1
|
Vasireddi N, Hahamyan HA, Gould HP, Gregory AJM, Gausden EB, Dodson CC, Voos JE, Calcei JG. Athlete Selective Androgen Receptor Modulators Abuse: A Systematic Review. Am J Sports Med 2025; 53:999-1009. [PMID: 39755947 DOI: 10.1177/03635465241252435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
BACKGROUND Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture. PURPOSE (1) To provide a comprehensive synthesis of the literature pertaining to SARMs from a sports medicine perspective and (2) to provide a better understanding of the clinical effects, treatment protocols, prevalence, and potential contamination associated with athlete-consumed SARMs. STUDY DESIGN Systematic review; Level of evidence, 4. METHODS A systematic review of the English-language literature from PubMed, Cochrane, and Embase databases was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Articles relevant to SARM clinical outcomes, elimination profiles, contamination, safety profiles, prevalence, and doping control were included. RESULTS A total of 72 articles from 2003 to 2022 were identified for inclusion. The prevalence of SARM use among athletes is estimated to be 1% to 3%. SARM preclinical and clinical studies reported significant increases in lean body mass and side effects-including bone remodeling, testosterone suppression, and kidney, liver, and prostate enlargement. Thirteen case reports described 15 cases of SARM abuse. All described patients were men, with a median age of 32 years (range, 19-52 years), more than half were identified as athletes (8/15), and all ingested SARMs orally for a mean course of 8 weeks. Five patients described in the case reports explicitly denied "illicit drug use," implying patients may believe their use to be legal. Athletes most commonly purchased SARMs online, and most of these compounds have been shown to be contaminated with other substances, contributing to adverse effects. Athletes reported consuming SARMs at much higher doses than clinically studied, which may increase the risk of the reported side effects, such as liver injury, impaired insulin sensitivity, cardiovascular events, and tendon damage. CONCLUSION The results of this systematic review serve to educate sports medicine clinicians and researchers on how to better identify, diagnose, and treat athlete SARM abuse. SARM use is associated with increased muscle mass, hepatotoxicity, cardiotoxicity, tendon damage, and androgenic side effects throughout the body-including prostate enlargement and serum testosterone suppression. Identifying and treating SARM abuse requires taking a thorough substance and supplement use history with open communication, providing literature-supported patient education, negotiating SARM discontinuation, and performing multidisciplinary treatment of adverse events. Athlete SARM abuse is increasingly widespread and unsafe, and public health oversight bodies should advocate for regulation of these gray-market compounds.
Collapse
Affiliation(s)
- Nikhil Vasireddi
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, USA
| | - Henrik A Hahamyan
- East Tennessee State University, Quillen College of Medicine, Johnson City, Tennessee, USA
| | - Heath P Gould
- Hospital for Special Surgery, New York, New York, USA
| | | | | | | | - James E Voos
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, USA
| | - Jacob G Calcei
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- University Hospitals Drusinsky Sports Medicine Institute, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Roch PJ, Noisser L, Böker KO, Hoffmann DB, Schilling AF, Sehmisch S, Komrakova M. Advantage of ostarine over raloxifene and their combined treatments for muscle of estrogen-deficient rats. J Endocrinol Invest 2024; 47:709-720. [PMID: 37672168 PMCID: PMC10904410 DOI: 10.1007/s40618-023-02188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions. METHODS Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), (2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene expression, and serum markers were analyzed. RESULTS OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium. CONCLUSION OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed endocrinological side effects on pituitary-gonadal axis.
Collapse
Affiliation(s)
- P J Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - L Noisser
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - K O Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - A F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
3
|
Kurapaty SS, Hsu WK. Sex-Based Difference in Bone Healing: A Review of Recent Pre-clinical Literature. Curr Rev Musculoskelet Med 2022; 15:651-658. [PMID: 36378466 PMCID: PMC9789279 DOI: 10.1007/s12178-022-09803-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE OF REVIEW Recent literature has sought to understand differences in fusion failure, specifically considering how patient sex may play a role. Overall, there exists inconclusive data regarding any sex-based differences in bone healing. RECENT FINDINGS In vitro studies examining the roles of sex hormones, 5-LO, IGF-1, VEGF, osteoclasts, and OPCs seem to show sexually dimorphic actions. Additionally, donor characteristics and stem cell environment seem to also determine osteogenic potential. Building on this biomolecular basis, in vivo work investigates the aforementioned elements. Broadly, males tend to have a more robust healing compared to females. Taking these findings together, differences in sex hormones levels, their timing and action, and composition of the inflammatory milieu underlie variations in bone healing by sex. Clinically, a robust understanding of bone healing mechanics can inform care of the transgender patient. Transgender patients undergoing hormone therapy present a clinically nuanced scenario for which limited long-term data exist. Such advances would help inform treatment for sports-related injury due to hormonal changes in biomechanics and treatment of transgender youth. While recent advances provide more clarity, conclusive answers remain elusive.
