1
|
Tęcza K, Kalinowska-Herok M, Rusinek D, Zajkowicz A, Pfeifer A, Oczko-Wojciechowska M, Pamuła-Piłat J. Are the Common Genetic 3'UTR Variants in ADME Genes Playing a Role in Tolerance of Breast Cancer Chemotherapy? Int J Mol Sci 2024; 25:12283. [PMID: 39596349 PMCID: PMC11594993 DOI: 10.3390/ijms252212283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
We studied the associations between 3'UTR genetic variants in ADME genes, clinical factors, and the risk of breast cancer chemotherapy toxicity. Those variants and factors were tested in relation to seven symptoms belonging to myelotoxicity (anemia, leukopenia, neutropenia), gastrointestinal side effects (vomiting, nausea), nephrotoxicity, and hepatotoxicity, occurring in overall, early, or recurrent settings. The cumulative risk of overall symptoms of anemia was connected with AKR1C3 rs3209896 AG, ERCC1 rs3212986 GT, and >6 cycles of chemotherapy; leukopenia was determined by ABCC1 rs129081 allele G and DPYD rs291593 allele T; neutropenia risk was correlated with accumulation of genetic variants of DPYD rs291583 allele G, ABCB1 rs17064 AT, and positive HER2 status. Risk of nephrotoxicity was determined by homozygote DPYD rs291593, homozygote AKR1C3 rs3209896, postmenopausal age, and negative ER status. Increased risk of hepatotoxicity was connected with NR1/2 rs3732359 allele G, postmenopausal age, and with present metastases. The risk of nausea and vomiting was linked to several genetic factors and premenopausal age. We concluded that chemotherapy tolerance emerges from the simultaneous interaction of many genetic and clinical factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jolanta Pamuła-Piłat
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (K.T.); (M.K.-H.); (D.R.); (A.Z.); (A.P.); (M.O.-W.)
| |
Collapse
|
2
|
Wu X, Xiong H. The Role of Pharmacogenetic-Based Pharmacokinetic Analysis in Precise Breast Cancer Treatment. Pharmaceutics 2024; 16:1407. [PMID: 39598531 PMCID: PMC11597240 DOI: 10.3390/pharmaceutics16111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Given the high prevalence of breast cancer and the diverse genetic backgrounds of patients, a growing body of research emphasizes the importance of pharmacogenetic-based pharmacokinetic analysis in optimizing treatment outcomes. The treatment of breast cancer involves multiple drugs whose metabolism and efficacy are influenced by individual genetic variations. Genetic polymorphisms in drug-metabolizing enzymes and transport proteins are crucial in the regulation of pharmacokinetics. Our review aims to investigate the opportunities and challenges of pharmacogenomic-based pharmacokinetic analysis as a precision medicine tool in breast cancer management.
Collapse
Affiliation(s)
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
3
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
4
|
Powell NR, Shugg T, Ly RC, Albany C, Radovich M, Schneider BP, Skaar TC. Life-Threatening Docetaxel Toxicity in a Patient With Reduced-Function CYP3A Variants: A Case Report. Front Oncol 2022; 11:809527. [PMID: 35174070 PMCID: PMC8841796 DOI: 10.3389/fonc.2021.809527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022] Open
Abstract
Docetaxel therapy occasionally causes severe and life-threatening toxicities. Some docetaxel toxicities are related to exposure, and inter-individual variability in exposure has been described based on genetic variation and drug-drug interactions that impact docetaxel clearance. Cytochrome P450 3A4 (CYP3A4) and CYP3A5 metabolize docetaxel into inactive metabolites, and this is the primary mode of docetaxel clearance. Supporting their role in these toxicities, increased docetaxel toxicities have been found in patients with reduced- or loss-of-function variants in CYP3A4 and CYP3A5. However, since these variants in CYP3A4 are rare, little is known about the safety of docetaxel in patients who are homozygous for the reduced-function CYP3A4 variants. Here we present a case of life-threatening (grade 4) pneumonitis, dyspnea, and neutropenia resulting from a single dose of docetaxel. This patient was (1) homozygous for CYP3A4*22, which causes reduced expression and is associated with increased docetaxel-related adverse events, (2) heterozygous for CYP3A4*3, a rare reduced-function missense variant, and (3) homozygous for CYP3A5*3, a common loss of function splicing defect that has been associated with increased docetaxel exposure and adverse events. The patient also carried functional variants in other genes involved in docetaxel pharmacokinetics that may have increased his risk of toxicity. We identified one additional CYP3A4*22 homozygote that received docetaxel in our research cohort, and present this case of severe hematological toxicity. Furthermore, the one other CYP3A4*22 homozygous patient we identified from the literature died from docetaxel toxicity. This case report provides further evidence for the need to better understand the impact of germline CYP3A variants in severe docetaxel toxicity and supports using caution when treating patients with docetaxel who have genetic variants resulting in CYP3A poor metabolizer phenotypes.
