1
|
Yildirim MS, Guclu-Gunduz A, Ozkul C, Korkmaz S. Investigating the acute effect of low and moderate intensity aerobic exercise on whole-body task learning and cognition in young adults. Eur J Neurosci 2024; 60:5203-5216. [PMID: 39136270 DOI: 10.1111/ejn.16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/08/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024]
Abstract
Recent studies have shown that a single bout of exercise has acute improvements on various forms of memory, including procedural motor learning, through mechanisms such as the plasticity-promoting effect. This study aimed to examine (1) the acute effects of timing and intensity of aerobic exercise on the acquisition and retention of motor learning in healthy adults, (2) the effect of sleep quality of the night before and after acquisition on motor learning, and (3) the acute effects of low and moderate-intensity aerobic exercise on cognitive functions. Seventy-five healthy adults were divided into five groups: Two groups performed low or moderate intensity aerobic exercise before motor practice; two groups performed low or moderate intensity aerobic exercise after motor practice; the control group only did motor practice. Low- and moderate-intensity exercises consisted of 30 min of running at 57%-63% and 64%-76% of the maximum heart rate, respectively. Motor learning was assessed using a golf putting task. The sleep quality of the night before and after the acquisition was evaluated using the Richard Campbell Sleep Questionnaire. Cognitive function was assessed before and after aerobic exercise using the Paced Auditory Serial Acquisition Task test. Results indicated that all groups demonstrated acquisition, 1-day and 7-day retention at a similar level (p > 0.05). Regression analysis revealed no significant relationship between sleep quality on the night before the experimental day and total acquisition (p > 0.05). However, a positive correlation was found between the sleep quality on the night of the experimental day and both 1-day and 7-day retention (p < 0.05). A single bout of low or moderate acute exercise did not modify motor skill acquisition and retention. Other results showed the importance of night sleep quality on the retention and proved that a single bout of moderate intensity exercise was associated with improved cognitive function.
Collapse
Affiliation(s)
- Muhammed Seref Yildirim
- Department of Physiotherapy and Rehabilitation, Trakya University Faculty of Health Sciences, Edirne, Türkiye
| | - Arzu Guclu-Gunduz
- Department of Physiotherapy and Rehabilitation, Gazi University Faculty of Health Sciences, Ankara, Türkiye
| | - Cagla Ozkul
- Department of Physiotherapy and Rehabilitation, Gazi University Faculty of Health Sciences, Ankara, Türkiye
| | - Selcuk Korkmaz
- Department of Biostatistics and Medical Informatics, Trakya University Faculty of Medicine, Edirne, Türkiye
| |
Collapse
|
2
|
Taylor EM, Cadwallader CJ, Curtin D, Chong TTJ, Hendrikse JJ, Coxon JP. High-intensity acute exercise impacts motor learning in healthy older adults. NPJ SCIENCE OF LEARNING 2024; 9:9. [PMID: 38368455 PMCID: PMC10874400 DOI: 10.1038/s41539-024-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Healthy aging is associated with changes in motor sequence learning, with some studies indicating decline in motor skill learning in older age. Acute cardiorespiratory exercise has emerged as a potential intervention to improve motor learning, however research in healthy older adults is limited. The current study investigated the impact of high-intensity interval exercise (HIIT) on a subsequent sequential motor learning task. Twenty-four older adults (aged 55-75 years) completed either 20-minutes of cycling, or an equivalent period of active rest before practicing a sequential force grip task. Skill learning was assessed during acquisition and at a 6-hour retention test. In contrast to expectation, exercise was associated with reduced accuracy during skill acquisition compared to rest, particularly for the oldest participants. However, improvements in motor skill were retained in the exercise condition, while a reduction in skill was observed following rest. Our findings indicate that high-intensity exercise conducted immediately prior to learning a novel motor skill may have a negative impact on motor performance during learning in older adults. We also demonstrated that exercise may facilitate early offline consolidation of a motor skill within this population, which has implications for motor rehabilitation.
