1
|
Hirata K, Hanawa H, Miyazawa T, Kanemura N. Impact of unilateral knee restraint on symmetry adaptation and double-support phase dynamic stability during split-belt walking. Exp Brain Res 2025; 243:61. [PMID: 39912907 DOI: 10.1007/s00221-025-07006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
The split-belt treadmill task is an effective tool for studying walking adaptation, particularly the symmetry adaptation of spatiotemporal parameters such as step length and double support time. This study aimed to evaluate the relationship between symmetry adaptation of spatiotemporal parameters and dynamic stability during the double-support phase in split-belt walking. We hypothesized that restraining fast-side knee extension, which is necessary for step lengthening during adaptation, would decrease dynamic stability during the double-support phase. Ten able-bodied male participants performed split-belt walking tasks under three conditions: control, fast-side knee restraint, and slow-side knee restraint. Our findings revealed that slow-side knee restraint disrupted symmetry in double support time and significantly decreased stability on the fast side during the early and late adaptation phases. Contrary to our hypothesis, fast-side knee restraint did not have a statistically significant effect on dynamic stability or symmetry. These results suggest that decreased dynamic stability during the double-support phase, particularly due to limitations in the movement of the trailing leg, may hinder the adaptation process. This study highlights the importance of dynamic stability control during the double-support phase for successful walking adaptation. Future studies with larger sample sizes and varying speed conditions are recommended to generalize these findings and develop targeted interventions to improve walking adaptability and dynamic stability.
Collapse
Affiliation(s)
- Keisuke Hirata
- Department of Rehabilitation, Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama-shi, Saitama, 350-1398, Japan.
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, 820 Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan.
| | - Hiroki Hanawa
- Department of Rehabilitation, Faculty of Health Science, University of Human Arts and Sciences, 354-3 Shinshoji-Guruwa, Ota-aza, Iwatsuki-ku, Saitama-shi, Saitama, 339-8555, Japan
| | - Taku Miyazawa
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, 820 Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan
- Department of Rehabilitation, Faculty of Health Science, University of Human Arts and Sciences, 354-3 Shinshoji-Guruwa, Ota-aza, Iwatsuki-ku, Saitama-shi, Saitama, 339-8555, Japan
| | - Naohiko Kanemura
- Graduate Course of Health and Social Services, Graduate School of Saitama Prefectural University, 820 Sannomiya, Koshigaya-shi, Saitama, 343-8540, Japan
| |
Collapse
|
2
|
Bogard AT, Hemmerle MR, Smith AC, Tan AQ. Enhanced motor learning and motor savings after acute intermittent hypoxia are associated with a reduction in metabolic cost. J Physiol 2024; 602:5879-5899. [PMID: 37983629 PMCID: PMC11102937 DOI: 10.1113/jp285425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Breathing mild bouts of low oxygen air (i.e. acute intermittent hypoxia, AIH) has been shown to improve locomotor function in humans after a spinal cord injury. How AIH-induced gains in motor performance are achieved remains unclear. We examined the hypothesis that AIH augments motor learning and motor retention during a locomotor adaptation task. We further hypothesized that gains in motor learning and retention will be associated with reductions in net metabolic power, consistent with the acquisition of energetically favourable mechanics. Thirty healthy individuals were randomly allocated into either a control group or an AIH group. We utilized a split-belt treadmill to characterize adaptations to an unexpected belt speed perturbation of equal magnitude during an initial exposure and a second exposure. Adaptation was characterized by changes in spatiotemporal step asymmetry, anterior-posterior force asymmetry, and net metabolic power. While both groups adapted by reducing spatial asymmetry, only the AIH group achieved significant reductions in double support time asymmetry and propulsive force asymmetry during both the initial and the second exposures to the belt speed perturbation. Net metabolic power was also significantly lower in the AIH group, with significant reductions from the initial perturbation exposure to the second. These results provide the first evidence that AIH mediates improvements in both motor learning and retention. Further, our results suggest that reductions in net metabolic power continue to be optimized upon subsequent learning and are driven by more energetically favourable temporal coordination strategies. Our observation that AIH facilitates motor learning and retention can be leveraged to design rehabilitation interventions that promote functional recovery. KEY POINTS: Brief exposures to low oxygen air, known as acute intermittent hypoxia (AIH), improves locomotor function in humans after a spinal cord injury, but it remains unclear how gains in motor performance are achieved. In this study, we tested the hypothesis that AIH induces enhancements in motor learning and retention by quantifying changes in interlimb coordination, anterior-posterior force symmetry and metabolic cost during a locomotor adaptation task. We show the first evidence that AIH improves both motor learning and savings of newly learned temporal interlimb coordination strategies and force asymmetry compared to untreated individuals. We further demonstrate that AIH elicits greater reductions in metabolic cost during motor learning that continues to be optimized upon subsequent learning. Our findings suggest that AIH-induced gains in locomotor performance are facilitated by enhancements in motor learning and retention of more energetically favourable coordination strategies.
