1
|
Latash ML. Useful and Useless Misnomers in Motor Control. Motor Control 2025; 29:69-98. [PMID: 39706171 DOI: 10.1123/mc.2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/19/2024] [Indexed: 12/23/2024]
Abstract
This article addresses the issue of using terms and concepts in motor control that are ill-defined, undefined, and/or imported from nonbiological fields. In many of such cases, the discourse turns nonscientific and unproductive. Some of such terms are potentially useful but need to be properly and exactly defined. Other terms seem to be misleading and nonfixable. There is also an intermediate group with terms that may or may not be useful if defined properly. The paper presents three examples per group: "reflex," "synergy," and "posture" versus "motor program," "efference copy," and "internal model" versus "muscle tone," "stiffness and impedance," and "redundancy." These terms are analyzed assuming that motor control is a branch of natural science, which must be analyzed using laws of nature, not a subfield of the control theory. In the discussion, we also accept the framework of the theory of movement control with spatial referent coordinates as the only example built on laws of nature with clearly formulated physical and physiological nature of the control parameters.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Rannama I, Zusa A, Latash ML. Force drifts and matching errors in the lower extremities: implications for the control and perception of foot force. Exp Brain Res 2024; 243:37. [PMID: 39739043 DOI: 10.1007/s00221-024-06990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Accurate control of force on the environment is mechanically necessary for many tasks involving the lower extremities. We investigated drifts in the horizontal (shear) active force produced by right-footed seated subjects and the effects of force matching by the other foot. Subjects generated constant shear force at 15% and 30% of maximal voluntary contraction (MVC) using one foot. Visual feedback of shear force magnitude was provided for the first 5s, then turned off for 30s. During the 30% MVC task, we observed parallel drops in active shear and vertical force magnitudes leading to consistent drifts in the resultant force magnitude, not in its direction. Force matching by the other foot resulted in significantly lower forces when feedback was available throughout the trial. No feedback was provided for the matching foot. When the matching foot began exerting force, the task foot experienced a notable drop in all force components, with a change in force direction only for the task foot. After this initial drop, the downward drift in the task foot stopped or reversed. Subjects were unaware of these drifts and errors. Our findings suggest that shear force production involves setting a referent coordinate vector, which shows drifts and matching errors, while its direction remains stable. Involvement of the matching foot appears to perturb the neural commands to the task foot, with minor differences observed between feet. The discrepancy between the consistent force drifts and lack of awareness of the drifts indicates a difference between force perception-to-act and perception-to-report.
Collapse
Affiliation(s)
- Indrek Rannama
- School of Natural Sciences and Health, Tallinn University, Narva mnt 25, Tallinn, 10120, Estonia.
| | - Anna Zusa
- Latvian Academy of Sport Education, Riga Stradiņš University, Riga, Latvia
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Benamati A, Ricotta JM, De SD, Latash ML. Three Levels of Neural Control Contributing to Performance-stabilizing Synergies in Multi-finger Tasks. Neuroscience 2024; 551:262-275. [PMID: 38838976 DOI: 10.1016/j.neuroscience.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
We tested a hypothesis on force-stabilizing synergies during four-finger accurate force production at three levels: (1) The level of the reciprocal and coactivation commands, estimated as the referent coordinate and apparent stiffness of all four fingers combined; (2) The level of individual finger forces; and (3) The level of firing of individual motor units (MU). Young, healthy participants performed accurate four-finger force production at a comfortable, non-fatiguing level under visual feedback on the total force magnitude. Mechanical reflections of the reciprocal and coactivation commands were estimated using small, smooth finger perturbations applied by the "inverse piano" device. Firing frequencies of motor units in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC) were estimated using surface recording. Principal component analysis was used to identify robust MU groups (MU-modes) with parallel changes in the firing frequency. The framework of the uncontrolled manifold hypothesis was used to compute synergy indices in the spaces of referent coordinate and apparent stiffness, finger forces, and MU-mode magnitudes. Force-stabilizing synergies were seen at all three levels. They were present in the MU-mode spaces defined for MUs in FDS, in EDC, and pooled over both muscles. No effects of hand dominance were seen. The synergy indices defined at different levels of analysis showed no correlations across the participants. The findings are interpreted within the theory of control with spatial referent coordinates for the effectors. We conclude that force stabilization gets contributions from three levels of neural control, likely associated with cortical, subcortical, and spinal circuitry.
