1
|
Hervault M, Soh C, Wessel JR. Does the stop-signal P3 reflect inhibitory control? Cortex 2025; 183:232-250. [PMID: 39754857 PMCID: PMC11839379 DOI: 10.1016/j.cortex.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping. However, this association has been challenged repeatedly over recent years. Here, we perform a critical review of both the evidence in support of the association between this P3 index and inhibitory control, as well as its documented criticisms. We first comprehensively review literature from the past three decades that suggested a link between stop-signal P3 and inhibitory control. Second, we then replicate the key empirical patterns reported in that body of literature in a uniquely large stop-signal task EEG dataset (N = 255). Third, we then examine the criticisms raised against the view of P3 as an index of inhibitory control and evaluate the evidence supporting these arguments. Finally, we present an updated view of the process(es) reflected in the stop-signal P3. Specifically, we propose that the stop-signal P3 indexes a specific, selective inhibitory control process that critically contributes to action-stopping. This view is motivated by recent two-stage models of inhibitory control and emerging empirical data. Together, we hope to clarify the process(es) reflected in the stop-signal P3 and resolve the ongoing debates regarding its utility as an index of inhibitory control during action-stopping.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Tatz JR, Carlson MO, Lovig C, Wessel JR. Examining motor evidence for the pause-then-cancel model of action-stopping: insights from motor system physiology. J Neurophysiol 2024; 132:1589-1607. [PMID: 39412561 PMCID: PMC11573278 DOI: 10.1152/jn.00048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, "pause-then-cancel" models. These models propose that action-stopping involves two inhibitory processes: 1) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and 2) a slower Cancel process, which involves motor suppression specific to the cancelled action. A purported signature of the Pause process is global suppression, or the reduced corticospinal excitability (CSE) of task-unrelated effectors early on in action-stopping. However, unlike the Pause process, few (if any) motor system signatures of a Cancel process have been identified. Here, we used single- and paired-pulse transcranial magnetic stimulation (TMS) methods to comprehensively measure the local physiological excitation and inhibition of both responding and task-unrelated motor effector systems during action-stopping. Specifically, we measured CSE, short-interval intracortical inhibition (SICI), and the duration of the cortical silent period (CSP). Consistent with key predictions from the pause-then-cancel model, CSE measurements at the responding effector indicated that additional suppression was necessary to counteract Go-related increases in CSE during action-stopping, particularly at later timepoints. Increases in SICI on Stop-signal trials did not differ across task-related and task-unrelated effectors, or across timepoints. This suggests SICI as a potential source of global suppression. Increases in CSP duration on Stop-signal trials were more prominent at later timepoints and were related to individual differences in CSE. Our study provides further evidence from motor system physiology that multiple inhibitory processes influence action-stopping.NEW & NOTEWORTHY Current debate surrounds whether single- or dual-process models better account for human action-stopping ability. We show that motor suppression of a successfully stopped muscle follows a distinct time course compared with when that same muscle is unrelated to the stopping task. Our results further suggest that distinct local inhibitory neuron populations contribute to these unique sources of suppression. Our study provides evidence from motor system physiology that multiple inhibitory processes influence action-stopping.
