1
|
Arundel P, Bishop N. Medical Management for Fracture Prevention in Children with Osteogenesis Imperfecta. Calcif Tissue Int 2024; 115:812-827. [PMID: 38553634 PMCID: PMC11606989 DOI: 10.1007/s00223-024-01202-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 11/30/2024]
Abstract
There are no licensed treatments for children with osteogenesis imperfecta. Children currently receive off-label treatment with bisphosphonates, without any consistent approach to dose, drug or route of administration. Meta-analyses suggest that anti-fracture efficacy of such interventions is equivocal. New therapies are undergoing clinical trials, and it is likely that one or more will receive marketing authorisation within the next three to five years. The long-term outcome from such interventions will need to be studied carefully well beyond the period over which the clinical trials are conducted, and a consistent approach to the collection of data in this regard will be needed as a major collaborative effort.
Collapse
Affiliation(s)
| | - Nick Bishop
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK.
| |
Collapse
|
2
|
O'Donohue AK, Dao A, Bobyn JD, Munns CF, Little DG, Schindeler A. Modeling anabolic and antiresorptive therapies for fracture healing in a mouse model of osteogenesis imperfecta. J Orthop Res 2023; 41:808-814. [PMID: 35803595 DOI: 10.1002/jor.25414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Osteogenesis imperfecta (OI) is a genetic bone fragility disorder that features frequent fractures. Bone healing outcomes are contingent on a proper balance between bone formation and resorption, and drugs such as bone morphogenetic proteins (BMPs) and bisphosphonates (BPs) have shown to have utility in modulating fracture repair. While BPs are used for OI to increase BMD and reduce pain and fracture rates, there is little evidence for using BMPs as local agents for fracture healing (alone or with BPs). In this study, we examined wild-type and OI mice (Col1a2+/G610C ) in a murine tibial open fracture model with (i) surgery only/no treatment, (ii) local BMP-2 (10 µg), or (iii) local BMP-2 and postoperative zoledronic acid (ZA; 0.1 mg/kg total dose). Microcomputed tomography reconstructions of healing fractures indicated BMP-2 was less effective in an OI setting, however, BMP-2 +ZA led to considerable increases in bone volume (+193% WT, p < 0.001; +154% OI, p < 0.001) and polar moment of inertia (+125% WT, p < 0.01; +248% OI, p < 0.05). Tissue histology revealed a thinning of the neocortex of the callus in BMP-2 treated OI bone, but considerable retention of woven bone in the healing callus with BMP + ZA specimens. These data suggest a cautious approach may be warranted with the sole application of BMP-2 in an OI surgical setting as a bone graft substitute. However, this may be overcome by off-label BP administration.
Collapse
Affiliation(s)
- Alexandra K O'Donohue
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Aiken Dao
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Justin D Bobyn
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| | - Craig F Munns
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - David G Little
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Aaron Schindeler
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Sydney, New South Wales, Australia.,Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Hadjiargyrou M. Effects of bisphosphonates on appendicular fracture repair in rodents. Bone 2022; 164:116542. [PMID: 36041726 DOI: 10.1016/j.bone.2022.116542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
The balance between osteoclastic bone resorption and osteoblastic bone formation is ultimately responsible for maintaining a structural and functional skeleton. Despite their strength, bones do break and the main cause of fractures are trauma and decreased bone mineral density as a result of aging and/or pathology that weakens the bone's microarchitecture and subsequently, its material properties. Osteoporosis is a disease marked by increased osteoclast activity and decreased osteoblastic activity tipping the remodeling balance in favor of bone resorption and can be caused by aging, glucocorticoids, disuse and estrogen-deficiency. Ultimately, this leads to brittle and weaker bones which become more prone to trauma or stress-induced fractures. The current treatment for preventing and treating osteoporotic fractures is the use of antiresorptive drugs such as bisphosphonates (BPs) and denosumab, but unfortunately, their long-term use, especially with alendronate and ibandronate, has been associated with increased risk of atypical femoral fractures (AFFs); femoral diaphyseal fractures distal to the lesser trochanter but proximal to the supracondylar flare. The purpose of this review is to examine the information that exists in the literature examining the effects of BPs on fracture repair of long bones in rodent (rat and mouse) models. The focus on rodents stems from the scientific community's unresolved need to develop small animal models to examine the molecular, cellular, tissue and biomechanical mechanisms responsible for the development of AFFs and how best they can be treated.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, United States of America.
| |
Collapse
|
4
|
Huang X, Wu W, Yang W, Qing X, Shao Z. Surface engineering of nanoparticles with ligands for targeted delivery to osteosarcoma. Colloids Surf B Biointerfaces 2020; 190:110891. [PMID: 32114271 DOI: 10.1016/j.colsurfb.2020.110891] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Osteosarcoma is one of the most common malignant bone tumors which affect adolescents. Neoadjuvant chemotherapy followed by operation has become recommended for osteosarcoma treatment. Whereas, the effects of conventional chemotherapy are unsatisfactory because of multidrug resistance, fast clearance rate, nontargeted delivery, side effects and so on. Accordingly, Nanoparticle-mediated targeted drug delivery system (NTDDS) is recommended to be a novel treatment strategy for osteosarcoma. NTDDS can overcome the above obstacles by enhanced permeability and retention effect and active targeting. The active targeting of the delivery system is mainly based on ligands. In this study, we investigate and summarize the most common ligands used in the latest NTDDS for osteosarcoma. It might provide new insights into nanomedicine for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wei Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|