1
|
Finn HT, Parono M, Bye EA, Taylor JL, Gandevia SC, Héroux ME, Butler JE. Differential effects of stimulation waveform and intensity on the neural structures activated by lumbar transcutaneous spinal cord stimulation. J Neurophysiol 2025; 133:447-463. [PMID: 39718492 DOI: 10.1152/jn.00266.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown. In 15 participants (9 F, 6 M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) with conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MG) muscles. TSS was paired with transcranial magnetic stimulation (TMS) over the contralateral motor cortex at relative interstimulus intervals (ISIs) (-10 ms to 11 ms), centered on the ISI when TSS and TMS inputs simultaneously activated VM motoneurons. Doublet TSS was delivered at 80-ms ISI. For VM, the area of the combined response evoked by paired TMS and TSS was not facilitated at any ISI. For TA and MG, combined responses were facilitated by ∼40-100% when TMS activated the motoneurons before or at a similar time as TSS, particularly with suprathreshold TSS. Additionally, for TA, there was greater suppression of the second sEMR evoked by TSS doublets using suprathreshold conventional TSS compared to high-frequency burst TSS (P < 0.001). The results suggest that for VM TSS activated predominantly motor axons, but for TA and MG facilitation of the sEMR by TMS suggests that TSS activated sensory axons. Stimulation waveforms had similar outcomes in most conditions.NEW & NOTEWORTHY Transcutaneous spinal cord stimulation (TSS) can evoke muscle responses by activation of sensory and/or motor axons. The relative contribution of these varies across the muscles tested. We found evidence for activation of sensory axons with TSS for tibialis anterior and medial gastrocnemius but not for vastus medialis. In cases where sensory axons were activated, conventional TSS activated relatively more sensory axons than high-frequency burst TSS.
Collapse
Affiliation(s)
- Harrison T Finn
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Marel Parono
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Elizabeth A Bye
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- Edith Cowan University, Joondalup, Western Australia, Australia
| | - Simon C Gandevia
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Martin E Héroux
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E Butler
- Spinal Cord Injury Research Centre, Neuroscience Research Australia, Randwick, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Nakagawa K, Kakehata G, Kaneko N, Masugi Y, Osu R, Iso S, Kanosue K, Nakazawa K. Reciprocal inhibition of the thigh muscles in humans: A study using transcutaneous spinal cord stimulation. Physiol Rep 2024; 12:e16039. [PMID: 38740563 DOI: 10.14814/phy2.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Evaluating reciprocal inhibition of the thigh muscles is important to investigate the neural circuits of locomotor behaviors. However, measurements of reciprocal inhibition of thigh muscles using spinal reflex, such as H-reflex, have never been systematically established owing to methodological limitations. The present study aimed to clarify the existence of reciprocal inhibition in the thigh muscles using transcutaneous spinal cord stimulation (tSCS). Twenty able-bodied male individuals were enrolled. We evoked spinal reflex from the biceps femoris muscle (BF) by tSCS on the lumber posterior root. We examined whether the tSCS-evoked BF reflex was reciprocally inhibited by the following conditionings: (1) single-pulse electrical stimulation on the femoral nerve innervating the rectus femoris muscle (RF) at various inter-stimulus intervals in the resting condition; (2) voluntary contraction of the RF; and (3) vibration stimulus on the RF. The BF reflex was significantly inhibited when the conditioning electrical stimulation was delivered at 10 and 20 ms prior to tSCS, during voluntary contraction of the RF, and during vibration on the RF. These data suggested a piece of evidence of the existence of reciprocal inhibition from the RF to the BF muscle in humans and highlighted the utility of methods for evaluating reciprocal inhibition of the thigh muscles using tSCS.