Collapse
Affiliation(s)
- Joshua R Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, United States
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa, United States
| | - Madeline O Carlson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Carson Lovig
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, United States
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
3
|
García-López E, Parmentier FBR. Distraction by unexpected sounds: comparing response repetition and response switching. Front Psychol 2024; 15:1451008. [PMID: 39417033 PMCID: PMC11480036 DOI: 10.3389/fpsyg.2024.1451008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Numerous studies using oddball tasks have shown that unexpected sounds presented in a predictable or repeated sequence (deviant vs. standard sounds) capture attention and negatively impact ongoing behavioral performance. Here, we examine an aspect of this effect that has gone relatively unnoticed: the impact of deviant sounds is stronger for response repetitions than for response switches. Our approach was two-fold. First, we carried out a simulation to estimate the likelihood that stimuli sequences used in past work may not have used balanced proportions of response repetition and switch trials. More specifically, we sought to determine whether the larger distraction effect for response repetitions may have reflected a rarer, and thereby more surprising, occurrence of such trials. To do so, we simulated 10,000 stimuli sets for a 2-AFC task with a proportion of deviant trial of 0.1 or 0.16. Second, we carried out a 2-AFC oddball task in which participants judged the duration of a tone (short vs. long). We carefully controlled the sequence of stimuli to ensure to balance the proportions of response repetitions and response switches across the standard and deviant conditions. The results of the stimuli simulation showed that, contrary to our concerns, response switches were more likely than response repetitions when left uncontrolled for. This suggests that the larger distraction found for response repetition in past work may in fact have been underestimated. In the tone duration judgment task, the results showed a large impact of the response type on distraction as measured by response times: Deviants sounds significantly delayed response repetitions but notably accelerated switches. These findings suggest that deviant sound hinder response repetition and encourage or bias the cognitive system towards a change of responses. We discuss these findings in relation to the adaptive nature of the involuntary detection of unexpected stimuli and in relation to the notion of partial repetition costs. We argue that results are in line with the binding account as well as with the signaling theory.
Collapse
Affiliation(s)
- Elena García-López
- Neuropsychology and Cognition Group, Research Institute of Health Sciences, Department of Psychology, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Fabrice B. R. Parmentier
- Neuropsychology and Cognition Group, Research Institute of Health Sciences, Department of Psychology, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
4
|
Weber S, Salomoni SE, Hinder MR. Selective cancellation of reactive or anticipated movements: Differences in speed of action reprogramming, but not stopping. Cortex 2024; 177:235-252. [PMID: 38875737 DOI: 10.1016/j.cortex.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
The ability to inhibit movements is an essential component of a healthy executive control system. Two distinct but commonly used tasks to assess motor inhibition are the stop signal task (SST) and the anticipated response inhibition (ARI) task. The SST and ARI tasks are similar in that they both require cancelation of a prepotent movement; however, the SST involves cancelation of a speeded reaction to a temporally unpredictable signal, while the ARI task involves cancelation of an anticipated response that the participant has prepared to enact at a wholly predictable time. 33 participants (mean age = 33.3 years, range = 18-55 years) completed variants of the SST and ARI task. In each task, the majority of trials required bimanual button presses, while on a subset of trials a stop signal indicated that one of the presses should be cancelled (i.e., motor selective inhibition). Additional variants of the tasks also included trials featuring signals which were to be ignored, allowing for insights into the attentional component of the inhibitory response. Electromyographic (EMG) recordings allowed detailed comparison of the characteristics of voluntary action and cancellation. The speed of the inhibitory process was not influenced by whether the enacted movement was reactive (SST) or anticipated (ARI task). However, the ongoing (non-cancelled) component of anticipated movements was more efficient than reactive movements, as a result of faster action reprogramming (i.e., faster ongoing actions following successful motor selective inhibition). Older age was associated with both slower inhibition and slower action reprogramming across all reactive and anticipated tasks.
