1
|
Han Mİ, Küçükgüzel ŞG. Thioethers: An Overview. Curr Drug Targets 2022; 23:170-219. [DOI: 10.2174/1389450122666210614121237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
:
Spreading rapidly in recent years, cancer has become one of the causes of the highest mor-tality rates after cardiovascular diseases. The reason for cancer development is still not clearly under-stood despite enormous research activities in this area. Scientists are now working on the biology of cancer, especially on the root cause of cancer development. The aim is to treat the cancer disease and thus cure the patients. The continuing efforts for the development of novel molecules as potential anti-cancer agents are essential for this purpose. The main aim of this review was to present a survey on the medicinal chemistry of thioethers and provide practical data on their cytotoxicities against various cancer cell lines. The research articles published between 2001-2020 were consulted to pre-pare this review article; however, patent literature has not been included. The thioether-containing heterocyclic compounds may emerge as a new class of potent and effective anti-cancer agents in the future.
Collapse
Affiliation(s)
- M. İhsan Han
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Talas, 38050, Kayseri, Turkey
| | - Ş. Güniz Küçükgüzel
- Vocational School of Health Services, Fenerbahçe University, Ataşehir, 34758, İstanbul, Turkey
| |
Collapse
|
2
|
Effects of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of proton pump inhibitors. Pharmacol Res 2020; 152:104606. [DOI: 10.1016/j.phrs.2019.104606] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
|
3
|
Pu J, Wang F, Tang W, Zhu M. Biotransformation of Ilaprazole in Human Liver Microsomes and Human: Role of CYP3A4 in Ilaprazole Clearance and Drug-Drug Interaction. Drug Metab Dispos 2018; 46:1453-1461. [PMID: 30002078 DOI: 10.1124/dmd.118.081570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Ilaprazole is a new proton pump inhibitor and is currently marketed in China and South Korea for the treatment of gastric and duodenal ulcer. Ilaprazole has a favorable long half-life and minimal pharmacokinetic variability associated with CYP2C19 polymorphism. Sulfoxide oxidation of ilaprazole is catalyzed mainly by CYP3A4. Thus, it has been widely accepted that CYP3A4 plays a major role in the clearance of ilaprazole in humans. However, absorption, distribution, metabolism, and excretion data of radiolabeled ilaprazole in humans are not available. The primary goal of this study was to determine if sulfoxide oxidation is a major metabolic pathway of ilaprazole in humans. Metabolite profiles of ilaprazole, ilaprazole sulfide, and ilaprazole sulfone in human liver microsomes (HLMs) were characterized and quantitively analyzed by liquid chromatography (LC)/UV/high-resolution mass spectrometry (HRMS). Moreover, metabolites of ilaprazole in human urine and feces were detected and identified by LC-HRMS. The results revealed that sulfoxide reduction to ilaprazole sulfide rather than sulfoxide oxidation was the major biotransformation pathway in HLMs. Sulfoxide reduction also occurred in HLMs without NADPH or in deactivated HLMs. Ilaprazole sulfide and its multiple oxidative metabolites were major drug-related components in human urine and feces, where there were no ilaprazole sulfone and its metabolites. A small amount of the parent drug was found in feces. Thus, we propose that nonenzymatic sulfoxide reduction rather than CYP3A4-medidated sulfoxide oxidation is the major metabolic clearance pathway of ilaprazole in humans. Consequently, it is predicted that ilaprazole has no significant drug-drug interaction via CYP3A4 inhibition or induction by a coadministered drug.
