in more than 20 training sessions (95% CI = - 1.749 to - 0.149, p = 0.020). The meta-regression analysis showed training sessions and spasticity were not significantly associated (coefficient = - 0.0025, SE = 0.0129, p = 0.849, R 2 analog = 0.37). Conclusion: Functional electrical stimulation-cycling training can improve spasticity, walking ability, and the strength of the lower limbs in the individuals with SCI. The number of training sessions is not linearly related to the decrease of spasticity. Twenty sessions of FES-cycling training are required to obtain the efficacy to decrease spasticity.
Collapse
Affiliation(s)
- Chia-Ying Fang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Angela Shin-Yu Lien
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Ling Tsai
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Chu Yang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Lung Chan
- Department of Electrical Engineering, College of Engineering, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ju Chang
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
16
|
de Freitas RM, Sasaki A, Sayenko DG, Masugi Y, Nomura T, Nakazawa K, Milosevic M. Selectivity and excitability of upper-limb muscle activation during cervical transcutaneous spinal cord stimulation in humans. J Appl Physiol (1985) 2021; 131:746-759. [PMID: 34138648 DOI: 10.1152/japplphysiol.00132.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cervical transcutaneous spinal cord stimulation (tSCS) efficacy for rehabilitation of upper-limb motor function was suggested to depend on recruitment of Ia afferents. However, selectivity and excitability of motor activation with different electrode configurations remain unclear. In this study, activation of upper-limb motor pools was examined with different cathode and anode configurations during cervical tSCS in 10 able-bodied individuals. Muscle responses were measured from six upper-limb muscles simultaneously. First, postactivation depression was confirmed with tSCS paired pulses (50-ms interval) for each cathode configuration (C6, C7, and T1 vertebral levels), with anode on the anterior neck. Selectivity and excitability of activation of the upper-limb motor pools were examined by comparing the recruitment curves (10-100 mA) of first evoked responses across muscles and cathode configurations. Our results showed that hand muscles were preferentially activated when the cathode was placed over T1 compared with the other vertebral levels, whereas there was no selectivity for proximal arm muscles. Furthermore, higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles, suggesting different excitability thresholds between muscles. In a separate protocol, responses were compared between anode configurations (anterior neck, shoulders, iliac crests, and back), with one selected cathode configuration. The level of discomfort was also assessed. Largest muscle responses were elicited with the anode configuration over the anterior neck, whereas there were no differences in the discomfort. Our results therefore inform methodological considerations for electrode configuration to help optimize recruitment of Ia afferents during cervical tSCS.NEW & NOTEWORTHY We examined selectivity and excitability of motor activation in multiple upper-limb muscles during cervical transcutaneous spinal cord stimulation with different cathode and anode configurations. Hand muscles were more activated when the cathode was configured over the T1 vertebra compared with C6 and C7 locations. Higher stimulation intensities were required to activate distal hand muscles than proximal arm muscles. Finally, configuration of anode over anterior neck elicited larger responses compared with other configurations.
Collapse
Affiliation(s)
- Roberto M de Freitas
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan.,Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Yohei Masugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan.,Institute of Sports Medicine and Science, Tokyo International University, Kawagoe, Japan
| | - Taishin Nomura
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Matija Milosevic
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
17
|
Tchantchaleishvili V. Matija Milosevic to serve as an Associate Editor of Artificial Organs. Artif Organs 2021; 45:542-543. [PMID: 33982287 DOI: 10.1111/aor.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Milosevic M, Marquez-Chin C, Masani K, Hirata M, Nomura T, Popovic MR, Nakazawa K. Why brain-controlled neuroprosthetics matter: mechanisms underlying electrical stimulation of muscles and nerves in rehabilitation. Biomed Eng Online 2020; 19:81. [PMID: 33148270 PMCID: PMC7641791 DOI: 10.1186/s12938-020-00824-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Collapse
Affiliation(s)
- Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan.