Collapse
Affiliation(s)
- Alysha T Bogard
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Makenna R Hemmerle
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
| | - Andrew C Smith
- Dept. of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew Q Tan
- Sensorimotor Recovery and Neuroplasticity Lab at the University of Colorado, Boulder, CO, USA
- Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
Moradian N, Ko M, Hurt CP, Brown DA. Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals. Front Hum Neurosci 2023; 17:1214967. [PMID: 38111676 PMCID: PMC10725924 DOI: 10.3389/fnhum.2023.1214967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/14/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Backward-directed resistance is the resistance applied in the opposite direction of the individual's walking motion. Progressive application of backward-directed resistance during walking at a target speed engages adaptive motor control to maintain that speed. During split-belt walking, a motor control strategy must be applied that allows the person to keep up with the two belts to maintain their position on the treadmill. This situation becomes more challenging when progressive resistance is applied since each limb needs to adapt to the greater resistance to maintain the position. We propose that strategies aimed at changing relative propulsion forces with each limb may explain the motor control strategy used. This study aimed to identify the changes in propulsive force dynamics that allow individuals to maintain their position while walking on an instrumented split-belt treadmill with progressively increasing backward-directed resistance. Methods We utilized an instrumented split-belt treadmill while users had to overcome a set of increasing backward-directed resistance through the center of mass. Eighteen non-impaired participants (mean age = 25.2 ± 2.51) walked against five levels of backward resistance (0, 5, 10, 15, and 20% of participant's body weight) in two different modalities: single-belt vs. split-belt treadmill. On the single-belt mode, the treadmill's pace was the participant's comfortable walking speed (CWS). In split-belt mode, the dominant limb's belt pace was half of the CWS, and the non-dominant limb's belt speed was at the CWS. Results We assessed differences between single-belt vs. split-belt conditions in the slope of the linear relationship between change in propulsive impulse relative to change of backward resistance amount. In split-belt conditions, the slower limb showed a significantly steeper increase in propulsion generation compared to the fast limb across resistance levels. Discussion As a possible explanation, the slow limb also exhibited a significantly increased slope of the change in trailing limb angle (TLA), which was strongly correlated to the propulsive impulse slope values. We conclude that the motor control strategy used to maintain position on a split-belt treadmill when challenged with backward-directed resistance is to increase the propulsive forces of the slow limb relative to the fast limb by progressively increasing the TLA. Clinical trial registration ClinicalTrials.gov, identifier NCT04877249.
Collapse
Affiliation(s)
- Negar Moradian
- Department of Physical Therapy, School of Health Professions, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mansoo Ko
- Department of Physical Therapy, School of Health Professions, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Christopher P. Hurt
- Department of Physical Therapy, School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - David A. Brown
- Department of Physical Therapy, School of Health Professions, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
4
|
Liang T, Miao H, Wang H, Liu X, Liu X. Surface Electromyography-Based Analysis of the Lower Limb Muscle Network and Muscle Synergies at Various Gait Speeds. IEEE Trans Neural Syst Rehabil Eng 2023; 31:1230-1237. [PMID: 37022413 DOI: 10.1109/tnsre.2023.3242911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gait movement is an important activity in daily human life. The coordination of gait movement is directly affected by the cooperation and functional connectivity between muscles. However, the mechanisms of muscle operation at different gait speeds remain unclear. Therefore, this study addressed the gait speed effect on the changes in cooperative modules and functional connectivity between muscles. To this end, surface electromyography (sEMG) signals were collected from eight key lower extremity muscles of twelve healthy subjects walking on a treadmill at high, middle, and low motion speeds. Nonnegative matrix factorization (NNMF) was applied to the sEMG envelope and intermuscular coherence matrix, yielding five muscle synergies. Muscle functional networks were constructed by decomposing the intermuscular coherence matrix, revealing different layers of functional muscle networks across frequencies. In addition, the coupling strength between cooperative muscles grew with gait speed. Different coordination patterns among muscles with changes in gait speed related to the neuromuscular system regulation were identified.
