1
|
Personalizing atomoxetine dosing in children with ADHD: what can we learn from current supporting evidence. Eur J Clin Pharmacol 2023; 79:349-370. [PMID: 36645468 DOI: 10.1007/s00228-022-03449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/20/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE There is marked heterogeneity in treatment response of atomoxetine in patients with attention deficit/hyperactivity disorder (ADHD), especially for the pediatric population. This review aims to evaluate current evidence to characterize the dose-exposure relationship, establish clinically relevant metrics for systemic exposure to atomoxetine, define a therapeutic exposure range, and to provide a dose-adaptation strategy before implementing personalized dosing for atomoxetine in children with ADHD. METHODS A comprehensive search was performed across electronic databases (PubMed and Embase) covering the period of January 1, 1985 to July 10, 2022, to summarize recent advances in the pharmacokinetics, pharmacogenomics/pharmacogenetics (PGx), therapeutic drug monitoring (TDM), physiologically based pharmacokinetics (PBPK), and population pharmacokinetics (PPK) of atomoxetine in children with ADHD. RESULTS Some factors affecting the pharmacokinetics of atomoxetine were summarized, including food, CYP2D6 and CYP2C19 phenotypes, and drug‒drug interactions (DDIs). The association between treatment response and genetic polymorphisms of genes encoding pharmacological targets, such as norepinephrine transporter (NET/SLC6A2) and dopamine β hydroxylase (DBH), was also discussed. Based on well-developed and validated assays for monitoring plasma concentrations of atomoxetine, the therapeutic reference range in pediatric patients with ADHD proposed by several studies was summarized. However, supporting evidence on the relationship between systemic atomoxetine exposure levels and clinical response was far from sufficient. CONCLUSION Personalizing atomoxetine dosage may be even more complex than anticipated thus far, but elucidating the best way to tailor the non-stimulant to a patient's individual need will be achieved by combining two strategies: detailed research in linking the pharmacokinetics and pharmacodynamics in pediatric patients, and better understanding in nature and causes of ADHD, as well as environmental stressors.
Collapse
|
2
|
Grzegorzewski J, Brandhorst J, König M. Physiologically based pharmacokinetic (PBPK) modeling of the role of CYP2D6 polymorphism for metabolic phenotyping with dextromethorphan. Front Pharmacol 2022; 13:1029073. [PMID: 36353484 PMCID: PMC9637881 DOI: 10.3389/fphar.2022.1029073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
The cytochrome P450 2D6 (CYP2D6) is a key xenobiotic-metabolizing enzyme involved in the clearance of many drugs. Genetic polymorphisms in CYP2D6 contribute to the large inter-individual variability in drug metabolism and could affect metabolic phenotyping of CYP2D6 probe substances such as dextromethorphan (DXM). To study this question, we (i) established an extensive pharmacokinetics dataset for DXM; and (ii) developed and validated a physiologically based pharmacokinetic (PBPK) model of DXM and its metabolites dextrorphan (DXO) and dextrorphan O-glucuronide (DXO-Glu) based on the data. Drug-gene interactions (DGI) were introduced by accounting for changes in CYP2D6 enzyme kinetics depending on activity score (AS), which in combination with AS for individual polymorphisms allowed us to model CYP2D6 gene variants. Variability in CYP3A4 and CYP2D6 activity was modeled based on in vitro data from human liver microsomes. Model predictions are in very good agreement with pharmacokinetics data for CYP2D6 polymorphisms, CYP2D6 activity as described by the AS system, and CYP2D6 metabolic phenotypes (UM, EM, IM, PM). The model was applied to investigate the genotype-phenotype association and the role of CYP2D6 polymorphisms for metabolic phenotyping using the urinary cumulative metabolic ratio (UCMR), DXM/(DXO + DXO-Glu). The effect of parameters on UCMR was studied via sensitivity analysis. Model predictions indicate very good robustness against the intervention protocol (i.e. application form, dosing amount, dissolution rate, and sampling time) and good robustness against physiological variation. The model is capable of estimating the UCMR dispersion within and across populations depending on activity scores. Moreover, the distribution of UCMR and the risk of genotype-phenotype mismatch could be estimated for populations with known CYP2D6 genotype frequencies. The model can be applied for individual prediction of UCMR and metabolic phenotype based on CYP2D6 genotype. Both, model and database are freely available for reuse.
