1
|
Conforto R, Rizzo V, Russo R, Mazza E, Maurotti S, Pujia C, Succurro E, Arturi F, Ferro Y, Sciacqua A, Pujia A, Montalcini T. Advances in body composition and gender differences in susceptibility to frailty syndrome: Role of osteosarcopenic obesity. Metabolism 2024; 161:156052. [PMID: 39490438 DOI: 10.1016/j.metabol.2024.156052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
There is general consensus that an improper diet negatively impacts health and that nutrition is a primary tool for the prevention of non-communicable diseases. Unfortunately, the importance of studying body composition, which can reveal early predictors of gender-related diseases, is still not well understood in this context. Currently, individuals are still classified as obese based solely on their body mass index, without considering the amount of fat, its distribution, and the quantity of muscle and bone mass. In this regard, the body composition phenotype defined as "osteosarcopenic obesity" affects approximately 6-41 % of postmenopausal women, with prevalence increasing with age due to the hormonal and metabolic changes that occur during this period. This particular phenotype arises from the strong relationship between visceral fat, muscle, bone, and gut microbiota and predispose postmenopausal women to frailty. Frailty is a complex clinical phenomenon with significant care and economic implications for our society. Recent studies suggest that women have a higher prevalence of frailty syndrome and its individual components, such as osteoporosis, fractures and sarcopenia, compared to men. Here, we provide a comprehensive overview of recent advances regarding the impact of gender on body composition and frailty. Furthermore, we reflect on the crucial importance of personalized nutritional interventions, with a focus on reducing visceral fat, increasing protein intake and optimizing vitamin D levels. A review of the scientific literature on this topic highlights the importance of studying body composition for a personalized and gender-specific approach to nutrition and dietetics, in order to identify frailty syndrome early and establish personalized treatments. This new method of researching disease predictors could likely help clarify the controversial results of studies on vitamin D, calcium and proteins, translate into practical wellness promotion across diverse elderly populations.
Collapse
Affiliation(s)
- Rosy Conforto
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Rizzo
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaella Russo
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Mazza
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Carmelo Pujia
- O.U. Clinical Nutrition, Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases, University "Magna Græcia", 88100 Catanzaro, Italy
| |
Collapse
|
2
|
Yang H, Bai J, Li L, Yang Y, Zhang Y, Lv H, Fu S. Association of C-peptide level with bone mineral density in type 2 diabetes mellitus. Osteoporos Int 2023:10.1007/s00198-023-06785-9. [PMID: 37204453 DOI: 10.1007/s00198-023-06785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
This study revealed that there was no significant linear relationship between fasting C-peptide (FCP) level and bone mineral density (BMD) or fracture risk in type 2 diabetes mellitus (T2DM) patients. However, in the FCP ≤ 1.14 ng/ml group, FCP is positively correlated with whole body (WB), lumbar spine (LS), and femoral neck (FN) BMD and negatively correlated with fracture risk. PURPOSE To explore the relationship between C-peptide and BMD and fracture risk in T2DM patients. METHODS 530 T2DM patients were enrolled and divided into three groups by FCP tertiles, and the clinical data were collected. BMD was measured by dual-energy X-ray absorptiometry (DXA). The 10-year probability of major osteoporotic fractures (MOFs) and hip fractures (HFs) was evaluated by adjusted fracture risk assessment tool (FRAX). RESULTS In the FCP ≤ 1.14 ng/ml group, FCP level was positively correlated with WB, LS, and FN BMD, while FCP was negatively correlated with fracture risk and osteoporotic fracture history. However, FCP was not correlated with BMD and fracture risk and osteoporotic fracture history in the 1.14 < FCP ≤ 1.73 ng/ml and FCP > 1.73 ng/ml groups. The study has shown that FCP was an independent factor influencing BMD and fracture risk in the FCP ≤ 1.14 ng/ml group. CONCLUSIONS There is no significant linear relationship between FCP level and BMD or fracture risk in T2DM patients. In the FCP ≤ 1.14 ng/ml group, FCP is positively correlated with WB, LS, and FN BMD and negatively correlated with fracture risk, and FCP is an independent influencing factor of BMD and fracture risk. The findings suggest that FCP may predict the risk of osteoporosis or fracture in some T2DM patients, which has a certain clinical value.