Collapse
Affiliation(s)
- Jie Pu
- DMPK Department ChemPartner, Shanghai, China (J.P., F.W., W.T.); School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.P.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Fen Wang
- DMPK Department ChemPartner, Shanghai, China (J.P., F.W., W.T.); School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.P.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Wei Tang
- DMPK Department ChemPartner, Shanghai, China (J.P., F.W., W.T.); School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.P.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- DMPK Department ChemPartner, Shanghai, China (J.P., F.W., W.T.); School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.P.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
4
|
Dash RP, Rais R, Srinivas NR. Stereoselective and nonstereoselective pharmacokinetics of rabeprazole – an overview. Xenobiotica 2017; 48:422-432. [DOI: 10.1080/00498254.2017.1307470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ranjeet Prasad Dash
- Department of Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program and Johns Hopkins University, Baltimore, MD, USA,
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA, and
| | - Rana Rais
- Department of Metabolism and Pharmacokinetics, Johns Hopkins Drug Discovery Program and Johns Hopkins University, Baltimore, MD, USA,
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA, and
| | - Nuggehally R. Srinivas
- Department of Metabolism and Pharmacokinetics, Zydus Research Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Chiba K, Shimizu K, Kato M, Nishibayashi T, Terada K, Izumo N, Sugiyama Y. Prediction of inter-individual variability in the pharmacokinetics of CYP2C19 substrates in humans. Drug Metab Pharmacokinet 2014; 29:379-86. [PMID: 24739523 DOI: 10.2133/dmpk.dmpk-13-rg-137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant inter-individual variability of exposure for CYP2C19 substrates may be only partly due to genetic polymorphism. Therefore, the in vivo inter-individual variability in hepatic intrinsic clearance (CL(int,h)) of CYP2C19 substrates was estimated from reported AUC values using Monte Carlo simulations. The coefficient of variation (CV) for CL(int,h) in poor metabolizers (PM) expected from genotypes CYP2C19*2/*2, CYP2C19*3/*3 or CYP2C19*2/*3 was estimated as 25.8% from the CV for AUC of omeprazole in PMs. With this, CVs of CL(int,h) in extensive metabolizers (EM: CYP2C19*1/*1), intermediate metabolizers (IM: CYP2C19*1/*2 or *3) and ultra-rapid metabolizers (UM), CYP2C19*17/*17 and *1/*17, were estimated as 66.0%, 55.8%, 6.8% and 48.0%, respectively. To validate these CVs, variability in the AUC of CYP2C19 substrates lansoprazole and rabeprazole, partially metabolized by CYP3A4 in EMs and IMs, were simulated using the CV in CL(int,h) for CYP2C19 EMs and IMs and 33% of the CV previously reported for CYP3A4. Published values were within 2.5-97.5 percentile range of simulated CVs for the AUC. Furthermore, simulated CVs for the AUC of omeprazole and lansoprazole in ungenotyped populations were comparable with published values. Thus, estimated CL(int,h) variability can predict variability in the AUC of drugs metabolized not only by CYP2C19 but also by multiple enzymes.
Collapse
Affiliation(s)
- Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama College of Pharmacy
| | | | | | | | | | | | | |
Collapse
|
6
|
Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS JOURNAL 2013; 15:415-26. [PMID: 23319287 DOI: 10.1208/s12248-012-9431-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/20/2012] [Indexed: 12/17/2022]
Abstract
We present a unified quantitative approach to predict the in vivo alteration in drug exposure caused by either cytochrome P450 (CYP) gene polymorphisms or CYP-mediated drug-drug interactions (DDI). An application to drugs metabolized by CYP2C19 is presented. The metrics used is the ratio of altered drug area under the curve (AUC) to the AUC in extensive metabolizers with no mutation or no interaction. Data from 42 pharmacokinetic studies performed in CYP2C19 genetic subgroups and 18 DDI studies were used to estimate model parameters and predicted AUC ratios by using Bayesian approach. Pharmacogenetic information was used to estimate a parameter of the model which was then used to predict DDI. The method adequately predicted the AUC ratios published in the literature, with mean errors of -0.15 and -0.62 and mean absolute errors of 0.62 and 1.05 for genotype and DDI data, respectively. The approach provides quantitative prediction of the effect of five genotype variants and 10 inhibitors on the exposure to 25 CYP2C19 substrates, including a number of unobserved cases. A quantitative approach for predicting the effect of gene polymorphisms and drug interactions on drug exposure has been successfully applied for CYP2C19 substrates. This study shows that pharmacogenetic information can be used to predict DDI. This may have important implications for the development of personalized medicine and drug development.
