1
|
Letizia Mauro G, Accomando J, Tomasello S, Duca A, Mangano MS, de Sire A, Vecchio M, Scaturro D. Osteoporosis in Systemic Mastocytosis: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1752. [PMID: 39596937 PMCID: PMC11596688 DOI: 10.3390/medicina60111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Background: Mastocytosis (MS) is a rare disease that can involve various organs, including the bone. Given the incidence of the disease in the global population, MS poses a challenge for physicians, and early therapeutic intervention in the initial stages could significantly impact the quality of life of affected patients. Objective: The aim of this scoping review was to provide an overview of secondary osteoporosis in systemic mastocytosis (SM), focusing on the heterogeneity of its manifestations, the benefits of early diagnosis, and appropriate pharmacological treatment. Design: A technical expert panel (TEP) consisting of 8 physicians with expertise in metabolic bone diseases conducted the review following the PRISMA-ScR model. A strength of this study is that it provides various therapeutic approaches for patients with bone involvement in SM, although the limited available literature on the topic constituted a limitation. The TEP sought evidence regarding the following diagnostic and therapeutic modalities in the management of SM: "bisphosphonate therapy", "zoledronic acid therapy", "denosumab therapy", "IFN-alpha therapy", and "IFN-alpha therapy in combination with pamidronate". Results: Clinical data showed a correlation between densitometric outcomes, serum tryptase levels, and mast cell infiltration in the bone marrow, between increased bone mineral density and the presence of osteosclerosis in cases of advanced SM, between the severity of osteoporosis and hypertryptasemia, and also provided results on the long-term effects of bisphosphonate therapy, the therapeutic efficacy of zoledronic acid administration, the positive effect of denosumab on the reduction of serum tryptase levels (even if is proved in a limited numbers of cases) and the prevention of new fractures, and the effect of IFN-alpha in more severe cases of SM, either alone or in combination with pamidronate. Conclusions: Studies have demonstrated the effectiveness of various treatments depending on the form of mastocytosis, whether indolent systemic or advanced systemic, in the prognosis of the disease. However, this role should be further investigated in additional clinical studies, considering the limited data on the use of these interventions.
Collapse
Affiliation(s)
- Giulia Letizia Mauro
- Precision Medicine in the Medical, Surgical and Critical Care Areas, University of Palermo, 90100 Palermo, Italy;
| | - Jessica Accomando
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 37100 Catania, Italy; (J.A.); (A.D.); (M.S.M.); (M.V.)
| | - Sofia Tomasello
- Neuromotor and Cognitive Rehabilitation Research Center, Physical and Rehabilitation Medicine Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy;
| | - Adele Duca
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 37100 Catania, Italy; (J.A.); (A.D.); (M.S.M.); (M.V.)
| | - Maria Silvia Mangano
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 37100 Catania, Italy; (J.A.); (A.D.); (M.S.M.); (M.V.)
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 37100 Catania, Italy; (J.A.); (A.D.); (M.S.M.); (M.V.)
