1
|
Cirovic A, Djuric M, Milovanovic P. Deficiency of protein C or protein S as a possible cause of osteoporosis. Endocrine 2024; 85:558-565. [PMID: 38483687 DOI: 10.1007/s12020-024-03774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 08/16/2024]
Abstract
Proteins C and S are vitamin K-dependent anticoagulative factors that also exert a significant influence on bone quality. Clinical studies have linked the deficiency of proteins C and S to lower bone mineral density and the onset of femoral head osteonecrosis in children. Rare foundational studies analyzing this topic have demonstrated that activated protein C, upon binding to the endothelial protein C receptor expressed on the surface of osteoblasts, promotes osteoblast proliferation. It is also established that proteins C and S play crucial roles in proper collagen synthesis and in maintaining the number of osteoclasts and blood vessels. However, the association between protein C and/or S deficiency and the gradual onset of osteoporosis remains largely uninvestigated. Calculations based on data from peer-reviewed journals suggest that approximately one in every 10 individuals may develop osteoporosis due to congenital protein C or S deficiency. Moreover, when secondary causes of protein C and S deficiency are also considered, the proportion likely further increases. In this paper, we discuss the pathophysiological background of the potential relationship between protein C and S deficiency and the genesis of osteoporosis.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
2
|
Cirovic AV, Cirovic AV, Vujacic MD, Djonic DD, Djuric MP, Milovanovic PD. Ex vivo analysis of cortical microarchitecture of the distal clavicle: implications for surgical management of fractures. Arch Orthop Trauma Surg 2024; 144:2583-2590. [PMID: 38691146 DOI: 10.1007/s00402-024-05345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Cortical thickness and porosity are two main determinants of cortical bone strength. Thus, mapping variations in these parameters across the full width of the distal end of the clavicle may be helpful for better understanding the basis of distal clavicle fractures and for selecting optimal surgical treatment. METHODS Distal ends of 11 clavicles (6 men, 5 women; age: 81.9 ± 15.1 years) were scanned by micro-computed tomography at 10-µm resolution. We first analyzed cortical thickness and porosity of each 500-μm-wide area across the superior surface of distal clavicle at the level of conoid tubercle in an antero-posterior direction. This level was chosen for detailed evaluation because previous studies have demonstrated its superior microarchitecture relative to the rest of the distal clavicle. Subsequently, we divided the full width of distal clavicle to three subregions (anterior, middle, and posterior) and analyzed cortical porosity, pore diameter, pore separation, and cortical thickness. RESULTS We found the largest number of low-thickness and high-porosity areas in the anterior subregion. Cortical porosity, pore diameter, pore separation, and cortical thickness varied significantly among the three subregions (p < 0.001 p = 0.016, p = 0.001, p < 0.001, respectively). Cortex of the anterior subregion was more porous than that of the middle subregion (p < 0.001) and more porous and thinner than that of the posterior subregion (p < 0.001, p = 0.030, respectively). Interaction of site and sex revealed higher porosity of the anterior subregion in women (p < 0.001). The anterior subregion had larger pores than the middle subregion (p = 0.019), whereas the middle subregion had greater pore separation compared with the anterior (p = 0.002) and posterior subregions (p = 0.006). In general, compared with men, women had thinner (p < 0.001) and more porous cortex (p = 0.03) with larger cortical pores (p < 0.001). CONCLUSIONS Due to high cortical porosity and low thickness, the anterior conoid subregion exhibits poor bone microarchitecture, particularly in women, which may be considered in clinical practice. LEVELS OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Aleksandar V Cirovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Ana V Cirovic
- Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Marko D Vujacic
- Institute for Orthopedic Surgery "Banjica", Mihaila Avramovića 28, Belgrade, Serbia
| | - Danijela D Djonic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Marija P Djuric
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Petar D Milovanovic
- Center of Bone Biology, Institute of Anatomy, University of Belgrade-Faculty of Medicine, Dr Subotica 4/2, 11000, Belgrade, Serbia.