Collapse
Affiliation(s)
- Sylvain Goutelle
- Service Pharmaceutique, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | | | | |
Collapse
|
7
|
Isoherranen N, Lutz JD, Chung SP, Hachad H, Levy RH, Ragueneau-Majlessi I. Importance of multi-p450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude, and prediction from in vitro data. Chem Res Toxicol 2012; 25:2285-300. [PMID: 22823924 PMCID: PMC3502654 DOI: 10.1021/tx300192g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is coadministered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contribute half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450s, were identified. Seventeen (45%) multi-P450 inhibitors were strong inhibitors of at least one P450, and an additional 12 (32%) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam, while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine, and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate studies with the same inhibitors. The results of this study suggest that inhibition of multiple clearance pathways in vivo is clinically relevant, and the risk of DDIs with object drugs may be best evaluated in studies using multi-P450 inhibitors.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Pharmacokinetic interactions between ilaprazole and clarithromycin following ilaprazole, clarithromycin and amoxicillin triple therapy. Acta Pharmacol Sin 2012; 33:1095-100. [PMID: 22820908 DOI: 10.1038/aps.2012.64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AIM To investigate the drug interactions between ilaprazole, a new proton pump inhibitor, and clarithromycin following ilaprazole, clarithromycin and amoxicillin combination therapy. METHODS Twelve healthy Chinese volunteers were recruited in a randomized, open-label, 3-period crossover study. All subjects were administered ilaprazole (5 mg), clarithromycin (500 mg) or a triple therapy, including ilaprazole (5 mg), clarithromycin (500 mg) and amoxicillin (1 g), twice daily for 6 consecutive days. On the 7th day, the drugs were given once, and blood samples were collected and analyzed using a well-validated HPLC/MS/MS method. RESULTS Following the triple therapy, the peak concentration (C(max)) and the area under the concentration-time curve from 0 h to 12 h (AUC(0→12)) of ilaprazole were significantly decreased, as compared with the single medication group (C(max):1025.0±319.6 vs 1452.3±324.6 ng/mL; AUC(0→12): 9777.7±3789.8 vs 11363.1±3442.0 ng·h/mL). Similar changes were found for ilaprazole sulfone (C(max): 5.9±0.5 vs 9.3±1.7 ng/mL; AUC(0→12): 201.4±32.1 vs 277.1±66.2 ng·h/mL). The triple therapy significantly elevated the C(max) of clarithromycin (3161.5±702.2 vs 2541.9±476.2 ng/mL). CONCLUSION The H pylori eradication therapy with clarithromycin, amoxicillin and ilaprazole may cause pharmacokinetic interactions that decrease the amount of ilaprazole and its metabolites and elevate that of clarithromycin.
Collapse
|
9
|
Bolhuis MS, Panday PN, Pranger AD, Kosterink JGW, Alffenaar JWC. Pharmacokinetic drug interactions of antimicrobial drugs: a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams. Pharmaceutics 2011; 3:865-913. [PMID: 24309312 PMCID: PMC3857062 DOI: 10.3390/pharmaceutics3040865] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022] Open
Abstract
Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available. This overview can be used in daily practice to support the management of pharmacokinetic drug interactions of antimicrobial drugs.
Collapse
Affiliation(s)
- Mathieu S Bolhuis
- Department of Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Baldwin CM, Keam SJ. Rabeprazole: a review of its use in the management of gastric acid-related diseases in adults. Drugs 2009; 69:1373-401. [PMID: 19583455 DOI: 10.2165/00003495-200969100-00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rabeprazole (Aciphex, Alfence, Pariet) is a proton pump inhibitor (PPI) used for the treatment of adults with conditions requiring a reduction of gastric acid secretion such as erosive or ulcerative gastro-oesophageal reflux disease (GORD), non-erosive reflux disease (NERD), duodenal and gastric ulcers, and pathological hypersecretory conditions including Zollinger-Ellison syndrome (ZES). It is also used as part of combination therapy for the eradication of Helicobacter pylori, a pathogen frequently implicated in the development of gastric and duodenal ulcers. Rabeprazole has a well established efficacy and safety profile in the treatment of gastric acid-related diseases. Rabeprazole is a useful, well tolerated and cost-effective option for the treatment of GORD, NERD, peptic ulcer and other gastric acid-related diseases (including ZES), and provides an appropriate alternative to other currently available PPIs, with the added benefits of having a consistent efficacy profile and low drug interaction potential due to its predominantly nonenzymatic metabolism.