- Rehabilitation Unit, AOU Policlinico Vittorio Emanuele, 95123 Catania, Italy
| | - Dalila Scaturro
- Precision Medicine in the Medical, Surgical and Critical Care Areas, University of Palermo, 90100 Palermo, Italy;
| |
Collapse
|
2
|
Rama TA, Henriques AF, Matito A, Jara-Acevedo M, Caldas C, Mayado A, Muñoz-González JI, Moreira A, Cavaleiro-Rufo J, García-Montero A, Órfão A, Sanchez-Muñoz L, Álvarez-Twose I. Bone and Cytokine Markers Associated With Bone Disease in Systemic Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1536-1547. [PMID: 36801493 DOI: 10.1016/j.jaip.2023.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Mastocytosis encompasses a heterogeneous group of diseases characterized by tissue accumulation of clonal mast cells, which frequently includes bone involvement. Several cytokines have been shown to play a role in the pathogenesis of bone mass loss in systemic mastocytosis (SM), but their role in SM-associated osteosclerosis remains unknown. OBJECTIVE To investigate the potential association between cytokine and bone remodeling markers with bone disease in SM, aiming at identifying biomarker profiles associated with bone loss and/or osteosclerosis. METHODS A total of 120 adult patients with SM, divided into 3 age and sex-matched groups according to their bone status were studied: (1) healthy bone (n = 46), (2) significant bone loss (n = 47), and (3) diffuse bone sclerosis (n = 27). Plasma levels of cytokines and serum baseline tryptase and bone turnover marker levels were measured at diagnosis. RESULTS Bone loss was associated with significantly higher levels of serum baseline tryptase (P = .01), IFN-γ (P = .05), IL-1β (P = .05), and IL-6 (P = .05) versus those found in patients with healthy bone. In contrast, patients with diffuse bone sclerosis showed significantly higher levels of serum baseline tryptase (P < .001), C-terminal telopeptide (P < .001), amino-terminal propeptide of type I procollagen (P < .001), osteocalcin (P < .001), bone alkaline phosphatase (P < .001), osteopontin (P < .01), and the C-C Motif Chemokine Ligand 5/RANTES chemokine (P = .01), together with lower IFN-γ (P = .03) and RANK-ligand (P = .04) plasma levels versus healthy bone cases. CONCLUSIONS SM with bone mass loss is associated with a proinflammatory cytokine profile in plasma, whereas diffuse bone sclerosis shows increased serum/plasma levels of biomarkers related to bone formation and turnover, in association with an immunosuppressive cytokine secretion profile.
Collapse
Affiliation(s)
- Tiago Azenha Rama
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Ana Filipa Henriques
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Almudena Matito
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Maria Jara-Acevedo
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; DNA Sequencing Service (NUCLEUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Caldas
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; DNA Sequencing Service (NUCLEUS), Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Mayado
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Javier I Muñoz-González
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - André Moreira
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - João Cavaleiro-Rufo
- EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Andrés García-Montero
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Alberto Órfão
- Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain; Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine, Cytometry Service (NUCLEUS) Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Laura Sanchez-Muñoz
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
| | - Iván Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) - Reference Center (CSUR) for Mastocytosis, Hospital Virgen del Valle, Complejo Hospitalario Universitario de Toledo, Toledo, Spain; Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Gaudio A, Xourafa A, Rapisarda R, Zanoli L, Signorelli SS, Castellino P. Hematological Diseases and Osteoporosis. Int J Mol Sci 2020; 21:ijms21103538. [PMID: 32429497 PMCID: PMC7279036 DOI: 10.3390/ijms21103538] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Secondary osteoporosis is a common clinical problem faced by bone specialists, with a higher frequency in men than in women. One of several causes of secondary osteoporosis is hematological disease. There are numerous hematological diseases that can have a deleterious impact on bone health. In the literature, there is an abundance of evidence of bone involvement in patients affected by multiple myeloma, systemic mastocytosis, thalassemia, and hemophilia; some skeletal disorders are also reported in sickle cell disease. Recently, monoclonal gammopathy of undetermined significance appears to increase fracture risk, predominantly in male subjects. The pathogenetic mechanisms responsible for these bone loss effects have not yet been completely clarified. Many soluble factors, in particular cytokines that regulate bone metabolism, appear to play an important role. An integrated approach to these hematological diseases, with the help of a bone specialist, could reduce the bone fracture rate and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Agostino Gaudio
- Correspondence: ; Tel.: +39-095-3781842; Fax: +39-095-378-2376
| | | | | | | | | | | |