Collapse
Affiliation(s)
- Steven S. Kurapaty
- Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 1350, Chicago, IL 6061 USA ,Simpson Querrey Institute, Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL USA
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 1350, Chicago, IL 6061 USA ,Simpson Querrey Institute, Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL USA
| |
Collapse
|
4
|
Roch PJ, Wolgast V, Gebhardt MM, Böker KO, Hoffmann DB, Saul D, Schilling AF, Sehmisch S, Komrakova M. Combination of selective androgen and estrogen receptor modulators in orchiectomized rats. J Endocrinol Invest 2022; 45:1555-1568. [PMID: 35429299 PMCID: PMC9270269 DOI: 10.1007/s40618-022-01794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Selective androgen and estrogen receptor modulators, ostarine (OST) and raloxifen (RAL), reportedly improve muscle tissue and offer therapeutic approaches to muscle maintenance in the elderly. The present study evaluated the effects of OST and RAL and their combination on musculoskeletal tissue in orchiectomized rats. METHODS Eight-month-old Sprague Dawley rats were analyzed. Experiment I: (1) Untreated non-orchiectomized rats (Non-ORX), (2) untreated orchiectomized rats (ORX), (3) ORX rats treated with OST during weeks 0-18 (OST-P), (4) ORX rats treated with OST during weeks 12-18 (OST-T). Experiment II: 1) Non-ORX, (2) ORX, 3) OST-P, (4) ORX rats treated with RAL, during weeks 0-18 (RAL-P), 5) ORX rats treated with OST + RAL, weeks 0-18 (OST + RAL-P). The average daily doses of OST and RAL were 0.4 and 7 mg/kg body weight (BW). Weight, fiber size, and capillarization of muscles, gene expression, serum markers and the lumbar vertebral body were analyzed. RESULTS OST-P exerted favorable effects on muscle weight, expression of myostatin and insulin growth factor-1, but increased prostate weight. OST-T partially improved muscle parameters, showing less effect on the prostate. RAL-P did not show anabolic effects on muscles but improved body constitution by reducing abdominal area, food intake, and BW. OST + RAL-P had an anabolic impact on muscle, reduced androgenic effect on the prostate, and normalized food intake. OST and RAL improved osteoporotic bone. CONCLUSIONS The OST + RAL treatment appeared to be a promising option in the treatment of androgen-deficient conditions and showed fewer side effects than the respective single treatments.
Collapse
Affiliation(s)
- P. J. Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - V. Wolgast
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - M.-M. Gebhardt
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - K. O. Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. B. Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Kogod Center On Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN 55905 USA
| | - A. F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - S. Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - M. Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
5
|
Leciejewska N, Kołodziejski PA, Sassek M, Nogowski L, Małek E, Pruszyńska-Oszmałek E. Ostarine-Induced Myogenic Differentiation in C2C12, L6, and Rat Muscles. Int J Mol Sci 2022; 23:ijms23084404. [PMID: 35457222 PMCID: PMC9031805 DOI: 10.3390/ijms23084404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Ostarine (also known as enobosarm or Gtx-024) belongs to the selective androgen receptor modulators (SARMs). It is a substance with an aryl-propionamide structure, classified as a non-steroidal compound that is not subjected to the typical steroid transformations of aromatization and reduction by α5 reductase. Despite ongoing research on ostarine, knowledge about it is still limited. Earlier studies indicated that ostarine may affect the metabolism of muscle tissue, but this mechanism has not been yet described. We aimed to investigate the effect of ostarine on the differentiation and metabolism of muscle. Using C2C12 and L6 cells, as well as muscles obtained from rats administered ostarine, we showed that ostarine stimulates C2C12 and L6 proliferation and cell viability and that this effect is mediated by androgen receptor (AR) and ERK1/2 kinase activation (p < 0.01). We also found that ostarine stimulates muscle cell differentiation by increasing myogenin, MyoD, and MyH expression in both types of cells (p < 0.01). Moreover, pharmacological blocking of AR inhibits the stimulatory effect of ostarine. We further demonstrated that 30 days of ostarine administration increases myogenin, MyoD, and MyH expression, as well as muscle mass, in rats (p < 0.01). Based on our research, we conclude that ostarine stimulates muscle tissue proliferation and differentiation via the androgen receptor.