Collapse
|
5
|
Sato SD, Choi JT. Corticospinal drive is associated with temporal walking adaptation in both healthy young and older adults. Front Aging Neurosci 2022; 14:920475. [PMID: 36062156 PMCID: PMC9436318 DOI: 10.3389/fnagi.2022.920475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is associated with reduced corticospinal drive to leg muscles during walking. Older adults also exhibit slower or reduced gait adaptation compared to young adults. The objective of this study was to determine age-related changes in the contribution of corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), medial, and lateral gastrocnemius (MGAS, LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they adapted walking on a split-belt treadmill. We quantified EMG-EMG coherence in the beta-gamma (15-45 Hz) and alpha-band (8-15 Hz) frequencies. Young adults demonstrated higher coherence in both the beta-gamma band coherence and alpha band coherence, although effect sizes were greater in the beta-gamma frequency. The results showed that slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early adaptation in double support time. In contrast, early adaptation in step length symmetry was predicted by age group alone. These findings suggest an important role of corticospinal drive in adapting interlimb timing during walking in both young and older adults.
Collapse
Affiliation(s)
- Sumire D. Sato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Julia T. Choi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
6
|
Oshima A, Nakamura Y, Kamibayashi K. Modulation of Muscle Synergies in Lower-Limb Muscles Associated With Split-Belt Locomotor Adaptation. Front Hum Neurosci 2022; 16:852530. [PMID: 35845245 PMCID: PMC9279664 DOI: 10.3389/fnhum.2022.852530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Humans have great locomotor adaptability to environmental demands, which has been investigated using a split-belt treadmill with belts on both the left and right sides. Thus far, neuromuscular control in split-belt locomotor adaptation has been evaluated by analyzing muscle activities at the individual muscle level. Meanwhile, in the motor control field, the muscle synergy concept has been proposed. Muscle synergies are considered the fundamental building blocks of movement and are groups of coactive muscles and time-varying activation patterns, thereby, reflecting the neurophysiological characteristics of movement. To date, it remains unclear how such muscle synergies change during the adaptation and de-adaptation processes on the split-belt treadmill. Hence, we chronologically extracted muscle synergies while walking on the split-belt treadmill and examined changes in the number, muscle weightings, and temporal activation patterns of muscle synergies. Twelve healthy young males participated, and surface electromyography (EMG) signals were recorded bilaterally from 13 lower-limb muscles. Muscle synergies were extracted by applying non-negative matrix factorization to the EMG data of each leg. We found that during split-belt walking, the number of synergies in the slow leg increased while an extra synergy appeared and disappeared in the fast leg. Additionally, the areas under the temporal activation patterns in several synergies in both legs decreased. When both belts returned to the same speed, a decrease in the number of synergies and an increase in the areas under the temporal activation patterns of several synergies were temporally shown in each leg. Subsequently, the number of synergies and the areas under the temporal activation patterns returned to those of normal walking before split-belt walking. Thus, changes in the number, muscle weightings, and temporal activation patterns of synergies were noted in the split-belt locomotor adaptation, suggesting that the adaptation and de-adaptation occurred at the muscle synergy level.
Collapse
Affiliation(s)
- Atsushi Oshima
- Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasuo Nakamura
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - Kiyotaka Kamibayashi
- Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan
- *Correspondence: Kiyotaka Kamibayashi,
| |
Collapse
|
7
|
Different modulation of oscillatory common neural drives to ankle muscles during abrupt and gradual gait adaptations. Exp Brain Res 2022; 240:871-886. [DOI: 10.1007/s00221-021-06294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
|