Collapse
Affiliation(s)
- Jan Grzegorzewski
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | | | | |
Collapse
|
3
|
HDI Highlighter, The First Intelligent Tool to Screen the Literature on Herb-Drug Interactions. Clin Pharmacokinet 2022; 61:761-788. [PMID: 35637377 DOI: 10.1007/s40262-022-01131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
Abstract
Herbal food supplements are commonly used and can be an important part of patient self-care. Like all other bio-active and therapeutic products, they have a benefit/risk balance. These products are not without adverse effects and potentially interact with other therapies. Educating patients and providing information for health professionals about the risk of herb-drug interactions is key. One of the purposes of the biomedical literature is to inform prescribers. Scientific literature accessible on databases such as PubMed is dense and careful reading is time consuming. We propose a reading aid tool named "HDI highlighter" to help readers to find key information in clinical studies and case reports describing herb-drug interactions. It uses natural language processing algorithms (artificial intelligence) with a pharmaceutical focus. Semantic relation extraction for herb-drug interactions from the biomedical literature are overexpressed using keywords. We have tested it to review 120 published articles over the last 10 years. In these articles, we have shown that case reports often involved long-term or semi-long-term treatments such as cancer or human immunodeficiency virus therapies, antiepileptic drugs, or central nervous system drugs. Similarly, these classes of drugs are more extensively targeted by clinical studies. Herb-drug interactions described in case reports are identified in medicinal, recreational, and alimentary uses. They also usually lack a rigorous description of the herb(s) involved. Typically, clinical studies provide a complete description of protocols and dosages, with a few exceptions explained by patients' needs. Clinical studies on herbs are nevertheless conducted on a limited number of patients. All these limitations make the interpretation of herb-drug interactions complicated, but the HDI highlighter provides a quick overview of the herb-drug interaction literature.
Collapse
|
4
|
Rüdesheim S, Selzer D, Fuhr U, Schwab M, Lehr T. Physiologically-based pharmacokinetic modeling of dextromethorphan to investigate interindividual variability within CYP2D6 activity score groups. CPT Pharmacometrics Syst Pharmacol 2022; 11:494-511. [PMID: 35257505 PMCID: PMC9007601 DOI: 10.1002/psp4.12776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
This study provides a whole‐body physiologically‐based pharmacokinetic (PBPK) model of dextromethorphan and its metabolites dextrorphan and dextrorphan O‐glucuronide for predicting the effects of cytochrome P450 2D6 (CYP2D6) drug‐gene interactions (DGIs) on dextromethorphan pharmacokinetics (PK). Moreover, the effect of interindividual variability (IIV) within CYP2D6 activity score groups on the PK of dextromethorphan and its metabolites was investigated. A parent‐metabolite‐metabolite PBPK model of dextromethorphan, dextrorphan, and dextrorphan O‐glucuronide was developed in PK‐Sim and MoBi. Drug‐dependent parameters were obtained from the literature or optimized. Plasma concentration‐time profiles of all three analytes were gathered from published studies and used for model development and model evaluation. The model was evaluated comparing simulated plasma concentration‐time profiles, area under the concentration‐time curve from the time of the first measurement to the time of the last measurement (AUClast) and maximum concentration (Cmax) values to observed study data. The final PBPK model accurately describes 28 population plasma concentration‐time profiles and plasma concentration‐time profiles of 72 individuals from four cocktail studies. Moreover, the model predicts CYP2D6 DGI scenarios with six of seven DGI AUClast and seven of seven DGI Cmax ratios within the acceptance criteria. The high IIV in plasma concentrations was analyzed by characterizing the distribution of individually optimized CYP2D6 kcat values stratified by activity score group. Population simulations with sampling from the resulting distributions with calculated log‐normal dispersion and mean parameters could explain a large extent of the observed IIV. The model is publicly available alongside comprehensive documentation of model building and model evaluation.