| |
Collapse
|
3
|
Koepke LG, von Kroge S, Heuer A, Kammal AL, Ondruschka B, Rolvien T, Viezens L. Analysis of Three-Dimensional Bone Microarchitecture of the Axis Exposes Pronounced Regional Heterogeneity Associated with Clinical Fracture Patterns. Calcif Tissue Int 2023; 112:563-572. [PMID: 36826480 PMCID: PMC10106346 DOI: 10.1007/s00223-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/04/2023] [Indexed: 02/25/2023]
Abstract
The odontoid process (dens) of the second cervical vertebra (axis) is prone to fracture. While the importance of its skeletal integrity has been previously noted, representative three-dimensional microarchitecture analyses in humans are not available. This study aimed to determine the bone microarchitecture of the axis using high-resolution quantitative computed tomography (HR-pQCT) and to derive clinical implications for the occurrence and treatment of axis fractures. For initial clinical reference, the apparent density of the axis was determined based on clinical computed tomography (CT) images in patients without and with fractures of the axis. Subsequently, 28 human axes (female 50%) obtained at autopsy were analyzed by HR-pQCT. Analyses were performed in three different regions corresponding to zones I (tip of dens), II (base of dens), and III (corpus axis) of the Anderson and D'Alonzo classification. Lower apparent densities based on clinical CT data were detected in zone II and III compared to zone I in both the group without and with fracture. In the autopsy specimens, cortical thickness and bone volume fraction decreased continuously from zone I to zone III. Trabecular and cortical tissue mineral density was lowest in zone III, with no differences between zones I and II. In conclusion, our clinical and high-resolution ex vivo imaging data highlight a marked regional heterogeneity of bone microarchitecture, with poor cortical and trabecular properties near the dens base. These results may partly explain why zones II and III are at high risk of fracture and osteosynthesis failure.
Collapse
Affiliation(s)
- Leon-Gordian Koepke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Heuer
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Lena Kammal
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Viezens
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcif Tissue Int 2022; 111:457-465. [PMID: 35871240 PMCID: PMC9308472 DOI: 10.1007/s00223-022-01007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck-the common fracture-initiating site-are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
5
|
Cirovic A, Cirovic A, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Three-dimensional mapping of cortical porosity and thickness along the superolateral femoral neck in older women. Sci Rep 2022; 12:15544. [PMID: 36109611 PMCID: PMC9477875 DOI: 10.1038/s41598-022-19866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Although several studies have analyzed inter-individual differences in the femoral neck cortical microstructure, intra-individual variations have not been comprehensively evaluated. By using microCT, we mapped cortical pore volume fraction (Ct.Po) and thickness (Ct.Th) along the superolateral femoral neck in 14 older women (age: 77.1 ± 9.8 years) to identify subregions and segments with high porosity and/or low thickness-potential "critical" spots where a fracture could start. We showed that Ct.Po and Ct.Th significantly differed between basicervical, midcervical, and subcapital subregions of the femoral neck (p < 0.001), where the subcapital subregion showed the lowest mean Ct.Th and the highest mean Ct.Po. These cortical parameters also varied substantially with age and with the location of the analyzed microsegments along the individual's neck (p < 0.001), showing multiple microsegments with high porosity and/or low thickness. Although the highest ratio of these microsegments was found in the subcapital subregion, they were also present at other examined subregions, which may provide an anatomical basis for explaining the fracture initiation at various sites of the superolateral neck. Given that fractures likely start at structurally and mechanically weaker spots, intra-individual variability in Ct.Po and Ct.Th should be considered and the average values for the entire femoral neck should be interpreted with caution.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
6
|
Jadzic J, Mijucic J, Nikolic S, Djuric M, Djonic D. The comparison of age- and sex-specific alteration in pubic bone microstructure: A cross-sectional cadaveric study. Exp Gerontol 2021; 150:111375. [PMID: 33940115 DOI: 10.1016/j.exger.2021.111375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The burden of age-associated fragility fracture of the pelvis has gradually amplified over the years. Commonly used clinical tools cannot fully explain age-associated fracture risk increase, and microstructural analysis could be required to elucidate pubic bone strength decline in elderly. MATERIAL AND METHODS The study sample encompassed 46 pubic bones obtained from cadaveric donors divided into a young women (<45 years, n = 11), aged women (>60 years, n = 11), young men (<45 years, n = 12) and aged men group (>60 years, n = 12). Micro-computed tomography was used to evaluate the cortical and trabecular microstructure of pubic bone samples. RESULTS Apart from age-associated loss in quantitative trabecular parameters, significant alteration of micro-CT parameters that more closely reflect internal trabecular microarchitectural complexity may contribute to pubic bone strength decline in men and women of advanced age (p < 0.05). Additionally, decreased cortical thickness and increased Ct.Po, Po.Dm and Po.N were found in the anterior and posterior cortical surface of pubic bone samples from the aged individuals (p < 0.05). The more pronounced alteration was noted in aged female donors, illustrated in a significant deterioration trend of the Tb.N, Tb.Sp, and thinner posterior cortical surface with decreased pore spacing (p < 0.05). CONCLUSION Our data suggest that age-associated deterioration in trabecular and cortical pubic bone micro-architecture could unravel a morphological basis for decreased pubic bone strength and increased pubic bone fragility, which leads to fracture predilection in the elderly women. Thus, the individual fracture risk assessment should be advised in the elderly, with a particular accent on aged women.
Collapse
Affiliation(s)
- Jelena Jadzic
- Laboratory for Anthropology and Skeletal Biology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovana Mijucic
- Laboratory for Anthropology and Skeletal Biology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Djuric
- Laboratory for Anthropology and Skeletal Biology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology and Skeletal Biology, Institute for Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|