Collapse
Affiliation(s)
- Hong Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Jia Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Lingling Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Ying Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Yangyang Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Lv
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Maurotti S, Pujia R, Galluccio A, Nucera S, Musolino V, Mare R, Frosina M, Noto FR, Mollace V, Romeo S, Pujia A, Montalcini T. Preventing muscle wasting: pro-insulin C-peptide prevents loss in muscle mass in streptozotocin-diabetic rats. J Cachexia Sarcopenia Muscle 2023; 14:1117-1129. [PMID: 36878894 PMCID: PMC10067479 DOI: 10.1002/jcsm.13210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/01/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND C-peptide therapy exerts several positive actions on nerves, vasculature, smooth muscle relaxation, kidney function and bone. To date, the role of C-peptide in preventing type 1 diabetes-related muscle atrophy has not been investigated. Our aim was to evaluate if C-peptide infusion prevents muscle wasting in diabetic rats. METHODS Twenty-three male Wistar rats were randomly divided into three groups: normal control group, diabetic group and diabetic group plus C-peptide. Diabetes was induced by streptozotocin injection, and C-peptide was administered subcutaneously for 6 weeks. The blood samples were obtained at baseline, before streptozotocin injection and at the end of the study to assess C-peptide, ubiquitin and other laboratory parameters. We also tested the ability of C-peptide to regulate the skeletal muscle mass, the ubiquitin-proteasome system, the autophagy pathway as well as to improve muscle quality. RESULTS C-peptide administration reversed hyperglycaemia (P = 0.02) and hypertriglyceridaemia (P = 0.01) in diabetic plus C-peptide rats compared with diabetic control rats. The diabetic-control animals displayed a lower weight of the muscles in the lower limb considered individually than the control rats and the diabetic plus C-peptide rats (P = 0.03; P = 0.03; P = 0.04; P = 0.004, respectively). The diabetic-control rats presented a significantly higher serum concentration of ubiquitin compared with the diabetic plus C-peptide and the control animals (P = 0.02 and P = 0.01). In muscles of the lower limb, the pAmpk expression was higher in the diabetic plus C-peptide than the diabetic-control rats (in the gastrocnemius, P = 0.002; in the tibialis anterior P = 0.005). The protein expression of Atrogin-1 in gastrocnemius and tibialis was lower in the diabetic plus C-peptide than in diabetic-control rats (P = 0.02, P = 0.03). After 42 days, the cross-sectional area in the gastrocnemius of the diabetic plus C-peptide group had been reduced by 6.6% while the diabetic-control rats had a 39.5% reduction compared with the control animals (P = 0.02). The cross-sectional area of the tibialis and the extensor digitorum longus muscles was reduced, in the diabetic plus C-peptide rats, by 10% and 11%, respectively, while the diabetic-control group had a reduction of 65% and 45% compared with the control animals (both P < 0.0001). Similar results were obtained for the minimum Feret's diameter and perimeter. CONCLUSIONS C-peptide administration in rats could protect skeletal muscle mass from atrophy induced by type 1 diabetes mellitus. Our findings could suggest that targeting the ubiquitin-proteasome system, Ampk and muscle-specific E3 ubiquitin ligases such as Atrogin-1 and Traf6 may be an effective strategy for molecular and clinical intervention in the muscle wasting pathological process in T1DM.