Collapse
Affiliation(s)
- Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Pawłowski M, Ricotta JM, De SD, Latash ML. Force matching: motor effects that are not reported by the actor. Exp Brain Res 2024; 242:1439-1453. [PMID: 38652273 PMCID: PMC11108883 DOI: 10.1007/s00221-024-06829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
We explored unintentional drifts of finger forces during force production and matching task. Based on earlier studies, we predicted that force matching with the other hand would reduce or stop the force drift in instructed fingers while uninstructed (enslaved) fingers remain unaffected. Twelve young, healthy, right-handed participants performed two types of tasks with both hands (task hand and match hand). The task hand produced constant force at 20% of MVC level with the Index and Ring fingers pressing in parallel on strain gauge force sensors. The Middle finger force wasn't instructed, and its enslaved force was recorded. Visual feedback on the total force by the instructed fingers was either present throughout the trial or only during the first 5 s (no-feedback condition). The other hand matched the perceived force level of the task hand starting at either 4, 8, or 15 s from the trial initiation. No feedback was ever provided for the match hand force. After the visual feedback was removed, the task hand showed a consistent drift to lower magnitudes of total force. Contrary to our prediction, over all conditions, force matching caused a brief acceleration of force drift in the task hand, which then reached a plateau. There was no effect of matching on drifts in enslaved finger force. We interpret the force drifts within the theory of control with spatial referent coordinates as consequences of drifts in the command (referent coordinate) to the antagonist muscles. This command is not adequately incorporated into force perception.
Collapse
Affiliation(s)
- Michał Pawłowski
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Institute of Sport Science, Department of Human Motor Behavior, Academy of Physical Education in Katowice, 72A Mikołowska St, Katowice, 40-065, Poland.
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Guberman S, Latash ML. The Role of Imitation, Primitives, and Spatial Referent Coordinates in Motor Control: Implications for Writing and Reading. Motor Control 2024:1-15. [PMID: 38364817 DOI: 10.1123/mc.2023-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
We review a body of literature related to the drawing and recognition of geometrical two-dimensional linear drawings including letters. Handwritten letters are viewed not as two-dimensional geometrical objects but as one-dimensional trajectories of the tip of the implement. Handwritten letters are viewed as composed of a small set of kinematic primitives. Recognition of objects is mediated by processes of their creation (actual or imagined)-the imitation principle, a particular example of action-perception coupling. The concept of spatial directional field guiding the trajectories is introduced and linked to neuronal population vectors. Further, we link the kinematic description to the theory of control with spatial referent coordinates. This framework allows interpreting a number of experimental observations and clinical cases of agnosia. It also allows formulating predictions for new experimental studies of writing.
Collapse
Affiliation(s)
- Shelia Guberman
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, San Jose, CA, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
De SD, Ricotta JM, Benamati A, Latash ML. Two classes of action-stabilizing synergies reflecting spinal and supraspinal circuitry. J Neurophysiol 2024; 131:152-165. [PMID: 38116603 DOI: 10.1152/jn.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
We explored force-stabilizing synergies during accurate four-finger constant force production tasks in spaces of finger modes (commands to fingers computed to account for the finger interdependence) and of motor unit (MU) firing frequencies. The main specific hypothesis was that the multifinger synergies would disappear during unintentional force drifts without visual feedback on the force magnitude, whereas MU-based synergies would be robust to such drifts. Healthy participants performed four-finger accurate cyclical force production trials followed by trials of constant force production. Individual MUs were identified in the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Principal component analysis was applied to motor unit frequencies to identify robust MU groups (MU-modes) with parallel scaling of the firing frequencies in FDS, in EDC, and the combined MUs of FDS + EDC. The framework of the uncontrolled manifold hypothesis was used to quantify force-stabilizing synergies when visual feedback on the force magnitude was available and 15 s after turning the visual feedback off. Removing visual feedback led to a force drift toward lower magnitudes, accompanied by the disappearance of multifinger synergies. In contrast, MU-mode synergies were minimally affected by removing visual feedback off and continued to be robust for the FDS and for the EDC, while being absent for the (FDS + EDC) analysis. We interpret the findings within the theory of hierarchical control of action with spatial referent coordinates. The qualitatively different behavior of the multifinger and MU-mode-based synergies likely reflects the difference in the involved neural circuitry, supraspinal for the former and spinal for the latter.NEW & NOTEWORTHY Two types of synergies, in the space of commands to individual fingers and in the space of motor unit groups, show qualitatively different behaviors during accurate multifinger force-production tasks. After removing visual feedback, finger force synergies disappear, whereas motor unit-based synergies persist. These results point at different neural circuitry involved in these two basic classes of synergies: supraspinal for multieffector synergies, and spinal for motor unit-based synergies.