Collapse
Affiliation(s)
- Nicholas R. Powell
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tyler Shugg
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Reynold C. Ly
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Costantine Albany
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Milan Radovich
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan P. Schneider
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Todd C. Skaar
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Todd C. Skaar,
| |
Collapse
|
5
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
6
|
Zhu H, Wang Y, Wang Q, Zhao S, Xu F, Hu Z, Zhou R, Huang S, Han L, Chen X. Polymorphisms contribute to differences in the effect of rocuronium in Chinese patients. Basic Clin Pharmacol Toxicol 2021; 130:141-150. [PMID: 34734679 DOI: 10.1111/bcpt.13682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
Rocuronium is widely utilized in clinical general anaesthesia, and individual differences in pharmacology and clearance have been observed. Two hundred thirty-six Chinese patients undergoing selective thyroid/breast mass resection were studied. Total intravenous anaesthesia was induced with a single dose of propofol (2 mg·kg-1 ), sufentanil (0.5 μg·kg-1 ), and rocuronium (0.6 mg·kg-1 ) and maintained with propofol (3-5 mg·kg-1 ·h-1 ) and remifentanil (0.2-0.4 μg·kg-1 ·min-1 ). Intubation conditions and a train-of-four index of patients were utilized to assess the effects and duration of rocuronium. The data from 228 patients were analysed and reported. Genotypes NR1I2 rs2472677 C > T, NR1I2 rs6785049 G > A, SLCO1B1 rs4363657 T > C, SLCO1A2 rs4762699 T > C, and UGT1A1 rs4148323 G > A contributed to individual variation in rocuronium. Of the clinical variables tested, age, BMI, total dose of propofol, NR1I2 rs2472677, and SLCO1A2 rs4762699 correlated significantly (P < 0.05 for all) with the clinical duration or total clinical action time of rocuronium in a multiple linear regression model. No significant interactions were observed in intubation conditions. Genetic variations in NR1I2 rs2472677, NR1I2 rs6785049, SLCO1B1 rs4363657, SLCO1A2 rs4762699, and UGT1A1 rs4148323 were related to extensive interindividual variability in the clinical duration and total clinical action time of rocuronium.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Hu
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Han
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Skandalaki A, Sarantis P, Theocharis S. Pregnane X Receptor (PXR) Polymorphisms and Cancer Treatment. Biomolecules 2021; 11:1142. [PMID: 34439808 PMCID: PMC8394562 DOI: 10.3390/biom11081142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Pregnane X Receptor (PXR) belongs to the nuclear receptors' superfamily and mainly functions as a xenobiotic sensor activated by a variety of ligands. PXR is widely expressed in normal and malignant tissues. Drug metabolizing enzymes and transporters are also under PXR's regulation. Antineoplastic agents are of particular interest since cancer patients are characterized by significant intra-variability to treatment response and severe toxicities. Various PXR polymorphisms may alter the function of the protein and are linked with significant effects on the pharmacokinetics of chemotherapeutic agents and clinical outcome variability. The purpose of this review is to summarize the roles of PXR polymorphisms in the metabolism and pharmacokinetics of chemotherapeutic drugs. It is also expected that this review will highlight the importance of PXR polymorphisms in selection of chemotherapy, prediction of adverse effects and personalized medicine.
Collapse
Affiliation(s)
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.S.); (P.S.)
| |
Collapse
|
8
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
9
|
Pamuła-Piłat J, Tęcza K, Kalinowska-Herok M, Grzybowska E. Genetic 3'UTR variations and clinical factors significantly contribute to survival prediction and clinical response in breast cancer patients. Sci Rep 2020; 10:5736. [PMID: 32235849 PMCID: PMC7109149 DOI: 10.1038/s41598-020-62662-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
The study describes a relationship between the 3′UTR variants, clinicopathological parameters and response to chemotherapy. We analyzed 33 germline polymorphisms in 3′UTRs of ADME genes in 305 breast cancer women treated with FAC regime. Clinical endpoints of this study were: overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS) and overall response defined as treatment failure-free survival (TFFS). The shortened OS was connected with the presence of NR1/2 rs3732359 AA, SLC22A16 rs7756222 CC, as well as SLC22A16 rs9487402 allele G and clinical factors belonging to TNM classification: tumor size >1 cm, nodal involvement and presence of metastases. PFS was related to two polymorphisms PGR rs1824125 GG, PGR rs12224560 CC and SLC22A16 rs7756222 CC as well as preexisting metastases. The RFS was shortened due to the DPYD rs291593 CC, AKR1C3 rs3209896 AG and negative expression of PGR. The presence of ALDH5A1 rs1054899 allele A, lack of pre-chemotherapy surgery and negative status of PGR correlated with worse treatment response. The germline variants commonly present in the population are important factors determining the response to treatment. We observed the effect of the accumulation of genetic and clinical factors on poor survival prognosis and overall treatment response.