Collapse
Affiliation(s)
- Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Roberta Pujia
- Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Angelo Galluccio
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Science, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Musolino
- Department of Health Science, University Magna Graecia, Catanzaro, Italy
| | - Rosario Mare
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Miriam Frosina
- Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Francesca Rita Noto
- Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Science, University Magna Graecia, Catanzaro, Italy
| | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy.,Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Graecia, Catanzaro, Italy.,Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy.,Research Center for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
4
|
Bosco F, Guarnieri L, Nucera S, Scicchitano M, Ruga S, Cardamone A, Maurotti S, Russo C, Coppoletta AR, Macrì R, Bava I, Scarano F, Castagna F, Serra M, Caminiti R, Maiuolo J, Oppedisano F, Ilari S, Lauro F, Giancotti L, Muscoli C, Carresi C, Palma E, Gliozzi M, Musolino V, Mollace V. Pathophysiological Aspects of Muscle Atrophy and Osteopenia Induced by Chronic Constriction Injury (CCI) of the Sciatic Nerve in Rats. Int J Mol Sci 2023; 24:ijms24043765. [PMID: 36835176 PMCID: PMC9962869 DOI: 10.3390/ijms24043765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Skeletal muscle atrophy is a condition characterized by a loss of muscle mass and muscle strength caused by an imbalance between protein synthesis and protein degradation. Muscle atrophy is often associated with a loss of bone mass manifesting as osteoporosis. The aim of this study was to evaluate if chronic constriction injury (CCI) of the sciatic nerve in rats can be a valid model to study muscle atrophy and consequent osteoporosis. Body weight and body composition were assessed weekly. Magnetic resonance imaging (MRI) was performed on day zero before ligation and day 28 before sacrifice. Catabolic markers were assessed via Western blot and Quantitative Real-time PCR. After the sacrifice, a morphological analysis of the gastrocnemius muscle and Micro-Computed Tomography (Micro-CT) on the tibia bone were performed. Rats that underwent CCI had a lower body weight increase on day 28 compared to the naive group of rats (p < 0.001). Increases in lean body mass and fat mass were also significantly lower in the CCI group (p < 0.001). The weight of skeletal muscles was found to be significantly lower in the ipsilateral hindlimb compared to that of contralateral muscles; furthermore, the cross-sectional area of muscle fibers decreased significantly in the ipsilateral gastrocnemius. The CCI of the sciatic nerve induced a statistically significant increase in autophagic and UPS (Ubiquitin Proteasome System) markers and a statistically significant increase in Pax-7 (Paired Box-7) expression. Micro-CT showed a statistically significant decrease in the bone parameters of the ipsilateral tibial bone. Chronic nerve constriction appeared to be a valid model for inducing the condition of muscle atrophy, also causing changes in bone microstructure and leading to osteoporosis. Therefore, sciatic nerve constriction could be a valid approach to study muscle-bone crosstalk and to identify new strategies to prevent osteosarcopenia.
Collapse
Affiliation(s)
- Francesca Bosco
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (F.B.); (M.G.)
| | - Lorenza Guarnieri
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Miriam Scicchitano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Cristina Russo
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Anna Rita Coppoletta
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Irene Bava
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH) Center, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Sara Ilari
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Filomena Lauro
- Henry and Amelia Nasrallah Center for Neuroscience, Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Grand Blvd, St. Louis, MO 63104, USA
| | - Luigi Giancotti
- Henry and Amelia Nasrallah Center for Neuroscience, Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Grand Blvd, St. Louis, MO 63104, USA
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (F.B.); (M.G.)