Collapse
Affiliation(s)
- Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (N.L.); (P.A.K.); (M.S.); (L.N.)
| | - Paweł A. Kołodziejski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (N.L.); (P.A.K.); (M.S.); (L.N.)
| | - Maciej Sassek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (N.L.); (P.A.K.); (M.S.); (L.N.)
| | - Leszek Nogowski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (N.L.); (P.A.K.); (M.S.); (L.N.)
| | - Emilian Małek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, University of Life Sciences, 60-637 Poznan, Poland;
| | - Ewa Pruszyńska-Oszmałek
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, 60-637 Poznan, Poland; (N.L.); (P.A.K.); (M.S.); (L.N.)
- Correspondence: ; Tel.: +48-61-8466084
| |
Collapse
|
6
|
Huang LT, Wang JH. The Therapeutic Intervention of Sex Steroid Hormones for Sarcopenia. Front Med (Lausanne) 2021; 8:739251. [PMID: 34760899 PMCID: PMC8573092 DOI: 10.3389/fmed.2021.739251] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Sarcopenia, characterized by the excessive loss of skeletal muscle mass, strength, and function, is associated with the overall poor muscle performance status of the elderly, and occurs more frequently in those with chronic diseases. The causes of sarcopenia are multifactorial due to the inherent relationship between muscles and molecular mechanisms, such as mitochondrial function, inflammatory pathways, and circulating hormones. Age-related changes in sex steroid hormone concentrations, including testosterone, estrogen, progesterone, and their precursors and derivatives, are an important aspect of the pathogenesis of sarcopenia. In this review, we provide an understanding of the treatment of sarcopenia through the regulation of sex steroid hormones. The potential benefits and future research emphasis of each sex steroid hormone therapeutic intervention (testosterone, SARMs, estrogen, SERMs, DHEA, and progesterone) for sarcopenia are discussed. Enhanced understanding of the role of sex steroid hormones in the treatment for sarcopenia could lead to the development of hormone therapeutic approaches in combination with specific exercise and nutrition regimens.
Collapse
Affiliation(s)
- Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Kowalczyk K, Torres-Elguera JC, Jarek A, Konopka A, Kwiatkowska D, Bulska E. In vitro metabolic studies of novel selective androgen receptor modulators and their use for doping control analysis. Drug Test Anal 2021; 14:122-136. [PMID: 34414676 DOI: 10.1002/dta.3151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 04/16/2021] [Accepted: 08/12/2021] [Indexed: 01/25/2023]
Affiliation(s)
- Katarzyna Kowalczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.,Polish Anti-Doping Laboratory, Warsaw, Poland
| | | | - Anna Jarek
- Polish Anti-Doping Laboratory, Warsaw, Poland
| | - Anna Konopka
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Komrakova M, Nagel J, Hoffmann DB, Lehmann W, Schilling AF, Sehmisch S. Effect of Selective Androgen Receptor Modulator Enobosarm on Bone Healing in a Rat Model for Aged Male Osteoporosis. Calcif Tissue Int 2020; 107:593-602. [PMID: 32876707 PMCID: PMC7593387 DOI: 10.1007/s00223-020-00751-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022]
Abstract
Enobosarm (ostarine, MK-2866, or GTx-024) is a non-steroidal selective androgen receptor modulator. This study evaluated the effect of various regimens of enobosarm (EN) on bone healing in an orchiectomized rat model for aged male osteoporosis and compared it to testosterone (T) treatment. Ninety eight-month-old male Sprague Dawley rats were either orchiectomized (Orx) or left intact (Non-Orx) and divided into groups (n = 15/group): (1) Non-Orx; (2) Orx; (3) Orx+T-th; (4) Orx+EN-th; (5) Orx+T-pr; and (6) Orx+EN-pr. Prophylaxis (Pr) treatments were applied immediately after Orx for up to 18 weeks. Therapy (Th) treatments were applied 12 weeks after Orx for up to 6 weeks. Bilateral tibia osteotomy with plate osteosynthesis was performed 12 weeks after Orx in all groups. EN and T were mixed with the diet; the daily dosage was 0.35 ± 0.06 and 41 ± 8 mg/kg BW, respectively. Both T treatments improved bone healing by increasing callus volume and area, bone volume and density, and cortical width; they had no effect on prostate or levator ani weight. EN-pr increased the callus area and callus density and decreased cortical density, but increased prostate weight. The effect of T-pr and T-th on bone was stronger than EN-pr. EN-th affected bone healing negatively by reducing callus density and area and delaying osteotomy bridging. Levator ani weight was increased in both EN groups. EN treatment after fracture is not advisable in aged males. EN-pr treatment as a therapy for bone healing in men could be further investigated; endocrinological side effects must be closely monitored.
