1
|
Gao T, Tian C, Tian G, Ma L, Xu L, Liu W, Cai J, Zhong F, Zhang H, Ma A. Excessive fructose intake inhibits skeletal development in adolescent rats via gut microbiota and energy metabolism. Front Microbiol 2022; 13:952892. [PMID: 36187951 PMCID: PMC9519145 DOI: 10.3389/fmicb.2022.952892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Excessive fructose intake from desserts and beverages may influence bone development among adolescents. The gut microbiota (GM) and energy metabolism play important roles in bone development. In this study, 40 female adolescent rats were randomly assigned to the control group, the fructose group with two concentrations, and the glucose group as the positive control group. After 10 weeks, serum glucose and lipids were detected by means of an automatic analyzer, and the bone microstructure was analyzed by Micro-CT. Then, the GM was determined via 16S rRNA sequencing analysis, and energy metabolism was detected by measuring serum carbohydrate metabolites. At last, bone metabolism markers were measured via ELISA kits. The results showed that excessive fructose intake could increase body weight and influence the glucolipid metabolism of female adolescent rats. Meanwhile, the bone microstructures were impaired with excessive fructose intake. Mechanistically, excessive fructose intake shifted the GM of rats with the decrease of Lachnospiraceae, Ruminococcaceae, and increase of Allobaculum, Lachnospiraceae. Energy metabolism analysis suggested that most metabolites of fructose did not enter the tricarboxylic acid cycle to provide energy for the body’s development. Furthermore, serum bone metabolism markers showed that excessive fructose intake could decrease both bone formation and resorption. Our results suggested that excessive fructose intake could inhibit skeletal development in adolescents. One potential mechanism might be that it affected the intestinal microbiota homeostasis in the juvenile body, thus changing the energy metabolism level, and ultimately affecting the bone metabolic balance.
Collapse
Affiliation(s)
- Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao, China
| | - Ge Tian
- School of Public Health, Qingdao University, Qingdao, China
| | - Li Ma
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wendong Liu
- Department of Pediatrics, Qingdao Municipal Hospital, Affiliated to Qingdao University, Qingdao, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Feng Zhong
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| | - Huaqi Zhang
- School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Huaqi Zhang,
| | - Aiguo Ma
- School of Public Health, Qingdao University, Qingdao, China
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|