| | - Cesar Marquez-Chin
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
- CRANIA, University Health Network & University of Toronto, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
19
|
Borzuola R, Labanca L, Macaluso A, Laudani L. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction. Eur J Appl Physiol 2020; 120:2105-2113. [PMID: 32676751 PMCID: PMC7419370 DOI: 10.1007/s00421-020-04430-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/03/2020] [Indexed: 02/03/2023]
Abstract
Purpose Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann (H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric contractions (NMES + ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each experimental condition (NMES + ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak H-reflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles. Results H-reflex amplitude was increased by 4.5% after the NMES + ISO condition (p < 0.05), while passive NMES and ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion The reported facilitation of spinal excitability following NMES + ISO could be due to a combination of greater motor neuronal and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Luciana Labanca
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luca Laudani
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
| |
Collapse
|
20
|
Hofstoetter US, Freundl B, Binder H, Minassian K. Recovery cycles of posterior root-muscle reflexes evoked by transcutaneous spinal cord stimulation and of the H reflex in individuals with intact and injured spinal cord. PLoS One 2019; 14:e0227057. [PMID: 31877192 PMCID: PMC6932776 DOI: 10.1371/journal.pone.0227057] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Posterior root-muscle (PRM) reflexes are short-latency spinal reflexes evoked by epidural or transcutaneous spinal cord stimulation (SCS) in clinical and physiological studies. PRM reflexes share key physiological characteristics with the H reflex elicited by electrical stimulation of large-diameter muscle spindle afferents in the tibial nerve. Here, we compared the H reflex and the PRM reflex of soleus in response to transcutaneous stimulation by studying their recovery cycles in ten neurologically intact volunteers and ten individuals with traumatic, chronic spinal cord injury (SCI). The recovery cycles of the reflexes, i.e., the time course of their excitability changes, were assessed by paired pulses with conditioning-test intervals of 20–5000 ms. Between the subject groups, no statistical difference was found for the recovery cycles of the H reflexes, yet those of the PRM reflexes differed significantly, with a striking suppression in the intact group. When comparing the reflex types, they did not differ in the SCI group, while the PRM reflexes were more strongly depressed in the intact group for durations characteristic for presynaptic inhibition. These differences may arise from the concomitant stimulation of several posterior roots containing afferent fibers of various lower extremity nerves by transcutaneous SCS, producing multi-source heteronymous presynaptic inhibition, and the collective dysfunction of inhibitory mechanisms after SCI contributing to spasticity. PRM-reflex recovery cycles additionally obtained for bilateral rectus femoris, biceps femoris, tibialis anterior, and soleus all demonstrated a stronger suppression in the intact group. Within both subject groups, the thigh muscles showed a stronger recovery than the lower leg muscles, which may reflect a characteristic difference in motor control of diverse muscles. Based on the substantial difference between intact and SCI individuals, PRM-reflex depression tested with paired pulses could become a sensitive measure for spasticity and motor recovery.
Collapse
Affiliation(s)
- Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
- * E-mail:
| | - Brigitta Freundl
- Neurological Center, Maria Theresien Schloessel, Otto Wagner Hospital, Vienna, Austria
| | - Heinrich Binder
- Neurological Center, Maria Theresien Schloessel, Otto Wagner Hospital, Vienna, Austria
| | - Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| |
Collapse
|
21
|
Bao SC, Leung WC, K Cheung VC, Zhou P, Tong KY. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil 2019; 16:143. [PMID: 31744520 PMCID: PMC6862792 DOI: 10.1186/s12984-019-0614-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Neuromuscular electrical stimulation (NMES) is extensively used in stroke motor rehabilitation. How it promotes motor recovery remains only partially understood. NMES could change muscular properties, produce altered sensory inputs, and modulate fluctuations of cortical activities; but the potential contribution from cortico-muscular couplings during NMES synchronized with dynamic movement has rarely been discussed. Method We investigated cortico-muscular interactions during passive, active, and NMES rhythmic pedaling in healthy subjects and chronic stroke survivors. EEG (128 channels), EMG (4 unilateral lower limb muscles) and movement parameters were measured during 3 sessions of constant-speed pedaling. Sensory-level NMES (20 mA) was applied to the muscles, and cyclic stimulation patterns were synchronized with the EMG during pedaling cycles. Adaptive mixture independent component analysis was utilized to determine the movement-related electro-cortical sources and the source dipole clusters. A directed cortico-muscular coupling analysis was conducted between representative source clusters and the EMGs using generalized partial directed coherence (GPDC). The bidirectional GPDC was compared across muscles and pedaling sessions for post-stroke and healthy subjects. Results Directed cortico-muscular coupling of NMES cycling was more similar to that of active pedaling than to that of passive pedaling for the tested muscles. For healthy subjects, sensory-level NMES could modulate GPDC of both ascending and descending pathways. Whereas for stroke survivors, NMES could modulate GPDC of only the ascending pathways. Conclusions By clarifying how NMES influences neuromuscular control during pedaling in healthy and post-stroke subjects, our results indicate the potential limitation of sensory-level NMES in promoting sensorimotor recovery in chronic stroke survivors.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Cheong Leung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Hong Kong, China.,The KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, 77030, TX, USA.,TIRR Memorial Hermann Research Center, Houston, 77030, TX, USA
| | - Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China. .,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Kato T, Sasaki A, Yokoyama H, Milosevic M, Nakazawa K. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Exp Brain Res 2019; 237:3195-3205. [PMID: 31602493 PMCID: PMC6882749 DOI: 10.1007/s00221-019-05660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hikaru Yokoyama
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.,Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|