Collapse
Affiliation(s)
- Eleanor M Taylor
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Claire J Cadwallader
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Dylan Curtin
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Trevor T-J Chong
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, 3065, Australia
| | - Joshua J Hendrikse
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - James P Coxon
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Wang Z, Donahue EK, Guo Y, Renteln M, Petzinger GM, Jakowec MW, Holschneider DP. Exercise alters cortico-basal ganglia network metabolic connectivity: a mesoscopic level analysis informed by anatomic parcellation defined in the mouse brain connectome. Brain Struct Funct 2023; 228:1865-1884. [PMID: 37306809 PMCID: PMC10516800 DOI: 10.1007/s00429-023-02659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated changes in metabolic connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter undergoing [14C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical parametric mapping. Metabolic connectivity was assessed by calculating inter-regional correlation of rCGU cross-sectionally across subjects within a group. Compared to controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as well as the visual and association cortices. In addition, exercised animals showed (i) increased positive metabolic connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced connectivity of the prefrontal cortex (PFC). Increased metabolic connectivity in the motor circuit in the absence of increases in rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects of exercise on functions of the cortico-basal ganglia-thalamic network.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Erin K. Donahue
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Michael Renteln
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Giselle M. Petzinger
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Michael W. Jakowec
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Daniel P. Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California USA
| |
Collapse
|
4
|
Jespersen L, Maes KM, Ardenkjær-Skinnerup N, Roig M, Bjørndal JR, Beck MM, Lundbye-Jensen J. Acute exercise performed before and after motor practice enhances the positive effects on motor memory consolidation. Neurobiol Learn Mem 2023; 205:107830. [PMID: 37741613 DOI: 10.1016/j.nlm.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Performing a single bout of exercise can enhance motor learning and long-term retention of motor skills. Parameters such as the intensity and when the exercise bout is performed in relation to skill practice (i.e., timing) likely influence the effectiveness. However, it is still not fully understood how exercise should be administered to maximize its effects and how exercise interacts with distinct components of skill learning. Here, we expand this knowledge by investigating the potential synergistic effects of performing acute exercise both prior to and following motor practice. Sixty-four, able-bodied, young adult male participants practiced a sequential visuomotor accuracy tracking (SVAT) task requiring rapid and accurate force modulation and high levels of precision control using intrinsic hand muscles. The task also contained a repeated pattern of targets that allowed sequence-specific skill improvements. Sequential and non-sequential motor performance was assessed at baseline, immediately after motor practice, and again seven days later. One group performed moderate-intensity exercise before practice (PREMO), a second group performed high-intensity exercise after practice (POSTHI), a third group exercised both before and after practice (PREMO + POSTHI), and a fourth group did not exercise during these periods (CON). Regardless of the exercise condition, acute exercise improved long-term retention of the skill by countering performance decay between experimental sessions (i.e., a 7-day interval). Furthermore, exercising both before and after motor practice led to the greatest improvements in skilled performance over time. We found that the effects of exercise were not specific to the practiced sequence. Namely, the effects of exercise generalized across sequential and non-sequential target positions and orders. This suggests that acute exercise works through mechanisms that promote general aspects of motor memory (e.g., lasting improvements in fast and accurate motor execution). The results demonstrate that various exercise protocols can promote the stabilization and long-term retention of motor skills. This effect can be enhanced when exercise is performed both before and after practice.
Collapse
Affiliation(s)
- Lasse Jespersen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark.
| | - Katrine Matlok Maes
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| | - Nicoline Ardenkjær-Skinnerup
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory, Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation, Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| | - Mikkel Malling Beck
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Evans NH, Suri C, Field-Fote EC. Walking and Balance Outcomes Are Improved Following Brief Intensive Locomotor Skill Training but Are Not Augmented by Transcranial Direct Current Stimulation in Persons With Chronic Spinal Cord Injury. Front Hum Neurosci 2022; 16:849297. [PMID: 35634208 PMCID: PMC9130633 DOI: 10.3389/fnhum.2022.849297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Motor training to improve walking and balance function is a common aspect of rehabilitation following motor-incomplete spinal cord injury (MISCI). Evidence suggests that moderate- to high-intensity exercise facilitates neuroplastic mechanisms that support motor skill acquisition and learning. Furthermore, enhancing corticospinal drive via transcranial direct current stimulation (tDCS) may augment the effects of motor training. In this pilot study, we investigated whether a brief moderate-intensity locomotor-related motor skill training (MST) circuit, with and without tDCS, improved walking and balance outcomes in persons with MISCI. In addition, we examined potential differences between within-day (online) and between-day (offline) effects of MST. Twenty-six adults with chronic MISCI, who had some walking ability, were enrolled in a 5-day double-blind, randomized study with a 3-day intervention period. Participants were assigned to an intensive locomotor MST circuit and concurrent application of either sham tDCS (MST+tDCSsham) or active tDCS (MST+tDCS). The primary outcome was overground walking speed measured during the 10-meter walk test. Secondary outcomes included spatiotemporal gait characteristics (cadence and stride length), peak trailing limb angle (TLA), intralimb coordination (ACC), the Berg Balance Scale (BBS), and the Falls Efficacy Scale-International (FES-I) questionnaire. Analyses revealed a significant effect of the MST circuit, with improvements in walking speed, cadence, bilateral stride length, stronger limb TLA, weaker limb ACC, BBS, and FES-I observed in both the MST+tDCSsham and MST+tDCS groups. No differences in outcomes were observed between groups. Between-day change accounted for a greater percentage of the overall change in walking outcomes. In persons with MISCI, brief intensive MST involving a circuit of ballistic, cyclic locomotor-related skill activities improved walking outcomes, and selected strength and balance outcomes; however, concurrent application of tDCS did not further enhance the effects of MST.
Collapse
Affiliation(s)
- Nicholas H. Evans
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Cazmon Suri
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Edelle C. Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
- Department of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Edelle C. Field-Fote,
| |
Collapse
|