Collapse
Affiliation(s)
- Kento Nakagawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Department of Sports and Health Management, Faculty of Business and Information Sciences, Jobu University, Isesaki, Gunma, Japan
| | - Gaku Kakehata
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Naotsugu Kaneko
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Yohei Masugi
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe, Saitama, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Shigeo Iso
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Kazuyuki Kanosue
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
- Institute of Health and Sports Science and Medicine, Juntendo University, Inzai, Chiba, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| |
Collapse
|
3
|
Gordineer EA, Stokic DS, Krenn MJ. Distinguishing reflex from non-reflex responses elicited by transcutaneous spinal stimulation targeting the lumbosacral cord in healthy individuals. Exp Brain Res 2024:10.1007/s00221-024-06790-2. [PMID: 38416179 DOI: 10.1007/s00221-024-06790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
Transcutaneous spinal stimulation (TSS) studies rely on the depolarization of afferent fibers to provide input to the spinal cord; however, this has not been routinely ascertained. Thus, we aimed to characterize the types of responses evoked by TSS and establish paired-pulse ratio cutoffs that distinguish posterior root reflexes, evoked by stimulation of afferent nerve fibers, from motor responses, evoked by stimulation of efferent nerve fibers. Twelve neurologically intact participants (six women) underwent unipolar TSS (cathode over T11-12 spinal processes, anode paraumbilically) while resting supine. In six participants, unipolar TSS was repeated 2-3 months later and also compared to a bipolar TSS configuration (cathode 2.5 cm below T11-12, anode 5 cm above cathode). EMG signals were recorded from 16 leg muscles. A paired-pulse paradigm was applied at interstimulus intervals (ISIs) of 25, 50, 100, 200, and 400 ms. Responses were categorized by three assessors into reflexes, motor responses, or their combination (mixed responses) based on the visual presence/absence of paired-pulse suppression across ISIs. The paired-pulse ratio that best discriminated between response types was derived for each ISI. These cutoffs were validated by repeating unipolar TSS 2-3 months later and with bipolar TSS. Unipolar TSS evoked only reflexes (90%) and mixed responses (10%), which were mainly recorded in the quadriceps muscles (25-42%). Paired-pulse ratios of 0.51 (25-ms ISI) and 0.47 (50-ms ISI) best distinguished reflexes from mixed responses (100% sensitivity, > 99.2% specificity). These cutoffs performed well in the repeated unipolar TSS session (100% sensitivity, > 89% specificity). Bipolar TSS exclusively elicited reflexes which were all correctly classified. These results can be utilized in future studies to ensure that the input to the spinal cord originates from the depolarization of large afferents. This knowledge can be applied to improve the design of future neurophysiological studies and increase the fidelity of neuromodulation interventions.
Collapse
Affiliation(s)
- Elizabeth A Gordineer
- School of Graduate Studies in the Health Sciences, Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA
| | - Matthias J Krenn
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, USA.
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA.
| |
Collapse
|
4
|
Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation. J Clin Med 2021; 10:jcm10235543. [PMID: 34884249 PMCID: PMC8658162 DOI: 10.3390/jcm10235543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Transcutaneous spinal cord stimulation is a non-invasive method for neuromodulation of sensorimotor function. Its main mechanism of action results from the activation of afferent fibers in the posterior roots-the same structures as targeted by epidural stimulation. Here, we investigated the influence of sagittal spine alignment on the capacity of the surface-electrode-based stimulation to activate these neural structures. We evaluated electromyographic responses evoked in the lower limbs of ten healthy individuals during extension, flexion, and neutral alignment of the thoracolumbar spine. To control for position-specific effects, stimulation in these spine alignment conditions was performed in four different body positions. In comparison to neutral and extended spine alignment, flexion of the spine resulted in a strong reduction of the response amplitudes. There was no such effect on tibial-nerve evoked H reflexes. Further, there was a reduction of post-activation depression of the responses to transcutaneous spinal cord stimulation evoked in spinal flexion. Thus, afferent fibers were reliably activated with neutral and extended spine alignment. Spinal flexion, however, reduced the capacity of the stimulation to activate afferent fibers and led to the co-activation of motor fibers in the anterior roots. This change of action was due to biophysical rather than neurophysiological influences. We recommend applying transcutaneous spinal cord stimulation in body positions that allow individuals to maintain a neutral or extended spine.