Collapse
Affiliation(s)
- Jolanta Pamuła-Piłat
- Department of Genetic and Molecular Diagnostics of Cancer, Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.,Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Karolina Tęcza
- Department of Genetic and Molecular Diagnostics of Cancer, Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.,Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Magdalena Kalinowska-Herok
- Department of Genetic and Molecular Diagnostics of Cancer, Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.,Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Ewa Grzybowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland.
| |
Collapse
|
10
|
Ma Y, Lin Q, Yang Y, Liang W, Salamone SJ, Li Y, Lin Y, Zhao H, Zhao Y, Fang W, Huang Y, Zhang L. Clinical pharmacokinetics and drug exposure-toxicity correlation study of docetaxel based chemotherapy in Chinese head and neck cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:236. [PMID: 32309383 PMCID: PMC7154422 DOI: 10.21037/atm.2020.01.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Area under time-concentration curve (AUC) of docetaxel is related with its toxicity and efficacy. The aim of this study is to investigate the target range of docetaxel AUC in Chinese head and neck cancer (HNC) patients. Methods Eligible HNC patients were enrolled and received at least 2 cycles of docetaxel-based chemotherapy. A simplified pharmacokinetic (PK) strategy (2 monitored samples) was developed to simulate docetaxel AUC using the nonlinear mixed-effect modelling program. Preliminary target range of AUC was pre-set as 2.5–3.7 µg·hr/mL according to pooled analysis from 8 previous studies. Fisher exact test was used to analyze the relationship between AUC with neutropenia and efficacy, and to verify the target range. Results Thirty-nine eligible patients were enrolled. Grade 3-4 and grade 4 neutropenia rate in 1st cycle was 64% and 36%, respectively. AUC simulation by simplified PK strategy was acceptable compared to full sampling method from the analysis of archived 300 patients’ data, with −5.67% of mean prediction error (MPE). Median AUC of all patients was 2.58 µg·hr/mL (range from 1.28 to 9.39). A significant correlation (P=0.007) was detected between AUC and body surface area (BSA)-dosage, but BSA contributed only 18.3% of AUC inter-individual variability. Docetaxel AUC was significantly related with the severity (grade 3–4) of neutropenia (correlation of coefficient was 0.452, P=0.004). Fourteen patients (36%) were within the target AUC range. Patients with AUC above the target experienced more severe neutropenia (grade 3–4 rate 100% vs. 56%, P=0.036; grade 4 rate 86% vs. 25%, P=0.005). No significant difference of response rate was found between patients within the target or not. Conclusions A simplified samples PK strategy was developed for docetaxel AUC simulation. The target range of docetaxel AUC in Chinese HNC patients was suggested at 2.5–3.7 µg·hr/mL for reduced toxicity without compromising efficacy of docetaxel treatment.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qingguang Lin
- Department of ultrasonography, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Weiting Liang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | | | - Yunying Li
- Saladax Biomedical Inc., Bethlehem, PA, USA
| | - Yuehao Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hongyun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
11
|
Ren W, Zhou C, Liu Y, Su K, Jia L, Chen L, Li M, Ma J, Zhou W, Zhang S, Zhang D, Cong Z, Niu X, Zhang S, Shen L, Huai C, Sun X, Li G, Qin S, Guo L. Genetic associations of docetaxel-based chemotherapy-induced myelosuppression in Chinese Han population. J Clin Pharm Ther 2019; 45:354-364. [PMID: 31778586 DOI: 10.1111/jcpt.13084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Myelosuppression, an adverse drug reaction (ADR), often causes medical treatment termination in cancer patients. It has been known that genetic components, such as single-nucleotide polymorphisms (SNPs), influence the risk of myelosuppression at the individual-patient level. However, due to ethnic variation in frequency of genetic polymorphisms, results reported in Caucasian patients may not be generalizable to the Chinese Han population. Until now, few researches on myelosuppression included Chinese Han patients. In this study, we conducted a systematic study of potential biomarkers for docetaxel-induced myelosuppression in Han Chinese patients. METHODS We examined 61 SNPs in 36 genes that code for drug transporters, metabolism enzymes, nuclear receptors and DNA repair pathway in 110 Chinese Han patients receiving docetaxel-based chemotherapy. Genotyping was conducted using the Sequenom MassARRAY system. Significant SNPs were identified by logistic regression, and gene-gene interactions were investigated by generalized multifactor dimensionality reduction (GMDR) analysis. RESULTS AND DISCUSSION Our results revealed that 11 SNPs in nine genes (SLC15A1, SLCO1A2, CYP2D6, FMO3, UGT1A1, NAT2, SULT2A1, PXR and HNF4α) were associated with docetaxel-induced myelosuppression. GMDR analyses suggested that a 3-locus model: SLC15A1 rs2297322-PXR rs3732359-FMO3 rs2266782 was an appropriate predictive model of docetaxel-induced myelosuppression (P = .017, Testing Bal.Acc = 0.653, CV Consistency = 10/10). WHAT IS NEW AND CONCLUSION Our findings suggest multiple novel predictive biomarkers of docetaxel-induced myelosuppression: SLC15A1 rs2297322, PXR rs3732359 and FMO3 rs2266782. These discoveries should help in advancing future personalized therapy of docetaxel-based chemotherapy specific to Chinese Han patients.