Collapse
|
5
|
Ragipoglu D, Dudeck A, Haffner-Luntzer M, Voss M, Kroner J, Ignatius A, Fischer V. The Role of Mast Cells in Bone Metabolism and Bone Disorders. Front Immunol 2020; 11:163. [PMID: 32117297 PMCID: PMC7025484 DOI: 10.3389/fimmu.2020.00163] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mast cells (MCs) are important sensor and effector cells of the immune system that are involved in many physiological and pathological conditions. Increasing evidence suggests that they also play an important role in bone metabolism and bone disorders. MCs are located in the bone marrow and secrete a wide spectrum of mediators, which can be rapidly released upon activation of mature MCs following their differentiation in mucosal or connective tissues. Many of these mediators can exert osteocatabolic effects by promoting osteoclast formation [e.g., histamine, tumor necrosis factor (TNF), interleukin-6 (IL-6)] and/or by inhibiting osteoblast activity (e.g., IL-1, TNF). By contrast, MCs could potentially act in an osteoprotective manner by stimulating osteoblasts (e.g., transforming growth factor-β) or reducing osteoclastogenesis (e.g., IL-12, interferon-γ). Experimental studies investigating MC functions in physiological bone turnover using MC-deficient mouse lines give contradictory results, reporting delayed or increased bone turnover or no influence depending on the mouse model used. By contrast, the involvement of MCs in various pathological conditions affecting bone is evident. MCs may contribute to the pathogenesis of primary and secondary osteoporosis as well as inflammatory disorders, including rheumatoid arthritis and osteoarthritis, because increased numbers of MCs were found in patients suffering from these diseases. The clinical observations could be largely confirmed in experimental studies using MC-deficient mouse models, which also provide mechanistic insights. MCs also regulate bone healing after fracture by influencing the inflammatory response toward the fracture, vascularization, bone formation, and callus remodeling by osteoclasts. This review summarizes the current view and understanding of the role of MCs on bone in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Deniz Ragipoglu
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Melanie Haffner-Luntzer
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jochen Kroner
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Verena Fischer
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
6
|
Orsolini G, Viapiana O, Rossini M, Bonifacio M, Zanotti R. Bone Disease in Mastocytosis. Immunol Allergy Clin North Am 2019; 38:443-454. [PMID: 30007462 DOI: 10.1016/j.iac.2018.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Systemic mastocytosis can give very different bone pictures: from osteosclerosis to osteoporosis. Osteoporosis is one of the most frequent manifestations particularly in adults and the most clinical relevant. It is often complicated by a high recurrence of mainly vertebral fragility fractures. The main factor of bone loss is the osteoclast with a relative or absolute predominance of bone resorption. The RANK-RANKL pathway seems of key importance, but histamine and other cytokines also play a significant role in the process. The predominance of resorption made bisphosphonates, as anti-resorptive drugs, the most rational treatment of bone involvement in systemic mastocytosis.
Collapse
|
7
|
Orsolini G, Adami G, Rossini M, Ghellere F, Caimmi C, Fassio A, Idolazzi L, Gatti D, Viapiana O. Parathyroid hormone is a determinant of serum Dickkopf-1 levels in ankylosing spondylitis. Clin Rheumatol 2018; 37:3093-3098. [PMID: 29995219 DOI: 10.1007/s10067-018-4205-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Available studies reported contradictory results about serum levels Dickkopf-1 (DKK1), an inhibitor of Wnt signaling in patients with ankylosing spondylitis (AS). In previous studies, we observed in other conditions that parathyroid hormone (PTH) serum levels were an important determinant of DKK1 serum levels. The aim of the present study was to investigate it in patients with AS. We recruited 71 patients diagnosed with AS. Levels of C-reactive protein (CRP), DKK1, PTH, 25OH-vitamin D, and bone turnover markers (intact N-propeptide of type I collagen, P1NP, and C-terminal telopeptide of type I collagen, CTX) were measured and compared to healthy controls (HC). Dual X-ray absorptiometry at lumbar spine and proximal femoral site was used for bone mineral density (BMD) assessment and spine X-rays were also performed. PTH serum levels were found to be significantly higher in AS patients than in HC (33.8 ± 14.11 vs 24.8 ± 13 pg/ml, p = 0.002), while mean DKK1 serum levels were lower than in HC (23.3 ± 13.1 vs 29.8 ± 15.9 pmol/l, p = 0.009). A positive correlation between DKK1 and PTH (correlation coefficient + 0.25, p = 0.03) was observed; it remained significant in a multivariate analysis. In patients with longer disease duration, DKK1 was also positively correlated with CTX (coefficient 0.42, p = 0.01), and PTH was higher in those patients with low BMD (Z-score ≤ - 1) at any site (p = 0.04). Also in AS, PTH is an important determinant of DKK1 serum levels and should be evaluated in studies on DKK1. PTH might have a role in bone involvement in AS, also through the Wnt pathway.