Collapse
Affiliation(s)
- Sayan Deep De
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
7
|
Ricotta JM, De SD, Nardon M, Benamati A, Latash ML. Effects of fatigue on intramuscle force-stabilizing synergies. J Appl Physiol (1985) 2023; 135:1023-1035. [PMID: 37732378 DOI: 10.1152/japplphysiol.00419.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
We applied the recently introduced concept of intramuscle synergies in spaces of motor units (MUs) to quantify indexes of such synergies in the tibialis anterior during ankle dorsiflexion force production tasks and their changes with fatigue. We hypothesized that MUs would be organized into robust groups (MU modes), which would covary across trials to stabilize force magnitude, and the indexes of such synergies would drop under fatigue. Healthy, young subjects (n = 15; 8 females) produced cyclical, isometric dorsiflexion forces while surface electromyography was used to identify action potentials of individual MUs. Principal component analysis was used to define MU modes. The framework of the uncontrolled manifold (UCM) was used to analyze intercycle variance and compute the synergy index, ΔVZ. Cyclical force production tasks were repeated after a nonfatiguing exercise (control) and a fatiguing exercise. Across subjects, fatigue led, on average, to a 43% drop in maximal force and fewer identified MUs per subject (29.6 ± 2.1 vs. 32.4 ± 2.1). The first two MU modes accounted for 81.2 ± 0.08% of variance across conditions. Force-stabilizing synergies were present across all conditions and were diminished after fatiguing exercise (1.49 ± 0.40) but not control exercise (1.76 ± 0.75). Decreased stability after fatigue was caused by an increase in the amount of variance orthogonal to the UCM. These findings contrast with earlier studies of multieffector synergies demonstrating increased synergy index under fatigue. We interpret the results as reflections of a drop in the gain of spinal reflex loops under fatigue. The findings corroborate an earlier hypothesis on the spinal nature of intramuscle synergies.NEW & NOTEWORTHY Across multielement force production tasks, fatigue of an element leads to increased indexes of force stability (synergy indexes). Here, however, we show that groups of motor units in the tibialis anterior show decreased indexes of force-stabilizing synergies after fatiguing exercise. These findings align intramuscle synergies with spinal mechanisms, in contrast to the supraspinal control of multimuscle synergies.
Collapse
Affiliation(s)
- Joseph M Ricotta
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Clinical and Translational Science Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Sayan D De
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Mauro Nardon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Benamati
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
8
|
Pascucci F, Cesari P, Bertucco M, Latash ML. Postural adjustments to self-triggered perturbations under conditions of changes in body orientation. Exp Brain Res 2023:10.1007/s00221-023-06671-0. [PMID: 37479771 PMCID: PMC10386932 DOI: 10.1007/s00221-023-06671-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
We studied anticipatory and compensatory postural adjustments (APAs and CPAs) associated with self-triggered postural perturbations in conditions with changes in the initial body orientation. In particular, we were testing hypotheses on adjustments in the reciprocal and coactivation commands, role of proximal vs. distal muscles, and correlations between changes in indices of APAs and CPAs. Healthy young participants stood on a board with full support or reduced support area and held a standard load in the extended arms. They released the load in a self-paced manned with a standard small-amplitude arm movement. Electromyograms of 12 muscles were recorded and used to compute reciprocal and coactivation indices between three muscle pairs on both sides of the body. The subject's body was oriented toward one of three targets: straight ahead, 60° to the left, and 60° to the right. Body orientation has stronger effects on proximal muscle pairs compared to distal muscles. It led to more consistent changes in the reciprocal command compared to the coactivation command. Indices of APAs and CPAs showed positive correlations across conditions. We conclude that the earlier suggested hierarchical relations between the reciprocal and coactivation command could be task-specific. Predominance of negative or positive correlations between APA and CPA indices could also be task-specific.
Collapse
Affiliation(s)
- Francesco Pascucci
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Paola Cesari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy.
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Farina D, Enoka RM. Evolution of surface electromyography: From muscle electrophysiology towards neural recording and interfacing. J Electromyogr Kinesiol 2023; 71:102796. [PMID: 37343466 DOI: 10.1016/j.jelekin.2023.102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Surface electromyography (EMG) comprises a recording of electrical activity from the body surface generated by muscle fibres during muscle contractions. Its characteristics depend on the fibre membrane potentials and the neural activation signal sent from the motor neurons to the muscles. EMG has been classically used as the primary investigation tool in kinesiology studies in a variety of applications. More recently, surface EMG techniques have evolved from single-channel methods to high-density systems with hundreds of electrodes. High-density EMG recordings can be deconvolved to estimate the discharge times of spinal motor neurons innervating the recorded muscles, with algorithms that have been developed and validated in the last two decades. Within limits and with some variability across muscles, these techniques provide a non-invasive method to study relatively large populations of motor neurons in humans. Surface EMG is thus evolving from a peripheral measure of muscle electrical activity towards a neural recording and neural interfacing signal. These advances in technology have had a major impact on our fundamental understanding of the neural control of movement and have exposed new perspectives in neurotechnologies. Here we provide an overview and perspective of modern EMG technology, as derived from past achievements, and its impact in neurophysiology and neural engineering.