Collapse
Affiliation(s)
- Weihua Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Clinical Laboratory Center, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Chenxi Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yedong Liu
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Keli Su
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Li Jia
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Suli Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Di Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Life Science College, Anhui Medical University, Anhui, China
| | - Zhiliang Cong
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Xuecai Niu
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Shengui Zhang
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofang Sun
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guorong Li
- Shandong Normal University, Jinan, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Guo
- The Fourth People's Hospital of Jinan City, Taishan Medical College, Jinan, China
| |
Collapse
|
12
|
Association of Hepatic Nuclear Factor 4 Alpha Gene Polymorphisms With Free Imatinib Plasma Levels and Adverse Reactions in Chinese Gastrointestinal Stromal Tumor Patients. Ther Drug Monit 2019; 41:582-590. [DOI: 10.1097/ftd.0000000000000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Association between HNF4A mutations and bleeding complications in patients with stable international normalized ratio. Pharmacogenet Genomics 2019; 29:200-206. [PMID: 31461081 DOI: 10.1097/fpc.0000000000000384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES This study aimed to determine the association between hepatocyte nuclear factor 4 alpha (HNF4A) polymorphisms and bleeding complications in patients on warfarin with international normalized ratios between 2.0 and 3.0 after cardiac valve replacement. METHODS Nineteen single nucleotide polymorphisms of HNF4A in addition to VKORC1 rs9934438 and CYP2C9 rs1057910 were analyzed. Univariate and multivariate analyses were conducted to evaluate associations between genetic polymorphisms and bleeding risk. Attributable risk and number needed to genotype (NNG) were calculated to assess clinical value of genotyping. RESULTS Of 142 patients, 21 experienced bleeding complications. Multivariate logistic regression analysis was conducted using factors with P <0.1 in univariate analysis. Multivariate analysis showed that patients with the CC genotype of rs6130615 had an 8.4-fold increased risk of bleeding, compared with patients with the T allele. Attributable risk and NNG were 88.1% and 32.2, respectively. Patients with the TT genotype of rs3212191 had a 3.8-fold increased risk of bleeding, compared with C allele carriers, while patients with variant-type homozygotes for rs1884613 showed an 8.7-fold higher bleeding complication than C allele carriers. The attributable risk/NNG of rs3212191 and rs1884613 were 73.4%/17.6 and 88.5%/22.8, respectively. Among comorbidities, atrial fibrillation was the only significant risk factor for bleeding complications. CONCLUSION Bleeding complications during warfarin therapy in patients with mechanical heart valves were associated with HNF4A polymorphisms and atrial fibrillation.
Collapse
|
14
|
Arbitrio M, Scionti F, Altomare E, Di Martino MT, Agapito G, Galeano T, Staropoli N, Iuliano E, Grillone F, Fabiani F, Caracciolo D, Cannataro M, Arpino G, Santini D, Tassone P, Tagliaferri P. Polymorphic Variants in NR1I3 and UGT2B7 Predict Taxane Neurotoxicity and Have Prognostic Relevance in Patients With Breast Cancer: A Case-Control Study. Clin Pharmacol Ther 2019; 106:422-431. [PMID: 30739312 DOI: 10.1002/cpt.1391] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/20/2019] [Indexed: 12/30/2022]
Abstract
Taxane-related peripheral neuropathy (TrPN) is a dose-limiting toxicity with important interindividual variability. Genetic polymorphisms in absorption, distribution, metabolism, and excretion (ADME) genes may account for variability in drug efficacy and/or toxicity. By the use of Affymetrix drug-metabolizing enzyme and transporter microarray platform, in a retrospective case-control study, the correlation between ADME polymorphic variants and grades ≥ 2-3-TrPN was investigated. In a breast cancer (BC) training set, five single-nucleotide polymorphisms in NR1I3 and UDP-glucuronosyltransferase (UGT)2B7 genes were correlated to grades ≥ 2-3-TrPN protection. By receiver operating characteristic curves, the grades ≥ 2-3-TrPN-related candidate biomarkers in an independent series of 54 patients with BC (17 cases and 37 controls) were validated. NR1I3 was correlated to paclitaxel-TrPN and UGT2B7 to docetaxel-TrPN. Moreover, a genetic signature of prognostic relevance for BC outcome was found. Our findings might have potential relevance for personalized management of patients with BC for prevention of treatment failure in ultrametabolizer genetic variants.