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH) Center, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Pujia R, Maurotti S, Coppola A, Romeo S, Pujia A, Montalcini T. The Potential Role of C-peptide in Sexual and Reproductive Functions in Type 1 Diabetes Mellitus: An Update. Curr Diabetes Rev 2022; 18:e051021196983. [PMID: 34636302 DOI: 10.2174/1573399817666211005093434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/09/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although hyperglycaemia is known to be the leading cause of diabetic complications, the beneficial effect of optimal glucose control in preventing diabetic complications is still far from being proven. In fact, such complications may not be related to glycaemic control alone. OBJECTIVE This review summarizes several studies that suggest that a C-peptide deficiency could be new and common pathophysiology for complications in type 1 diabetes, including sexual and reproductive dysfunction. METHODS We reviewed in vitro, in vivo, and human studies on the association between C-peptide deficiency or C-peptide replacement therapy and complications in type 1 diabetes. It seems that Cpeptide replacement therapy may interrupt the connection between diabetes and sexual/reproductive dysfunction. RESULTS The Diabetes Control and Complications Trial suggested that maintaining C-peptide secretion is associated with a reduced incidence of retinopathy, nephropathy, and hypoglycaemia. Risk of vascular, hormonal, and neurologic damage in the structures supplying blood to the penis increases with increasing levels of HbA1. However, several human studies have suggested an association between C-peptide production and hypothalamic/pituitary functions. When exposed to C-peptide, cavernosal smooth muscle cells increase the production of nitric oxide. C-peptide in diabetic rats improves sperm count, sperm motility, testosterone levels, and nerve conduction compared to non-treated diabetic rats. CONCLUSION C-peptide deficiency may be involved, at least partially, in the development of several pathological features associated with type 1 diabetes, including sexual/reproductive dysfunction. Preliminary studies have reported that C-peptide administration protects against diabetic microand macrovascular damages as well as sexual/reproductive dysfunction. Therefore, further studies are needed to confirm these promising findings.
Collapse
Affiliation(s)
- Roberta Pujia
- Department of Health Science, University Magna Grecia, Catanzaro,Italy
| | - Samantha Maurotti
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | | | - Stefano Romeo
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | - Arturo Pujia
- Department of Medical and Surgical Science, University Magna Grecia, Catanzaro,Italy
| | - Tiziana Montalcini
- Department of Experimental and Clinical Medicine, Clinical Nutrition Unit, University Magna Græcia of Catanzaro, Catanzaro,Italy
| |
Collapse
|
6
|
Jiang M, Ding Y, Xu S, Hao X, Yang Y, Luo E, Jing D, Yan Z, Cai J. Radiotherapy-induced bone deterioration is exacerbated in diabetic rats treated with streptozotocin. Braz J Med Biol Res 2021; 54:e11550. [PMID: 34730682 PMCID: PMC8555449 DOI: 10.1590/1414-431x2021e11550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Following radiotherapy, patients have decreased bone mass and increased risk of fragility fractures. Diabetes mellitus (DM) is also reported to have detrimental effects on bone architecture and quality. However, no clinical or experimental study has systematically characterized the bone phenotype of the diabetic patients following radiotherapy. After one month of streptozotocin injection, three-month-old male rats were subjected to focal radiotherapy (8 Gy, twice, at days 1 and 3), and then bone mass, microarchitecture, and turnover as well as bone cell activities were evaluated at 2 months post-irradiation. Micro-computed tomography results demonstrated that DM rats exhibited greater deterioration in trabecular bone mass and microarchitecture following irradiation compared with the damage to bone structure induced by DM or radiotherapy. The serum biochemical, bone histomorphometric, and gene expression assays revealed that DM combined with radiotherapy showed lower bone formation rate, osteoblast number on bone surface, and expression of osteoblast-related markers (ALP, Runx2, Osx, and Col-1) compared with DM or irradiation alone. DM plus irradiation also caused higher bone resorption rate, osteoclast number on bone surface, and expression of osteoclast-specific markers (TRAP, cathepsin K, and calcitonin receptor) than DM or irradiation treatment alone. Moreover, lower osteocyte survival and higher expression of Sost and DKK1 genes (two negative modulators of Wnt signaling) were observed in rats with combined DM and radiotherapy. Together, these findings revealed a higher deterioration of the diabetic skeleton following radiotherapy, and emphasized the clinical importance of health maintenance.