Collapse
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Imperial College London, United Kingdom.
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, CO, United States
| |
Collapse
|
10
|
Optimality, Stability, and Agility of Human Movement: New Optimality Criterion and Trade-Offs. Motor Control 2023; 27:123-159. [PMID: 35279021 DOI: 10.1123/mc.2021-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 12/31/2022]
Abstract
This review of movement stability, optimality, and agility is based on the theory of motor control with changes in spatial referent coordinates for the effectors, the principle of abundance, and the uncontrolled manifold hypothesis. A new optimality principle is suggested based on the concept of optimal sharing corresponding to a vector in the space of elemental variables locally orthogonal to the uncontrolled manifold. Motion along this direction is associated with minimal components along the relatively unstable directions within the uncontrolled manifold leading to a minimal motor equivalent motion. For well-practiced actions, this task-specific criterion is followed in spaces of referent coordinates. Consequences of the suggested framework include trade-offs among stability, optimality, and agility, unintentional changes in performance, hand dominance, finger specialization, individual traits in performance, and movement disorders in neurological patients.
Collapse
|
11
|
Latash ML. The control and perception of antagonist muscle action. Exp Brain Res 2023; 241:1-12. [PMID: 36309879 DOI: 10.1007/s00221-022-06498-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/20/2022] [Indexed: 01/26/2023]
Abstract
The review covers a range of topics related to the role of the antagonist muscles in agonist-antagonist pairs within the theory of the neural control of movements with spatial referent coordinates, the principle of abundance, and the uncontrolled manifold hypothesis. It starts with the mechanical role of the antagonist in stopping movements and providing necessary levels of effector mechanical characteristics for fast movements. Further, it discusses the role of antagonist muscle activation bursts during voluntary movements, force production, and postural tasks. Recent studies show that agonist and antagonist motor units are united into common groups related to two basic commands, reciprocal and coactivation. A number of phenomena are considered including intra-muscle synergies stabilizing net force production, unintentional force drifts during isometric force production, effects of voluntary muscle coactivation on force production and perception, and perceptual errors caused by various factors including lack of visual feedback and muscle vibration. Taken together, the findings suggest inherent instability of neural commands (time functions of the stretch reflex threshold) to antagonist muscles requiring visual information for accurate performance. They also suggest that neural commands to antagonist muscles are not readily incorporated into kinesthetic perception leading to illusions and errors in matching tasks.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
12
|
Moiseev SA. Spatio-Temporal Patterns of Intermuscular Interaction during Locomotion Induced by Spinal Cord Percutaneous Electrical Stimulation. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Intra-muscle Synergies Stabilizing Reflex-mediated Force Changes. Neuroscience 2022; 505:59-77. [DOI: 10.1016/j.neuroscience.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/20/2022]
|
14
|
Madarshahian S, Latash ML. Effects of hand muscle function and dominance on intra-muscle synergies. Hum Mov Sci 2022; 82:102936. [PMID: 35217391 DOI: 10.1016/j.humov.2022.102936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
The goal of the study was to explore the effects of hand dominance and muscle function (prime mover vs. supporting muscle) on recently discovered intra-muscle synergies as potential windows into their neural origin. Healthy right-handed subjects performed accurate cyclical force production tasks while pressing with the middle phalanges and distal phalanges of the fingers of the dominant and non-dominant hand. Surface electromyography was used to identify individual motor unit action potentials in two muscles, flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). Stable motor unit groups (MU-modes) were defined in each muscle and in both muscles together. The composition of the MU-modes allowed linking them to the reciprocal and co-activation command. Force-stabilizing synergies were quantified in each hand and during force production at both sites using the framework of the uncontrolled manifold hypothesis. Force-stabilizing synergies were seen in the spaces of MU-modes from FDS and EDC separately, but not of MU-modes defined for both muscles together. Synergy indices were similar for both hands and both sites of force application. In contrast, force-stabilizing synergies in the space of finger forces were present in the non-dominant hand and absent in the dominant hand. The data suggest existence of distributed mechanisms of synergic control. Finger force synergies are likely to reflect functioning of subcortical loops involving the basal ganglia and cerebellum, while MU-mode synergies are likely to reflect spinal circuitry. Studies of both force-based and motor-unit-based synergies may be clinically valuable for distinguishing effects of spinal and supraspinal disorders.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|