Collapse
Affiliation(s)
- Mariamena Arbitrio
- CNR-Institute of Neurological Sciences, UOS of Pharmacology, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Agapito
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Teresa Galeano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Eleonora Iuliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Bio-Medico, Rome, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
15
|
An African-specific profile of pharmacogene variants for rosuvastatin plasma variability: limited role for SLCO1B1 c.521T>C and ABCG2 c.421A>C. THE PHARMACOGENOMICS JOURNAL 2018; 19:240-248. [PMID: 30100615 DOI: 10.1038/s41397-018-0035-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/01/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Studies in Caucasian and Asian populations consistently associated interindividual and interethnic variability in rosuvastatin pharmacokinetics to the polymorphisms SLCO1B1 c.521T>C (rs4149056 p. Val174Ala) and ABCG2 c.421C>A (rs2231142, p. Gln141Lys). To investigate the pharmacogenetics of rosuvastatin in African populations, we first screened 785 individuals from nine ethnic African populations for the SLCO1B1 c.521C and ABCG2 c.421CA variants. This was followed by sequencing whole exomes from individuals of African Bantu descent, who participated in a 20 mg rosuvastatin pharmacokinetic trial in Harare Zimbabwe. Frequencies of SLCO1B1 c.521C ranged from 0.0% (San) to 7.0% (Maasai), while ABCG2 c.421A ranged from 0.0% (Shona) to 5.0% (Kikuyu). Variants showing significant association with rosuvastatin exposure were identified in SLCO1B1, ABCC2, SLC10A2, ABCB11, AHR, HNF4A, RXRA and FOXA3, and appear to be African specific. Interindividual differences in the pharmacokinetics of rosuvastatin in this African cohort cannot be explained by the polymorphisms SLCO1B1 c.521T>C and ABCG2 c.421C>A, but appear driven by a different set of variants.
Collapse
|
16
|
Mbatchi LC, Brouillet JP, Evrard A. Genetic variations of the xenoreceptors NR1I2 and NR1I3 and their effect on drug disposition and response variability. Pharmacogenomics 2017; 19:61-77. [PMID: 29199543 DOI: 10.2217/pgs-2017-0121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NR1I2 (PXR) and NR1I3 (CAR) are nuclear receptors that are classified as xenoreceptors. Upon activation by various xenobiotics, including marketed drugs, they regulate the transcription level of major drug-metabolizing enzymes and transporters and facilitate the elimination of xenobiotics from the body. The modulation of the activity of these two xenoreceptors by various ligands is a major source of pharmacokinetic variability of environmental origin. NR1I2 and NR1I3 genetic polymorphisms can affect the pharmacokinetics and therapeutic response to many drugs, such as irinotecan, tacrolimus and atazanavir. This review provides an overview of NR1I2 and NR1I3 pharmacogenetic studies in various therapeutic fields (oncology, immunomodulation and infectiology) and discusses the implementation of NR1I2 and NR1I3 genetic polymorphism testing in the clinical routine.