Collapse
Affiliation(s)
- Simon Weber
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| | - Sauro E Salomoni
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Fisher M, Trinh H, O'Neill J, Greenhouse I. Early Rise and Persistent Inhibition of Electromyography during Failed Stopping. J Cogn Neurosci 2024; 36:1412-1426. [PMID: 38683729 DOI: 10.1162/jocn_a_02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Reactively canceling movements is a vital feature of the motor system to ensure safety. This behavior can be studied in the laboratory using the stop-signal task. There remains ambiguity about whether a "point-of-no-return" exists, after which a response cannot be aborted. A separate question concerns whether motor system inhibition associated with attempted stopping persists when stopping is unsuccessful. We address these two questions using electromyography (EMG) in two stop-signal task experiments. Experiment 1 (n = 24) involved simple right and left index finger responses in separate task blocks. Experiment 2 (n = 28) involved a response choice between the right index and pinky fingers. To evaluate the approximate point of no return, we measured EMG in responding fingers during the 100 msec preceding the stop signal and observed significantly greater EMG amplitudes during failed than successful stopping in both experiments. Thus, EMG before the stop signal differentiated success, regardless of whether there was a response choice. To address whether motor inhibition persists after failed stopping, we assessed EMG peak-to-offset durations and slopes (i.e., rate of EMG decline) for go, failed stop, and successful stop (partial response) trials. EMG peak-to-offset was shorter and steeper for failed stopping compared to go and successful stop partial response trials, suggesting motor inhibition persists even when failing to stop. These findings indicate EMG is sensitive to a "transition zone" at which the relative likelihood of stop failure versus success inverts and also suggest peak-to-offset time of response-related EMG activity during failed stopping reflects stopping-related inhibition.
Collapse
|
6
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Tatz JR, Carlson MO, Lovig C, Wessel JR. Examining motor evidence for the pause-then-cancel model of action-stopping: Insights from motor system physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577976. [PMID: 38352621 PMCID: PMC10862812 DOI: 10.1101/2024.01.30.577976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, 'pause-then-cancel' models. These models propose that action-stopping involves two inhibitory processes: 1) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and 2) a slower Cancel process, which involves motor suppression specific to the cancelled action. A purported signature of the Pause process is global suppression, or the reduced corticospinal excitability (CSE) of task-unrelated effectors early on in action-stopping. However, unlike the Pause process, few (if any) motor system signatures of a Cancel process have been identified. Here, we used single- and paired-pulse TMS methods to comprehensively measure the local physiological excitation and inhibition of both responding and task-unrelated motor effector systems during action-stopping. Specifically, we measured CSE, short-interval intracortical inhibition (SICI), and the duration of the cortical silent period (CSP). Consistent with key predictions from the pause-then-cancel model, CSE measurements at the responding effector indicated that additional suppression was necessary to counteract Go-related increases in CSE during-action-stopping, particularly at later timepoints. Increases in SICI on Stop-signal trials did not differ across responding and non-responding effectors, or across timepoints. This suggests SICI as a potential source of global suppression. Increases in CSP duration on Stop-signal trials were more prominent at later timepoints. SICI and CSP duration therefore appeared most consistent with the Pause and Cancel processes, respectively. Our study provides further evidence from motor system physiology that multiple inhibitory processes influence action-stopping.
Collapse
Affiliation(s)
- Joshua R. Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
- Cognitive Control Collaborative University of Iowa, Iowa, USA
| | - Madeline O. Carlson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
| | - Carson Lovig
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
- Cognitive Control Collaborative University of Iowa, Iowa, USA
| |
Collapse
|
8
|
Wadsley CG, Cirillo J, Nieuwenhuys A, Byblow WD. A global pause generates nonselective response inhibition during selective stopping. Cereb Cortex 2023; 33:9729-9740. [PMID: 37395336 PMCID: PMC10472494 DOI: 10.1093/cercor/bhad239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Selective response inhibition may be required when stopping a part of a multicomponent action. A persistent response delay (stopping-interference effect) indicates nonselective response inhibition during selective stopping. This study aimed to elucidate whether nonselective response inhibition is the consequence of a global pause process during attentional capture or specific to a nonselective cancel process during selective stopping. Twenty healthy human participants performed a bimanual anticipatory response inhibition paradigm with selective stop and ignore signals. Frontocentral and sensorimotor beta-bursts were recorded with electroencephalography. Corticomotor excitability and short-interval intracortical inhibition in primary motor cortex were recorded with transcranial magnetic stimulation. Behaviorally, responses in the non-signaled hand were delayed during selective ignore and stop trials. The response delay was largest during selective stop trials and indicated that stopping-interference could not be attributed entirely to attentional capture. A stimulus-nonselective increase in frontocentral beta-bursts occurred during stop and ignore trials. Sensorimotor response inhibition was reflected in maintenance of beta-bursts and short-interval intracortical inhibition relative to disinhibition observed during go trials. Response inhibition signatures were not associated with the magnitude of stopping-interference. Therefore, nonselective response inhibition during selective stopping results primarily from a nonselective pause process but does not entirely account for the stopping-interference effect.