Collapse
|
11
|
Shi S, Klotz U. Proton pump inhibitors: an update of their clinical use and pharmacokinetics. Eur J Clin Pharmacol 2008; 64:935-51. [PMID: 18679668 DOI: 10.1007/s00228-008-0538-y] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 07/01/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND Proton pump inhibitors (PPIs) represent drugs of first choice for treating peptic ulcer, Helicobacter pylori infection, gastrooesophageal reflux disease, nonsteroidal anti-inflammatory drug (NSAID)-induced gastrointestinal lesions (complications), and Zollinger-Ellison syndrome. RESULTS The available agents (omeprazole/esomeprazole, lansoprazole, pantoprazole, and rabeprazole) differ somewhat in their pharmacokinetic properties (e.g., time-/dose-dependent bioavailability, metabolic pattern, interaction potential, genetic variability). For all PPIs, there is a clear relationship between drug exposure (area under the plasma concentration/time curve) and the pharmacodynamic response (inhibition of acid secretion). Furthermore, clinical outcome (e.g., healing and eradication rates) depends on maintaining intragastric pH values above certain threshold levels. Thus, any changes in drug disposition will subsequently be translated directly into clinical efficiency so that extensive metabolizers of CYP2C19 will demonstrate a higher rate of therapeutic nonresponse. CONCLUSIONS This update of pharmacokinetic, pharmacodynamic, and clinical data will provide the necessary guide by which to select between the various PPIs that differ-based on pharmacodynamic assessments-in their relative potencies (e.g., higher doses are needed for pantoprazole and lansoprazole compared with rabeprazole). Despite their well-documented clinical efficacy and safety, there is still a certain number of patients who are refractory to treatment with PPIs (nonresponder), which will leave sufficient space for future drug development and clinical research.
Collapse
Affiliation(s)
- Shaojun Shi
- Dr Margarete Fischer-Bosch-Institut für Klinische Pharmakologie, Stuttgart, Germany
| | | |
Collapse
|
12
|
Niioka T, Uno T, Yasui-Furukori N, Shimizu M, Sugawara K, Tateishi T. Identification of the time-point which gives a plasma rabeprazole concentration that adequately reflects the area under the concentration-time curve. Eur J Clin Pharmacol 2006; 62:855-61. [PMID: 16915367 DOI: 10.1007/s00228-006-0184-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 07/12/2006] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The purpose of this study is to evaluate whether a simple formula using limited blood samples can predict the area under the plasma rabeprazole concentration-time curve (AUC) in co-administration with CYP inhibitors. METHODS A randomized double-blind placebo-controlled crossover study design in three phases was conducted at intervals of 2 weeks. Twenty-one healthy Japanese volunteers, including three CYP2C19 genotype groups, took a single oral 20-mg dose of rabeprazole after three 6-day pretreatments, i.e., clarithromycin 800 mg/day, fluvoxamine 50 mg/day, and placebo. Prediction formulas of the AUC were derived from pharmacokinetics data of 21 subjects in three phases using multiple linear regression analysis. Ten blood samples were collected over 24 h to calculate AUC. Plasma concentrations of rabeprazole was measured by an HPLC-assay (l.l.q.=1 ng/ml). RESULTS The AUC was based on all the data sets (n=63). The linear regression using two points (C3 and C6) could predict AUC(0-infinity) precisely, irrespective of CYP2C19 genotypes and CYP inhibitors (AUC(0-infinity)=1.39xC3+7.17xC6+344.14, r (2)=0.825, p<0.001). CONCLUSION The present study demonstrated that the AUC of rabeprazole can be estimated by the simple formula using two-point concentrations. This formula can be more accurate for the prediction of AUC estimation than that reflected by CYP2C19 genotypes without any determination, even if there are significant differences for the CYP2C19 genotypes. Therefore, this prediction formula might be useful to evaluate whether CYP2C19 genotypes really reflects the curative effect of rabeprazole.
Collapse
Affiliation(s)
- Takenori Niioka
- Department of Pharmacy, Hirosaki University Hospital, Hirosaki, Japan
| | | | | | | | | | | |
Collapse
|