Collapse
Affiliation(s)
- Giovanni Orsolini
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy.
| | - Giovanni Adami
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Maurizio Rossini
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Francesco Ghellere
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Cristian Caimmi
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Angelo Fassio
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Luca Idolazzi
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Davide Gatti
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| | - Ombretta Viapiana
- University of Verona, Rheumatology Unit, Piazzale L. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review provides a summary of the current knowledge on Sost/sclerostin in cancers targeting the bone, discusses novel observations regarding its potential as a therapeutic approach to treat cancer-induced bone loss, and proposes future research needed to fully understand the potential of therapeutic approaches that modulate sclerostin function. RECENT FINDINGS Accumulating evidence shows that sclerostin expression is dysregulated in a number of cancers that target the bone. Further, new findings demonstrate that pharmacological inhibition of sclerostin in preclinical models of multiple myeloma results in a robust prevention of bone loss and preservation of bone strength, without apparent effects on tumor growth. These data raise the possibility of targeting sclerostin for the treatment of cancer patients with bone metastasis. Sclerostin is emerging as a valuable target to prevent the bone destruction that accompanies the growth of cancer cells in the bone. Further studies will focus on combining anti-sclerostin therapy with tumor-targeted agents to achieve both beneficial skeletal outcomes and inhibition of tumor progression.
Collapse
Affiliation(s)
- Michelle M McDonald
- The Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's School of Medicine, University of New South Wales, Sydney, Australia
| | - Jesus Delgado-Calle
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Abstract
Systemic Mastocytosis (SM) is characterized by accumulation of clonal, neoplastic proliferations of abnormal mast cells (MC) in one or more organ system other than skin. Presence of these multifocal clusters of abnormal mast cells is an essential feature of SM. Frequently associated with D816V (KIT) mutation, the presence of this mutation and elevated serum tryptase are minor criteria for diagnosis. SM manifestations depend on the degree of mast cell proliferation, activation and degranulation. SM has a variable prognosis and presentation, from indolent to "smoldering" to life-threatening disease. Bone manifestations of SM include: osteopenia with or without lytic lesions, osteoporosis with or without atraumatic fracture, osteosclerosis with increased bone density, and isolated lytic lesions. Male sex, older age, higher bone resorption markers, lower DKK1 level, lower BMD, absence of urticaria pigmentosa, and alcohol intake are all associated with increased risk of fracture. Treatment of SM is generally palliative. Most therapy is symptom-directed; and, infrequently, chemotherapy for refractory symptoms is indicated. Anti-histamines may alleviate direct bone effects of histamine. Bisphosphonates, including alendronate, clodronate, pamidronate and zoledronic acid are recommended as a first line treatment of SM and osteoporosis. Interferon α may act synergistically with bisphosphonates. As elevation of RANKL and OPG is reported in SM, denosumab could be an effective therapy for bone manifestations of SM.
Collapse
Affiliation(s)
- Loren Wissner Greene
- Department of Medicine, Division of Endocrinology, and ObGyn, NYU School of Medicine, 650 First Avenue, 7th Floor, New York, NY, 10016, USA.
| | - Kamyar Asadipooya
- Department of Medicine, Division of Endocrinology, NYU School of Medicine, 462 1st Avenue, New York, NY, 10016, USA
| | - Patricia Freitas Corradi
- Department of Medicine, Division of Endocrinology, NYU School of Medicine, c/o Ira Goldberg, MD 522 First Avenue, Smilow 901, New York, NY, 10016, USA
| | - Cem Akin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Mastocytosis Center, Brigham and Women's Hospital, Harvard Medical School, One Jimmy Fund Way, Room 616D, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Rossini M, Zanotti R, Orsolini G, Tripi G, Viapiana O, Idolazzi L, Zamò A, Bonadonna P, Kunnathully V, Adami S, Gatti D. Prevalence, pathogenesis, and treatment options for mastocytosis-related osteoporosis. Osteoporos Int 2016; 27:2411-21. [PMID: 26892042 DOI: 10.1007/s00198-016-3539-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Mastocytosis is a rare condition characterized by abnormal mast cell proliferation and a broad spectrum of manifestations, including various organs and tissues. Osteoporosis is one of the most frequent manifestations of systemic mastocytosis, particularly in adults. Osteoporosis secondary to systemic mastocytosis is a cause of unexplained low bone mineral density that should be investigated when accompanied by suspicious clinical elements. Bone involvement is often complicated by a high recurrence of fragility fractures, mainly vertebral, leading to severe disability. The mechanism of bone loss is the result of different pathways, not yet fully discovered. The main actor is the osteoclast with a relative or absolute predominance of bone resorption. Among the stimuli that drive osteoclast activity, the most important one seems to be the RANK-RANKL signaling, but also histamine and other cytokines play a significant role in the process. The central role of osteoclasts made bisphosphonates, as anti-resorptive drugs, the most rational treatment for bone involvement in systemic mastocytosis. There are a few small studies supporting this approach, with large heterogeneity of drug and administration scheme. Currently, zoledronate has the best evidence in terms of gain in bone mineral density and bone turnover suppression, two surrogate markers of anti-fracture efficacy.