Collapse
Affiliation(s)
- Corey G Wadsley
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| | - Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Tatz JR, Mather A, Wessel JR. β-Bursts over Frontal Cortex Track the Surprise of Unexpected Events in Auditory, Visual, and Tactile Modalities. J Cogn Neurosci 2023; 35:485-508. [PMID: 36603039 PMCID: PMC9894628 DOI: 10.1162/jocn_a_01958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the fundamental ways in which the brain regulates and monitors behavior is by making predictions about the sensory environment and adjusting behavior when those expectations are violated. As such, surprise is one of the fundamental computations performed by the human brain. In recent years, it has been well established that one key aspect by which behavior is adjusted during surprise is inhibitory control of the motor system. Moreover, because surprise automatically triggers inhibitory control without much proactive influence, it can provide unique insights into largely reactive control processes. Recent years have seen tremendous interest in burst-like β frequency events in the human (and nonhuman) local field potential-especially over (p)FC-as a potential signature of inhibitory control. To date, β-bursts have only been studied in paradigms involving a substantial amount of proactive control (such as the stop-signal task). Here, we used two cross-modal oddball tasks to investigate whether surprise processing is accompanied by increases in scalp-recorded β-bursts. Indeed, we found that unexpected events in all tested sensory domains (haptic, auditory, visual) were followed by low-latency increases in β-bursting over frontal cortex. Across experiments, β-burst rates were positively correlated with estimates of surprise derived from Shannon's information theory, a type of surprise that represents the degree to which a given stimulus violates prior expectations. As such, the current work clearly implicates frontal β-bursts as a signature of surprise processing. We discuss these findings in the context of common frameworks of inhibitory and cognitive control after unexpected events.
Collapse
Affiliation(s)
- Joshua R. Tatz
- University of Iowa,University of Iowa Hospital and Clinics
| | | | - Jan R. Wessel
- University of Iowa,University of Iowa Hospital and Clinics
| |
Collapse
|
10
|
Marc IB, Giuffrida V, Ramawat S, Fiori L, Fontana R, Bardella G, Fagioli S, Ferraina S, Pani P, Brunamonti E. Restart errors reaction time of a two-step inhibition process account for the violation of the race model's independence in multi-effector selective stop signal task. Front Hum Neurosci 2023; 17:1106298. [PMID: 36845879 PMCID: PMC9950112 DOI: 10.3389/fnhum.2023.1106298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Goal-oriented actions often require the coordinated movement of two or more effectors. Sometimes multi-effector movements need to be adjusted according to a continuously changing environment, requiring stopping an effector without interrupting the movement of the others. This form of control has been investigated by the selective Stop Signal Task (SST), requiring the inhibition of an effector of a multicomponent action. This form of selective inhibition has been hypothesized to act through a two-step process, where a temporary global inhibition deactivating all the ongoing motor responses is followed by a restarting process that reactivates only the moving effector. When this form of inhibition takes place, the reaction time (RT) of the moving effector pays the cost of the previous global inhibition. However, it is poorly investigated if and how this cost delays the RT of the effector that was required to be stopped but was erroneously moved (Stop Error trials). Here we measure the Stop Error RT in a group of participants instructed to simultaneously rotate the wrist and lift the foot when a Go Signal occurred, and interrupt both movements (non-selective Stop version) or only one of them (selective Stop version) when a Stop Signal was presented. We presented this task in two experimental conditions to evaluate how different contexts can influence a possible proactive inhibition on the RT of the moving effector in the selective Stop versions. In one context, we provided the foreknowledge of the effector to be inhibited by presenting the same selective or non-selective Stop versions in the same block of trials. In a different context, while providing no foreknowledge of the effector(s) to be stopped, the selective and non-selective Stop versions were intermingled, and the information on the effector to be stopped was delivered at the time of the Stop Signal presentation. We detected a cost in both Correct and Error selective Stop RTs that was influenced by the different task conditions. Results are discussed within the framework of the race model related to the SST, and its relationship with a restart model developed for selective versions of this paradigm.