Collapse
Affiliation(s)
- Litaty Céphanoée Mbatchi
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France.,Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Jean-Paul Brouillet
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France
| | - Alexandre Evrard
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France.,IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France.,Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| |
Collapse
|
17
|
Jabir RS, Ho GF, Annuar MABA, Stanslas J. Plasma alpha-1-acid glycoprotein as a potential predictive biomarker for non-haematological adverse events of docetaxel in breast cancer patients. Biomarkers 2017; 23:142-146. [PMID: 28554261 DOI: 10.1080/1354750x.2017.1334152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Rash and oral mucositis are major non-haematological adverse events (AEs) of docetaxel, in addition to fatigue, nausea, vomiting and diarrhoea, which restrict the use of the drug in cancer therapy. Alpha-1-acid glycoprotein (AAG) is an acute phase reactant glycoprotein and is a primary carrier of docetaxel in the blood. Docetaxel has extensive binding (>98%) to plasma proteins such as AAG, lipoproteins and albumin. OBJECTIVE To study the association between plasma AAG level and non-haematological AEs of docetaxel in Malaysian breast cancer patients of three major ethnic groups (Malays, Chinese and Indians). MATERIALS AND METHODS One hundred and twenty Malaysian breast cancer patients receiving docetaxel as single agent chemotherapy were investigated for AAG plasma level using enzyme-linked immunosorbent assay technique. Toxicity assessment was determined using Common Terminology Criteria of Adverse Events v4.0. The association between AAG and toxicity were then established. RESULTS There was interethnic variation of plasma AAG level; it was 182 ± 85 mg/dl in Chinese, 237 ± 94 mg/dl in Malays and 240 ± 83 mg/dl in Indians. It was found that low plasma levels of AAG were significantly associated with oral mucositis and rash. CONCLUSIONS This study proposes plasma AAG as a potential predictive biomarker of docetaxel non-haematological AEs namely oral mucositis and rash.
Collapse
Affiliation(s)
- Rafid Salim Jabir
- a Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Gwo Fuang Ho
- b Clinical Oncology Unit , University Malaya Medical Centre , Kuala Lumpur , Malaysia
| | - Muhammad Azrif Bin Ahmad Annuar
- c Radiotherapy & Oncology , Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak , Kuala Lumpur , Malaysia
| | - Johnson Stanslas
- a Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| |
Collapse
|
18
|
Lee KE, Chung JE, Yi B, Cho YJ, Kim HJ, Lee GY, Kim JH, Chang BC, Gwak HS. Influence of NR3C1 and VDR polymorphisms on stable warfarin dose in patients with mechanical cardiac valves. Int J Cardiol 2017; 236:393-397. [PMID: 28262345 DOI: 10.1016/j.ijcard.2017.02.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the associations between polymorphisms of VKORC1, CYP2C9, CYP4F2, NR3C1 and VDR genes and stable warfarin doses in Korean patients with mechanical heart valves. METHODS Seventeen single-nucleotide polymorphisms (SNPs) in 204 patients with stable warfarin dose were analyzed: VKORC1 (rs9934438), CYP2C9 (rs1057910), CYP4F2 (rs2108622), NR3C1 (rs41423247, rs1800445, rs56149945, rs10052957, rs6198, rs33388, rs6196, and rs244465), and VDR (rs1544410, rs11568820, rs731236, rs757343, rs7975232, and rs2228570). Statistical analyses were conducted to evaluate the associations of gene variations with stable warfarin dose. Number needed to genotype was obtained by calculating the percentage of patients whose predicted dose was at least 20% higher or lower than the actual stable dose. RESULTS The combined genotypes of rs7975232 and rs2228570 of the VDR gene revealed a significant association with stable warfarin dose, along with VKORC1, CYP2C9, and CYP4F2 polymorphisms. Patients with the genotype combination GT,TT/CT,CC of VDR rs7975232/rs2228570 required significantly higher stable warfarin dose (5.79±2.02mg) than those with the other genotypic combinations (5.19±1.78mg, p=0.034). Multivariate analysis showed that VDR rs7975232/rs2228570 explained 2.0% of the 47.5% variability in overall warfarin dose. Adding VDR SNP combinations to the base model including non-genetic variables (age, sex, and body weight) and genetic variables (VKORC1 rs9934438, CYP2C9 rs1057910, and CYP4F2 rs2108622) gave a number needed to genotype of 41. CONCLUSIONS This study showed that stable warfarin dose is associated with VDR SNPs along with VKORC1, CYP2C9, and CYP4F2 SNPs.