Collapse
|
5
|
Megía-García Á, Serrano-Muñoz D, Comino-Suárez N, Del-Ama AJ, Moreno JC, Gil-Agudo A, Taylor J, Gómez-Soriano J. Effect of posture and body weight loading on spinal posterior root reflex responses. Eur J Neurosci 2021; 54:6575-6586. [PMID: 34494329 DOI: 10.1111/ejn.15448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
The posterior root muscle response (PRM) is a monosynaptic reflex that is evoked by single pulse transcutaneous spinal cord stimulation (tSCS). The main aim of this work was to analyse how body weight loading influences PRM reflex threshold measured from several lower limb muscles in healthy participants. PRM reflex responses were evoked with 1-ms rectangular monophasic pulses applied at an interval of 6 s via a self-adhesive electrode (9 × 5 cm) at the T11-T12 vertebral level. Surface electromyographic activity of lower limb muscles was recorded during four different conditions, one in decubitus supine (DS) and the other three involving standing at 100%, 50%, and 0% body weight loading (BW). PRM threshold intensity, peak-to-peak amplitude, and latency for each muscle were analysed in different conditions study. PRM reflex threshold increased with body weight unloading compared with DS, and the largest change was observed between DS and 0% BW for the proximal muscles and between DS and 50% BW for distal muscles. Peak-to-peak amplitude analysis showed only a significant mean decrease of 34.6% (SD 10.4, p = 0.028) in TA and 53.6% (SD 15.1, p = 0.019) in GM muscles between DS and 50% BW. No significant differences were observed for PRM latency. This study has shown that sensorimotor networks can be activated with tSCS in various conditions of body weight unloading. Higher stimulus intensities are necessary to evoke reflex response during standing at 50% body weight loading. These results have practical implications for gait rehabilitation training programmes that include body weight support.
Collapse
Affiliation(s)
- Álvaro Megía-García
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| | - Natalia Comino-Suárez
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Antonio J Del-Ama
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Rey Juan Carlos University, Madrid, Spain
| | - Juan C Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel Gil-Agudo
- Biomechanical and Technical Aids Unit, National Hospital for Paraplegia, SESCAM, Toledo, Spain
| | - Julian Taylor
- Sensorimotor Function Group, National Hospital for Paraplegia, SESCAM, Toledo, Spain.,Harris Manchester College, University of Oxford, Oxford, UK
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing, Castilla La Mancha University, Toledo, Spain
| |
Collapse
|
6
|
Intra-limb modulations of posterior root-muscle reflexes evoked from the lower-limb muscles during isometric voluntary contractions. Exp Brain Res 2021; 239:3035-3043. [PMID: 34363090 PMCID: PMC8536641 DOI: 10.1007/s00221-021-06187-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/01/2021] [Indexed: 12/02/2022]
Abstract
Although voluntary muscle contraction modulates spinal reflex excitability of contracted muscles and other muscles located at other segments within a limb (i.e., intra-limb modulation), to what extent corticospinal pathways are involved in intra-limb modulation of spinal reflex circuits remains unknown. The purpose of the present study was to identify differences in the involvement of corticospinal pathways in intra-limb modulation of spinal reflex circuits among lower-limb muscles during voluntary contractions. Ten young males performed isometric plantar-flexion, dorsi-flexion, knee extension, and knee flexion at 10% of each maximal torque. Electromyographic activity was recorded from soleus, tibialis anterior, vastus lateralis, and biceps femoris muscles. Motor evoked potentials and posterior root-muscle reflexes during rest and isometric contractions were elicited from the lower-limb muscles using transcranial magnetic stimulation and transcutaneous spinal cord stimulation, respectively. Motor evoked potential and posterior root-muscle reflex amplitudes of soleus during knee extension were significantly increased compared to rest. The motor evoked potential amplitude of biceps femoris during dorsi-flexion was significantly increased, whereas the posterior root-muscle reflex amplitude of biceps femoris during dorsi-flexion was significantly decreased compared to rest. These results suggest that corticospinal and spinal reflex excitabilities of soleus are facilitated during knee extension, whereas intra-limb modulation of biceps femoris during dorsi-flexion appeared to be inverse between corticospinal and spinal reflex circuits.
Collapse
|