Collapse
Affiliation(s)
- Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Lorenzo Fiori
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy,Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Rome, Italy
| | - Roberto Fontana
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sabrina Fagioli
- Department of Education, University of Roma Tre, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy,*Correspondence: Emiliano Brunamonti,
| |
Collapse
|
11
|
Choo Y, Matzke D, Bowren MD, Tranel D, Wessel JR. Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation. eLife 2022; 11:e79667. [PMID: 36583378 PMCID: PMC9803357 DOI: 10.7554/elife.79667] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Inhibitory control is one of the most important control functions in the human brain. Much of our understanding of its neural basis comes from seminal work showing that lesions to the right inferior frontal gyrus (rIFG) increase stop-signal reaction time (SSRT), a latent variable that expresses the speed of inhibitory control. However, recent work has identified substantial limitations of the SSRT method. Notably, SSRT is confounded by trigger failures: stop-signal trials in which inhibitory control was never initiated. Such trials inflate SSRT, but are typically indicative of attentional, rather than inhibitory deficits. Here, we used hierarchical Bayesian modeling to identify stop-signal trigger failures in human rIFG lesion patients, non-rIFG lesion patients, and healthy comparisons. Furthermore, we measured scalp-EEG to detect β-bursts, a neurophysiological index of inhibitory control. rIFG lesion patients showed a more than fivefold increase in trigger failure trials and did not exhibit the typical increase of stop-related frontal β-bursts. However, on trials in which such β-bursts did occur, rIFG patients showed the typical subsequent upregulation of β over sensorimotor areas, indicating that their ability to implement inhibitory control, once triggered, remains intact. These findings suggest that the role of rIFG in inhibitory control has to be fundamentally reinterpreted.
Collapse
Affiliation(s)
- Yoojeong Choo
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
| | - Dora Matzke
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
| | - Mark D Bowren
- Department of Clinical and Health Psychology, University of FloridaGainesvilleUnited States
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| |
Collapse
|
12
|
Guan Y, Wessel JR. Two Types of Motor Inhibition after Action Errors in Humans. J Neurosci 2022; 42:7267-7275. [PMID: 35977828 PMCID: PMC9512573 DOI: 10.1523/jneurosci.1191-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022] Open
Abstract
Adaptive behavior requires the ability to appropriately react to action errors. Post-error slowing (PES) of response times is one of the most reliable phenomena in human behavior. It has been proposed that PES is partially achieved through inhibition of the motor system. However, there is no direct evidence for this link, or indeed, that the motor system is physiologically inhibited after errors altogether. Here, we used transcranial magnetic stimulation and electromyography to measure corticospinal excitability (CSE) across four experiments using a Simon task, in which female and male human participants sometimes committed errors. Errors were followed by reduced CSE at two different time points and in two different modes. Shortly after error commission (250 ms), CSE was broadly suppressed (i.e., even task-unrelated motor effectors were inhibited). During the preparation of the subsequent response, CSE was specifically reduced at task-relevant effectors only. This latter effect was directly related to PES, with stronger CSE suppression accompanying greater PES. This suggests that PES is achieved through increased inhibitory control during post-error responses. To provide converging evidence, we then reanalyzed an openly available EEG dataset that contained both Simon- and Stop-signal tasks using independent component analysis. We found that the same neural source component that indexed action cancellation in the stop-signal task also showed clear PES-related activity during post-error responses in the Simon task. Together, these findings provide evidence that post-error adaptation is partially achieved through motor inhibition. Moreover, inhibition is engaged in two modes (first nonselective, then selective), aligning with recent multistage theories of error processing.SIGNIFICANCE STATEMENT It is a common observation that humans implement a higher degree of caution when repeating an action during which they just committed a mistake. In the laboratory, such increased "caution" is reflected in post-error slowing of response latencies. Many competing theories exist regarding the precise neural mechanisms underlying post-error slowing. Using transcranial magnetic stimulation, we show that, after error commission, the human corticomotor system is momentarily inhibited, both immediately after an error and during the preparation of the next action. Moreover, motor inhibition during the latter time period is directly predictive of post-error slowing. This shows that inhibitory control is a key mechanism humans engage to regulate their own behavior in the aftermath of error commission.