Collapse
Affiliation(s)
- Kyung Eun Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jee Eun Chung
- College of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Boram Yi
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yoon Jeong Cho
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Jeong Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gwan Yung Lee
- College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joo Hee Kim
- College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Byung Chul Chang
- Department of Thoracic & Cardiovascular Surgery, Yonsei University Medical Center, Seoul 03722, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
19
|
Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D. Long-Term Effects, Pathophysiological Mechanisms, and Risk Factors of Chemotherapy-Induced Peripheral Neuropathies: A Comprehensive Literature Review. Front Pharmacol 2017; 8:86. [PMID: 28286483 PMCID: PMC5323411 DOI: 10.3389/fphar.2017.00086] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Neurotoxic anticancer drugs, such as platinum-based anticancer drugs, taxanes, vinca alkaloids, and proteasome/angiogenesis inhibitors are responsible for chemotherapy-induced peripheral neuropathy (CIPN). The health consequences of CIPN remain worrying as it is associated with several comorbidities and affects a specific population of patients already impacted by cancer, a strong driver for declines in older adults. The purpose of this review is to present a comprehensive overview of the long-term effects of CIPN in cancer patients and survivors. Pathophysiological mechanisms and risk factors are also presented. Neurotoxic mechanisms leading to CIPNs are not yet fully understood but involve neuronopathy and/or axonopathy, mainly associated with DNA damage, oxidative stress, mitochondria toxicity, and ion channel remodeling in the neurons of the peripheral nervous system. Classical symptoms of CIPNs are peripheral neuropathy with a “stocking and glove” distribution characterized by sensory loss, paresthesia, dysesthesia and numbness, sometimes associated with neuropathic pain in the most serious cases. Several risk factors can promote CIPN as a function of the anticancer drug considered, such as cumulative dose, treatment duration, history of neuropathy, combination of therapies and genetic polymorphisms. CIPNs are frequent in cancer patients with an overall incidence of approximately 38% (possibly up to 90% of patients treated with oxaliplatin). Finally, the long-term reversibility of these CIPNs remain questionable, notably in the case of platinum-based anticancer drugs and taxanes, for which CIPN may last several years after the end of anticancer chemotherapies. These long-term effects are associated with comorbidities such as depression, insomnia, falls and decreases of health-related quality of life in cancer patients and survivors. However, it is noteworthy that these long-term effects remain poorly studied, and only limited data are available such as in the case of bortezomib and thalidomide-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Nicolas Kerckhove
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| | - Aurore Collin
- INSERM U1107, NEURO-DOL, Université Clermont Auvergne Clermont-Ferrand, France
| | - Sakahlé Condé
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Neurologie, Université Clermont Auvergne Clermont-Ferrand, France
| | - Carine Chaleteix
- CHU Clermont-Ferrand, Hématologie Clinique Adulte Clermont-Ferrand, France
| | - Denis Pezet
- INSERM U1071, CHU Clermont-Ferrand, Chirurgie et Oncologie Digestive, Université Clermont Auvergne Clermont-Ferrand, France
| | - David Balayssac
- INSERM U1107, NEURO-DOL, CHU Clermont-Ferrand, Délégation à la Recherche Clinique et à l'Innovation, Université Clermont Auvergne Clermont-Ferrand, France
| |
Collapse
|
20
|
De Mattia E, Cecchin E, Roncato R, Toffoli G. Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine. Pharmacogenomics 2016; 17:1547-71. [DOI: 10.2217/pgs-2016-0095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Great research effort has been focused on elucidating the contribution of host genetic variability on pharmacological outcomes in cancer. Nuclear receptors have emerged as mediators between environmental stimuli and drug pharmacokinetics and pharmacodynamics. The pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors have been reported to regulate transcription of genes that encode drug metabolizing enzymes and transporters. Altered nuclear receptor expression has been shown to affect the metabolism and pharmacological profile of traditional chemotherapeutics and targeted agents. Accordingly, polymorphic variants in these genes have been studied as pharmacogenetic markers of outcome variability. This review summarizes the state of knowledge about the roles played by pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factor expression and genetics as predictive markers of anticancer drug toxicity and efficacy, which can improve cancer precision medicine.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Erika Cecchin
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Rossana Roncato
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| |
Collapse
|
21
|
Pondugula SR, Pavek P, Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27617265 DOI: 10.11131/2016/101198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic, European Union
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
22
|
Cecchin E, De Mattia E, Toffoli G. Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opin Drug Metab Toxicol 2016; 12:291-306. [DOI: 10.1517/17425255.2016.1141196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico- National Cancer Institute, Aviano, Italy
| |
Collapse
|
23
|
Frederiks C, Lam S, Guchelaar H, Boven E. Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: A systematic review. Cancer Treat Rev 2015; 41:935-50. [DOI: 10.1016/j.ctrv.2015.10.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 12/28/2022]
|
24
|
Callens C, Debled M, Delord M, Turbiez-Stalain I, Veyret C, Bièche I, Brain E. High-throughput pharmacogenetics identifies SLCO1A2 polymorphisms as candidates to elucidate the risk of febrile neutropenia in the breast cancer RAPP-01 trial. Breast Cancer Res Treat 2015; 153:383-9. [DOI: 10.1007/s10549-015-3552-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/13/2015] [Indexed: 11/24/2022]
|
25
|
Mbatchi LC, Schmitt A, Thomas F, Cazaubon Y, Robert J, Lumbroso S, Brouillet JP, Pourquier P, Chatelut E, Boyer JC, Evrard A. Polymorphisms in SLCO1B3 and NR1I2 as genetic determinants of hematotoxicity of carboplatin and paclitaxel combination. Pharmacogenomics 2015; 16:1439-50. [DOI: 10.2217/pgs.15.84] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The goal of our study was to assess the impact of patients’ genetic background on their sensitivity to carboplatin/paclitaxel hematotoxicity. Patients & methods: Parameters describing sensitivity to neutropenia and to thrombocytopenia of 201 patients were extracted from a previous pharmacokinetic/pharmacodynamics analysis, in order to assess their association with 52 candidates SNPs in 18 genes. Results: Carriers of a T allele of SLCO1B3-rs4149117 were 19% less sensitive to thrombocytopenia than the homozygotes for the G allele (p = 0.00279). Carriers of two copies of the ATG haplotypes of NR1I2-rs1523130, rs3814055 and rs1523127 were 19% less sensitive to thrombocytopenia than those harboring other haplotypes (p = 0.025). Conclusion: Our results revealed the importance of SLCO1B3 and NR1I2 in the sensitivity to carboplatin/paclitaxel thrombocytopenia.
