1
|
Avrillon S, Hug F, Enoka RM, Caillet AHD, Farina D. The identification of extensive samples of motor units in human muscles reveals diverse effects of neuromodulatory inputs on the rate coding. eLife 2024; 13:RP97085. [PMID: 39651956 PMCID: PMC11627553 DOI: 10.7554/elife.97085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Movements are performed by motoneurons transforming synaptic inputs into an activation signal that controls muscle force. The control signal emerges from interactions between ionotropic and neuromodulatory inputs to motoneurons. Critically, these interactions vary across motoneuron pools and differ between muscles. To provide the most comprehensive framework to date of motor unit activity during isometric contractions, we identified the firing activity of extensive samples of motor units in the tibialis anterior (129 ± 44 per participant; n=8) and the vastus lateralis (130 ± 63 per participant; n=8) muscles during isometric contractions of up to 80% of maximal force. From this unique dataset, the rate coding of each motor unit was characterised as the relation between its instantaneous firing rate and the applied force, with the assumption that the linear increase in isometric force reflects a proportional increase in the net synaptic excitatory inputs received by the motoneuron. This relation was characterised with a natural logarithm function that comprised two stages. The initial stage was marked by a steep acceleration of firing rate, which was greater for low- than medium- and high-threshold motor units. The second stage comprised a linear increase in firing rate, which was greater for high- than medium- and low-threshold motor units. Changes in firing rate were largely non-linear during the ramp-up and ramp-down phases of the task, but with significant prolonged firing activity only evident for medium-threshold motor units. Contrary to what is usually assumed, our results demonstrate that the firing rate of each motor unit can follow a large variety of trends with force across the pool. From a neural control perspective, these findings indicate how motor unit pools use gain control to transform inputs with limited bandwidths into an intended muscle force.
Collapse
Affiliation(s)
- Simon Avrillon
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
- Nantes Université, Laboratory 'Movement, Interactions, Performance'NantesFrance
| | - François Hug
- Université Côte d'Azur, LAMHESSNiceFrance
- The University of Queensland, School of Biomedical SciencesBrisbaneAustralia
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado BoulderBoulderUnited States
| | - Arnault HD Caillet
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
| | - Dario Farina
- Department of Bioengineering, Faculty of Engineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Beauchamp JA, Pearcey GEP, Khurram OU, Chardon M, Wang YC, Powers RK, Dewald JPA, Heckman CJ. A geometric approach to quantifying the neuromodulatory effects of persistent inward currents on individual motor unit discharge patterns. J Neural Eng 2023; 20:016034. [PMID: 36626825 PMCID: PMC9885522 DOI: 10.1088/1741-2552/acb1d7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Objective.All motor commands flow through motoneurons, which entrain control of their innervated muscle fibers, forming a motor unit (MU). Owing to the high fidelity of action potentials within MUs, their discharge profiles detail the organization of ionotropic excitatory/inhibitory as well as metabotropic neuromodulatory commands to motoneurons. Neuromodulatory inputs (e.g. norepinephrine, serotonin) enhance motoneuron excitability and facilitate persistent inward currents (PICs). PICs introduce quantifiable properties in MU discharge profiles by augmenting depolarizing currents upon activation (i.e. PIC amplification) and facilitating discharge at lower levels of excitatory input than required for recruitment (i.e. PIC prolongation).Approach. Here, we introduce a novel geometric approach to estimate neuromodulatory and inhibitory contributions to MU discharge by exploiting discharge non-linearities introduced by PIC amplification during time-varying linear tasks. In specific, we quantify the deviation from linear discharge ('brace height') and the rate of change in discharge (i.e. acceleration slope, attenuation slope, angle). We further characterize these metrics on a simulated motoneuron pool with known excitatory, inhibitory, and neuromodulatory inputs and on human MUs (number of MUs; Tibialis Anterior: 1448, Medial Gastrocnemius: 2100, Soleus: 1062, First Dorsal Interosseus: 2296).Main results. In the simulated motor pool, we found brace height and attenuation slope to consistently indicate changes in neuromodulation and the pattern of inhibition (excitation-inhibition coupling), respectively, whereas the paired MU analysis (ΔF) was dependent on both neuromodulation and inhibition pattern. Furthermore, we provide estimates of these metrics in human MUs and show comparable variability in ΔFand brace height measures for MUs matched across multiple trials.Significance. Spanning both datasets, we found brace height quantification to provide an intuitive method for achieving graded estimates of neuromodulatory and inhibitory drive to individual MUs. This complements common techniques and provides an avenue for decoupling changes in the level of neuromodulatory and pattern of inhibitory motor commands.
Collapse
Affiliation(s)
- James A Beauchamp
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Matthieu Chardon
- Northwestern Argonne Institute for Science and Engineering (NAISE), Northwestern University, Evanston, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Y Curtis Wang
- Department of Electrical and Computer Engineering, California State University, Los Angeles, Los Angeles, CA, United States of America
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - CJ Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| |
Collapse
|
5
|
Zero AM, Kirk EA, Rice CL. Firing rate trajectories of human motor units during activity-dependent muscle potentiation. J Appl Physiol (1985) 2021; 132:402-412. [PMID: 34913736 DOI: 10.1152/japplphysiol.00672.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During activity-dependent potentiation (ADP) motor unit firing rates (MUFRs) are lower, however, the mechanism for this response is not known. During increasing torque isometric contractions at low contraction intensities, MUFR trajectories initially accelerate and saturate demonstrating a non-linear response due to the activation of persistent inward currents (PICs) at the motoneuron. The purpose was to assess whether PICs are a factor in the reduction of MUFRs during ADP. To assess this, MUFR trajectories were fit with competing functions of linear regression and a rising exponential (i.e., acceleration and saturation). Using fine-wire electrodes, discrete MU potential trains were recorded in the tibialis anterior during slowly increasing dorsiflexion contractions to 10% of maximal voluntary contraction following both voluntary (post-activation potentiation; PAP) and evoked (post-tetanic potentiation; PTP) contractions. In 8 participants, 25 MUs were recorded across both ADP conditions and compared to the control with no ADP effect. During PAP and PTP, the average MUFRs were 16.4% and 9.2% lower (both P≤ 0.001), respectively. More MUFR trajectories were better fit to the rising exponential during control (16/25) compared to PAP (4/25, P<0.001) and PTP (8/25, P=0.03). The MU samples that had a rising exponential MUFR trajectory during PAP and PTP displayed an ~11% lower initial acceleration compared to control (P<0.05). Thus, synaptic amplification and MUFR saturation due to PIC properties are attenuated during ADP regardless of the type of conditioning contraction. This response may contribute to lower MUFRs and likely occurred because synaptic input is reduced when contractile function is enhanced.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|