Collapse
Affiliation(s)
- Yao Guan
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52245
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52245
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52245
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52245
| |
Collapse
|
13
|
González‐Villar A, Galdo‐Álvarez S, Carrillo‐de‐la‐Peña MT. Neural correlates of unpredictable Stop and non‐Stop cues in overt and imagined execution. Psychophysiology 2022; 59:e14019. [PMID: 35224733 PMCID: PMC9286458 DOI: 10.1111/psyp.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
The ability to inhibit incorrect behaviors is crucial for survival. In real contexts, cues that require stopping usually appear intermixed with indications to continue the ongoing action. However, in the classical Stop‐signal task (SST), the unpredictable stimuli are always signals that require inhibition. To understand the neural mechanisms activated by low‐probability nonstop cues, we recorded the electroencephalography from 23 young volunteers while they performed a modified SST where the unpredictable stimuli could be either Stop or confirmatory Go signals (CGo). To isolate the influence of motor output, the SST was performed during overt and covert execution. We found that, paradoxically, CGo stimuli activated motor inhibition processes, and evoked patterns of brain activity similar to those obtained after Stop signals (N2/P3 event‐related potentials and midfrontal theta power increase), though in lesser magnitude. These patterns were also observed during the imagined performance. Finally, applying machine learning procedures, we found that the brain activity evoked after CGo versus Stop signals can be classified above chance during both, overt and imagined execution. Our results provide evidence that unpredictable signals cause motor inhibition even when they require to continue an ongoing action. This study advances our understanding of the neural correlates of inhibition by using a modified Stop‐signal task where Stop signals were intermixed with cues to continue the ongoing action (CGo signals). CGo signals produced motor inhibition and EEG activity similar to Stop signals (both during overt and imagined performance). The neural activity related to CGo vs Stop signals could be decoded using a machine learning algorithm, indicating that Stop signals evoke a specific pattern of EEG activity.