Collapse
Affiliation(s)
- Litaty Céphanoée Mbatchi
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Antonin Schmitt
- EA4553 Institut Claudius-Regaud, and Université Paul-Sabatier, Toulouse, France
| | - Fabienne Thomas
- EA4553 Institut Claudius-Regaud, and Université Paul-Sabatier, Toulouse, France
| | - Yoann Cazaubon
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| | - Jacques Robert
- INSERM U916, Institut Bergonié, Université de Bordeaux, France
| | - Serge Lumbroso
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France
| | - Jean-Paul Brouillet
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France
| | - Etienne Chatelut
- EA4553 Institut Claudius-Regaud, and Université Paul-Sabatier, Toulouse, France
| | - Jean-Christophe Boyer
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France
| | - Alexandre Evrard
- Laboratoire de biochimie, Centre Hospitalier Universitaire (CHU) of Nîmes, Hôpital Carémeau, Nîmes, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, INSERM, U1194 France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, Montpellier, France
| |
Collapse
|
26
|
Moon JY, Chang BC, Lee KE, Bang JS, Gwak HS. Effects of Pregnane X Receptor Genetic Polymorphisms on Stable Warfarin Doses. J Cardiovasc Pharmacol Ther 2015; 20:532-8. [DOI: 10.1177/1074248415578906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/17/2015] [Indexed: 12/16/2022]
Abstract
Objective: Pregnane X receptor (PXR) is a transcriptional regulator of many drug-metabolizing enzymes including cytochrome P450 (CYP) 2C9. The objective of this study was to assess the possible association between PXR single-nucleotide polymorphisms (SNPs) and stable warfarin doses. Methods: A total of 201 patients with stable warfarin doses from the EwhA-Severance Treatment (EAST) Group of Warfarin were included in this study. The influence of genetic polymorphisms on stable warfarin doses was investigated by genotyping 11 SNPs, that is, vitamin K epoxide reductase complex 1 (VKORC1) rs9934438, CYP2C9 rs1057910, CYP4F2 rs2108622, constitutive androstane receptor (CAR) rs2501873, hepatocyte nuclear factor 4α (HNF4α) rs3212198, and PXR (rs3814055, rs1403526, rs3732357, rs3732360, rs2276707 and rs2472682). Subgroup analysis was conducted on CYP2C9 wild-type homozygote allele (AA) carriers. Results: One PXR SNP of rs2472682 (A>C) exhibited significant association with stable warfarin doses in study population and the subgroup; variant homozygote carriers required significantly lower daily doses of warfarin than those carrying wild allele by about 0.8 mg. Approximate 43.7% of overall interindividual variability in warfarin dose requirement was explained by multivariate regression model. VKORC1, CYP2C9, age, CYP4F2, PXR rs2472682, and CAR/HNF4α rs2501873/rs3212198 accounted for 29.6%, 5.9%, 3.7%, 2.3%, 1.3%, and 0.9% of the variability, respectively. PXR SNP of rs2472682 remained a significant factor in CYP2C9 wild-type homozygote carriers based on univariate and multivariate analyses. The combination of CAR/HNF4α/PXR SNPs of rs2501873/rs3212198/rs2472682 showed about 1 mg dose difference between grouped genotypes in study population and subgroup. Conclusion: Our results revealed that PXR could be a determinant of stable warfarin doses.
Collapse
Affiliation(s)
- Jung Yeon Moon
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Byung Chul Chang
- Department of Thoracic & Cardiovascular Surgery, Yonsei University Medical Center, Seoul, Korea
| | - Kyung Eun Lee
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Jun Seok Bang
- Graduate School of Clinical Pharmacy, Sookmyung Women’s University, Seoul, Korea
| | - Hye Sun Gwak
- College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|