Collapse
Affiliation(s)
- Maogang Jiang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Shiwei Xu
- Department of Medical Technical Support, NCO School of Army Medical University, Shijiazhuang, China
| | - Xiaoxia Hao
- Laboratory of Tissue Engineering, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
7
|
Montalcini T, Coppola A, Gazzaruso C. Bone microarchitecture abnormalities in type 1 diabetes and in latent autoimmune diabetes in adults. A potential role for C-peptide. Endocrine 2021; 73:496-497. [PMID: 33057987 DOI: 10.1007/s12020-020-02522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/03/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Tiziana Montalcini
- Department of Clinical and Experimental Medicine, Nutrition Unit, University Magna Grecia, Germaneto, Catanzaro, Italy
| | - Adriana Coppola
- Diabetes and endocrine, metabolic and vascular diseases Unit and the Centre for Applied Clinical Research (Ce.R.C.A.) Clinical Institute "Beato Matteo" (Hospital Group San Donato), Corso Pavia 84, 27029, Vigevano, Italy
| | - Carmine Gazzaruso
- Diabetes and endocrine, metabolic and vascular diseases Unit and the Centre for Applied Clinical Research (Ce.R.C.A.) Clinical Institute "Beato Matteo" (Hospital Group San Donato), Corso Pavia 84, 27029, Vigevano, Italy.
| |
Collapse
|
8
|
Taylor GS, Moser O, Smith K, Shaw A, Tang JCY, Fraser WD, Eckstein ML, Aziz F, Stevenson EJ, Shaw JA, West DJ. Bone turnover and metabolite responses to exercise in people with and without long-duration type 1 diabetes: a case-control study. BMJ Open Diabetes Res Care 2020; 8:8/2/e001779. [PMID: 33148690 PMCID: PMC7643495 DOI: 10.1136/bmjdrc-2020-001779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Exercise acutely alters markers of bone resorption and formation. As risk of fracture is increased in patients with type 1 diabetes, understanding if exercise-induced bone turnover is affected within this population is prudent. We assessed bone turnover responses to acute exercise in individuals with long-duration type 1 diabetes and matched controls. RESEARCH DESIGN AND METHODS Participants with type 1 diabetes (n=15; age: 38.7±13.3; glycosylated hemoglobin: 60.5±6.7 mmol/mol; diabetes duration: 19.3±11.4 years) and age-matched, fitness-matched, and body mass index-matched controls (n=15) completed 45 min of incline walking (60% peak oxygen uptake). Blood samples were collected at baseline and immediately, 30 min, and 60 min postexercise. Markers of bone resorption (β-C-terminal cross-linked telopeptide of type 1 collagen, β-CTx) and formation (procollagen type-1 amino-terminal propeptide, P1NP), parathyroid hormone (PTH), phosphate, and calcium (albumin-adjusted and ionized) were measured. Data (mean±SD) were analyzed by a mixed-model analysis of variance. RESULTS Baseline concentrations of P1NP and β-CTx were comparable between participants with type 1 diabetes and controls. P1NP did not change with exercise (p=0.20) but β-CTx decreased (p<0.001) in both groups, but less so in participants with type 1 diabetes compared with controls (-9.2±3.7%; p=0.02). PTH and phosphate increased immediately postexercise in both groups; only PTH was raised at 30 min postexercise (p<0.001), with no between-group differences (p>0.39). Participants with type 1 diabetes had reduced albumin and ionized calcium at all sample points (p<0.01). CONCLUSIONS Following exercise, participants with type 1 diabetes displayed similar time-course changes in markers of bone formation and associated metabolites, but an attenuated suppression in bone resorption. The reduced albumin and ionized calcium may have implications for future bone health. Further investigation of the interactions between type 1 diabetes, differing modalities and intensities of exercise, and bone health is warranted.
Collapse
Affiliation(s)
- Guy S Taylor
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany
| | - Kieran Smith
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Andy Shaw
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Jonathan C Y Tang
- Bioanalytical Facility, University of East Anglia Norwich Medical School, Norwich, Norfolk, UK
| | - William D Fraser
- Bioanalytical Facility, University of East Anglia Norwich Medical School, Norwich, Norfolk, UK
| | - Max L Eckstein
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, Bayreuth, Germany
| | - Faisal Aziz
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Styria, Austria
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - James A Shaw
- Biosciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|