Collapse
Affiliation(s)
- Alberto González‐Villar
- Psychological Neuroscience Lab, CIPsi, School of Psychology University of Minho Braga Portugal
| | - Santiago Galdo‐Álvarez
- Department of Clinical Psychology and Psychobiology University of Santiago de Compostela Santiago de Compostela Spain
| | - María T. Carrillo‐de‐la‐Peña
- BaP (Brain and Pain) Lab, Department of Clinical Psychology and Psychobiology University of Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
14
|
Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages. J Neurosci 2021; 41:8826-8838. [PMID: 34493541 DOI: 10.1523/jneurosci.1105-21.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
The ability to stop an already initiated action is paramount to adaptive behavior. Much scientific debate in the field of human action-stopping currently focuses on two interrelated questions. (1) Which cognitive and neural processes uniquely underpin the implementation of inhibitory control when actions are stopped after explicit stop signals, and which processes are instead commonly evoked by all salient signals, even those that do not require stopping? (2) Why do purported (neuro)physiological signatures of inhibition occur at two different latencies after stop signals? Here, we address both questions via two preregistered experiments that combined measurements of corticospinal excitability, EMG, and whole-scalp EEG. Adult human subjects performed a stop signal task that also contained "ignore" signals: equally salient signals that did not require stopping but rather completion of the Go response. We found that both stop- and ignore signals produced equal amounts of early-latency inhibition of corticospinal excitability and EMG, which took place ∼150 ms following either signal. Multivariate pattern analysis of the whole-scalp EEG data further corroborated that this early processing stage was shared between stop- and ignore signals, as neural activity following the two signals could not be decoded from each other until a later time period. In this later period, unique activity related to stop signals emerged at frontocentral scalp sites, reflecting an increased stop signal P3. These findings suggest a two-step model of action-stopping, according to which an initial, universal inhibitory response to the saliency of the stop signal is followed by a slower process that is unique to outright stopping.SIGNIFICANCE STATEMENT Humans often have to stop their ongoing actions when indicated by environmental stimuli (stop signals). Successful action-stopping requires both the ability to detect these salient stop signals and to subsequently inhibit ongoing motor programs. Because of this tight entanglement of attentional control and motor inhibition, identifying unique neurophysiological signatures of action-stopping is difficult. Indeed, we report that recently proposed early-latency signatures of motor inhibition during action-stopping are also found after salient signals that do not require stopping. However, using multivariate pattern analysis of scalp-recorded neural data, we also identified subsequent neural activity that uniquely distinguished action-stopping from saliency detection. These results suggest that actions are stopped in two stages: the first common to all salient events and the second unique to action-stopping.
Collapse
|
15
|
Hynd M, Soh C, Rangel BO, Wessel JR. Paired-pulse TMS and scalp EEG reveal systematic relationship between inhibitory GABA a signaling in M1 and fronto-central cortical activity during action stopping. J Neurophysiol 2021; 125:648-660. [PMID: 33439759 DOI: 10.1152/jn.00571.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By stopping actions even after their initiation, humans can flexibly adapt ongoing behavior to changing circumstances. The neural processes underlying the inhibition of movement during action stopping are still controversial. In the 90s, a fronto-central event-related potential (ERP) was discovered in the human EEG response to stop signals in the classic stop-signal task, alongside a proposal that this "stop-signal P3" reflects an inhibitory process. Indeed, both amplitude and onset of the stop-signal P3 relate to overt behavior and movement-related EEG activity in ways predicted by the dominant models of action-stopping. However, neither EEG nor behavior allow direct inferences about the presence or absence of neurophysiological inhibition of the motor cortex, making it impossible to definitively relate the stop-signal P3 to inhibition. Here, we therefore present a multimethod investigation of the relationship between the stop-signal P3 and GABAergic signaling in primary motor cortex, as indexed by paired-pulse transcranial magnetic stimulation (TMS). In detail, we measured short-interval intracortical inhibition (SICI), a marker of inhibitory GABAa activity in M1, in a group of 41 human participants who also performed the stop-signal task while undergoing EEG recordings. In line with the P3-inhibition hypothesis, we found that subjects with stronger inhibitory GABA activity in M1 also showed both faster onsets and larger amplitudes of the stop-signal P3. This provides direct evidence linking the properties of this ERP to a true physiological index of motor system inhibition. We discuss these findings in the context of recent theoretical developments and empirical findings regarding the neural implementation of motor inhibition.NEW & NOTEWORTHY The neural mechanisms underlying rapid action stopping in humans are subject to intense debate, in part because recordings of neural signals purportedly reflecting inhibitory motor control are hard to directly relate to the true, physiological inhibition of motor cortex. For the first time, the current study combines EEG and transcranial magnetic stimulation (TMS) methods to demonstrate a direct correspondence between fronto-central control-related EEG activity following signals to cancel an action and the physiological inhibition of primary motor cortex.
Collapse
Affiliation(s)
- Megan Hynd
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Benjamin O Rangel
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| |
Collapse
|