Collapse
Affiliation(s)
- Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany.
| | - Janek Nagel
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Arndt Friedrich Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
9
|
Fonseca GWPD, Dworatzek E, Ebner N, Von Haehling S. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs 2020; 29:881-891. [PMID: 32476495 DOI: 10.1080/13543784.2020.1777275] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Skeletal muscle wasting is a frequent clinical problem encountered in patients with chronic diseases. Increased levels of inflammatory markers play a role in the imbalance between muscle protein synthesis and degradation. Although testosterone has long been proposed as a treatment for patients with muscle wasting, undesirable side effects have raised concerns about prostatic hypertrophy in men as well as virilization in women. Selective androgen receptor modulators (SARMs) have demonstrated similar results like testosterone at improving lean body mass (LBM) with less side effects on androgen-dependent tissue. AREAS COVERED This review outlines the ongoing clinical development in the field of SARMs and their effectiveness in improving body composition and physical function. The included articles were collected at pubmed.gov and analyzed integrally. EXPERT OPINION There is an unmet clinical need for safe and effective anabolic compounds such as SARMs. Despite the effect on LBM shown by SARMs in phase II clinical trials, results on improved physical function and muscle strength are still lacking and long-term outcomes have to be assessed in these patients. Moreover, there is a need to determine the effect of resistance exercise training and protein intake associated with SARMs in the treatment of patients with muscle wasting.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto Da Fonseca
- Heart Institute (Incor), University of São Paulo Medical School , São Paulo, Brazil.,Department of Cardiology and Pneumology, University of Göttingen Medical Center , Göttingen, Germany
| | - Elke Dworatzek
- Institute of Gender in Medicine, Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Berlin Institute of Health , Berlin, Germany.,Departement of Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine (MDC) in the Helmholtz Association , Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin , Berlin, Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical Center , Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen , Göttingen, Germany
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center , Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen , Göttingen, Germany
| |
Collapse
|
10
|
Grünherz L, Prein C, Winkler T, Kirsch M, Hopfner U, Streichert T, Clausen-Schaumann H, Zustin J, Kirchhof K, Morlock MM, Machens HG, Schilling AF. Osteoidosis leads to altered differentiation and function of osteoclasts. J Cell Mol Med 2020; 24:5665-5674. [PMID: 32283567 PMCID: PMC7214153 DOI: 10.1111/jcmm.15227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
In patients with osteomalacia, a defect in bone mineralization leads to changed characteristics of the bone surface. Considering that the properties of the surrounding matrix influence function and differentiation of cells, we aimed to investigate the effect of osteoidosis on differentiation and function of osteoclasts. Based on osteomalacic bone biopsies, a model for osteoidosis in vitro (OIV) was established. Peripheral blood mononuclear cells were differentiated to osteoclasts on mineralized surfaces (MS) as internal control and on OIV. We observed a significantly reduced number of osteoclasts and surface resorption on OIV. Atomic force microscopy revealed a significant effect of the altered degree of mineralization on surface mechanics and an unmasking of collagen fibres on the surface. Indeed, coating of MS with RGD peptides mimicked the resorption phenotype observed in OIV, suggesting that the altered differentiation of osteoclasts on OIV might be associated with an interaction of the cells with amino acid sequences of unmasked extracellular matrix proteins containing RGD sequences. Transcriptome analysis uncovered a strong significant up‐regulation of transmembrane glycoprotein TROP2 in osteoclastic cultures on OIV. TROP2 expression on OIV was also confirmed on the protein level and found on the bone surface of patients with osteomalacia. Taken together, our results show a direct influence of the mineralization state of the extracellular matrix surface on differentiation and function of osteoclasts on this surface which may be important for the pathophysiology of osteomalacia and other bone disorders with changed ratio of osteoid to bone.