Collapse
Affiliation(s)
- M Rossini
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy.
| | - R Zanotti
- Hematology Section, Department of Medicine, University of Verona, Verona, Italy
| | - G Orsolini
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| | - G Tripi
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| | - O Viapiana
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| | - L Idolazzi
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| | - A Zamò
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - P Bonadonna
- Allergy Unit, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - V Kunnathully
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| | - S Adami
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| | - D Gatti
- Rheumatology Unit, Department of Medicine, University of Verona, Policlinico Borgo Roma, Piazzale Scuro, 10, 37134, Verona, Italy
| |
Collapse
|
11
|
Brunetti G, Papadia F, Tummolo A, Fischetto R, Nicastro F, Piacente L, Ventura A, Mori G, Oranger A, Gigante I, Colucci S, Ciccarelli M, Grano M, Cavallo L, Delvecchio M, Faienza MF. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: the role of DKK1, RANKL, and TNF-α. Osteoporos Int 2016; 27:2355-2365. [PMID: 26856585 DOI: 10.1007/s00198-016-3501-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
UNLABELLED In this study, we investigated the bone cell activity in patients with osteogenesis imperfecta (OI) treated and untreated with neridronate. We demonstrated the key role of Dickkopf-1 (DKK1), receptor activator of nuclear factor-κB ligand (RANKL), and tumor necrosis factor alpha (TNF-α) in regulating bone cell of untreated and treated OI subjects. These cytokines could represent new pharmacological targets for OI. INTRODUCTION Bisphosphonates are widely used in the treatment of children with osteogenesis imperfecta (OI) with the objective of reducing the risk of fractures. Although bisphosphonates increase bone mineral density in OI subjects, the effects on fracture incidence are conflicting. The aim of this study was to investigate the mechanisms underlying bone cell activity in subjects with mild untreated forms of OI and in a group of subjects with severe OI treated with cycles of intravenous neridronate. METHODS Sclerostin, DKK1, TNF-α, RANKL, osteoprotegerin (OPG), and bone turnover markers were quantified in serum of 18 OI patients (12 females, mean age 8.86 ± 3.90), 8 of which were receiving cyclic intravenous neridronate, and 21 sex- and age-matched controls. The effects on osteoblastogenesis and OPG expression of media conditioned by the serum of OI patients and anti-DKK1 neutralizing antibody were evaluated. Osteoclastogenesis was assessed in cultures from patients and controls. RESULTS DKK1 and RANKL levels were significantly increased both in untreated and in treated OI subjects with respect to controls. The serum from patients with high DKK1 levels inhibited both osteoblast differentiation and OPG expression in vitro. High RANKL and low OPG messenger RNA (mRNA) levels were found in lymphomonocytes from patients. High amounts of TNF-α were expressed by monocytes, and an elevated percentage of circulating CD11b-CD51/CD61+ osteoclast precursors was observed in patients. CONCLUSIONS Our study demonstrated the key role of DKK1, RANKL, and TNF-α in regulating bone cell activity of subjects with OI untreated and treated with bisphosphonates. These cytokines could represent new pharmacological targets for OI patients.
Collapse
Affiliation(s)
- G Brunetti
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - F Papadia
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - A Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - R Fischetto
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - F Nicastro
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children's Hospital, Bari, Italy
| | - L Piacente
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - A Ventura
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - G Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - A Oranger
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Gigante
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - S Colucci
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - M Ciccarelli
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M Grano
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Human Anatomy and Histology, University "A. Moro" of Bari, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Cavallo
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M Delvecchio
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - M F Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Section, University "A. Moro" of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|