Collapse
Affiliation(s)
- Lisanne Grünherz
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany.,Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich, Germany
| | - Carina Prein
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich, Germany.,Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| | - Thomas Winkler
- Institute of Biomechanics, Technische Universität Hamburg-Harburg, Hamburg, Germany
| | - Manuela Kirsch
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany
| | - Ursula Hopfner
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry, University Hospital of Cologne, Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), Munich, Germany.,Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, Munich, Germany
| | - Jozef Zustin
- Gerhard Domagk Institute of Pathology, University Medical Center Muenster, Muenster, Germany
| | | | - Michael M Morlock
- Institute of Biomechanics, Technische Universität Hamburg-Harburg, Hamburg, Germany
| | - Hans-Günter Machens
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany
| | - Arndt Friedrich Schilling
- Experimental Plastic Surgery, Clinic for Plastic and Hand Surgery, Technische Universität München, Munich, Germany.,Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Roch PJ, Henkies D, Carstens JC, Krischek C, Lehmann W, Komrakova M, Sehmisch S. Ostarine and Ligandrol Improve Muscle Tissue in an Ovariectomized Rat Model. Front Endocrinol (Lausanne) 2020; 11:556581. [PMID: 33042018 PMCID: PMC7528560 DOI: 10.3389/fendo.2020.556581] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
In postmenopausal women, hormonal decline changes muscle function and structure. The non-steroidal selective androgen receptor modulators (SARMs) Ostarine (OS) and Ligandrol (LG) have been shown to increase muscle mass and physical function while showing a relative low risk profile. Information about their effects on muscle structure and metabolism is lacking. To analyze this, two experiments were performed using ovariectomized rats as a standard model for postmenopausal conditions. In each experiment, 3-month old Sprague-Dawley rats were divided into five groups (n = 12 to 15). One group remained intact (Non-OVX), the other four groups were ovariectomized (OVX) and remained untreated for eight (OS Experiment) or nine (LG Experiment) weeks. Thereafter, rats of three of the four OVX groups were treated with OS or LG (with doses of 0.04, 0.4, or 4 mg/kg body weight/day) for 5 weeks. Then, uterus, gastrocnemius, and soleus muscles were weighed, fiber size, capillary density, and enzyme activity (lactate dehydrogenase [LDH], citrate synthase [CS], and complex I) were analyzed. In the LG experiment, intramuscular fat content was determined in the quadriceps femoris muscle. All OS treatments resulted in a higher capillary density in the gastrocnemius and longissimus muscles compared with the Non-OVX and the OVX rats, whereas all LG treatments showed a higher capillary density compared with the Non-OVX group. Muscle fiber size and distribution patterns were not changed under either SARM. The CS activity was higher in the longissimus muscle under OS treatment. LG resulted in a higher activity of CS in the gastrocnemius and of LDH in the longissimus muscle. Both SARMs showed an uterotrophic effect, OS at 4 and 0,4 mg dosages, LG at 4 mg dosage. In sum, beneficial effect on muscle vascularization was observed for both SARMs with a stronger impact for OS. LG showed more effect on muscle metabolism. However, a higher muscle weight and intramuscular fat content observed after LG treatment (4 mg) as well as an uterotrophic effect of both SARMs at higher dosages could be considered as an unfavorable side effects and might be a limitation for their application at these dosages.
Collapse
Affiliation(s)
- Paul Jonathan Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
- *Correspondence: Paul Jonathan Roch
| | - Danny Henkies
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Jan Christoph Carstens
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Carsten Krischek
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Göttingen, Germany
| |
Collapse
|