Collapse
Affiliation(s)
- Simeon Rüdesheim
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Yan D, Wu M, Hu W, Li Y, Jin J, Yan S, Zhu W, Ye C, Liu J, Liu G, Tan B. Effects of Zuojin Pill (Rhizoma Coptidis and Fructus Evodiae preparation) on the pharmacokinetics and side effects of venlafaxine in humans. Basic Clin Pharmacol Toxicol 2022; 130:522-530. [PMID: 35132786 DOI: 10.1111/bcpt.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022]
Abstract
Venlafaxine (VEN), a first-line antidepressant, and Zuojin Pill (ZJP), a common herbal medicine consisting of Rhizoma Coptidis and Fructus Evodiae, are high likely co-administered in China. ZJP could significantly inhibit VEN pharmacokinetics in vitro and in rats through suppression of CYP2D6 activity. To date, however, no clinical study has demonstrated the clinical relevance. Here, the VEN pharmacokinetics at a single dose of VEN with or without co-administration of ZJP was compared. ZJP had a weak HDI on the pharmacokinetics of VEN. The geometric means of Cmax and AUC0-∞ of VEN increased by 36.7% and 34.6%, respectively, and the corresponding 90% CIs of geometric mean ratios (GMRs) exceed outside bioequivalent range of 0.80-1.25. However, the corresponding 90% CIs of GMRs of these parameters for ODV were within the range. Since ODV exposure (AUC), approximately 3.4-fold higher than that of VEN, hardly changed, the systemic exposure of VEN active moiety (VEN + ODV) with ZJP increased slightly (≤ 8.5%) compared with that of VEN alone. In addition, the incidence of VEN-related side effects, especially gastrointestinal relevance, were significantly reduced with ZJP. Therefore, rational concomitant use of VEN and ZJP might have low risk of HDI and be promising in clinical practice.
Collapse
Affiliation(s)
- Dongmin Yan
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Wenjuan Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Li
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqing Yan
- Peripheral vascular disease department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhu
- Wuxi Yike Traditional Chinese Medicine Hospital, Jiangsu, China
| | | | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Guobin Liu
- Peripheral vascular disease department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Li Y, Li J, Yan D, Wang Q, Jin J, Tan B, Qiu F. Influence of Zuojin Pill on the Metabolism of Venlafaxine in Vitro and in Rats and Associated Herb-Drug Interaction. Drug Metab Dispos 2020; 48:1044-1052. [PMID: 32561594 DOI: 10.1124/dmd.120.000048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023] Open
Abstract
Venlafaxine (VEN), a first-line antidepressant, and Zuojin Pill (ZJP), a common Chinese herbal medicine consisting of Rhizoma Coptidis and Fructus Evodiae, have a high likelihood of combination usage in patients with depression with gastrointestinal complications. ZJP exhibits inhibitory effects on recombinant human cytochrome P450 isoenzymes (rhP450s), especially on CYP2D6, whereas VEN undergoes extensive metabolism by CYP2D6. From this perspective, we investigated the influence of ZJP on the metabolism of VEN in vitro and in rats for the first time. In this study, ZJP significantly inhibited the metabolism of VEN in both rat liver microsomes (RLM) and human liver microsomes (HLM); meanwhile, it inhibited the O-demethylation catalytic activity of RLM, HLM, rhCYP2D6*1/*1, and rhCYP2D6*10/*10, primarily through CYP2D6, with IC50 values of 129.9, 30.5, 15.4, and 2.3 μg/ml, respectively. Furthermore, the inhibitory effects of ZJP on hepatic metabolism and pharmacokinetics of VEN could also be observed in the pharmacokinetic study of rats. The area under drug concentration-time curve0-24 hour of VEN and its major metabolite O-desmethylvenlafaxine (ODV) increased by 39.6% and 22.8%, respectively. The hepatic exposure of ODV decreased by 57.2% 2 hours after administration (P = 0.014). In conclusion, ZJP displayed inhibitory effects on hepatic metabolism and pharmacokinetics of VEN in vitro and in rats mainly through inhibition of CYP2D6 activity. The human pharmacokinetic interaction between ZJP and VEN and its associated clinical significance needed to be seriously considered. SIGNIFICANCE STATEMENT: Zuojin Pill, a commonly used Chinese herbal medicine, demonstrates significant inhibitory effects on hepatic metabolism and pharmacokinetics of venlafaxine in vitro and in rats mainly through suppression of CYP2D6 activity. The human pharmacokinetic interaction between Zuojin Pill and venlafaxine and its associated clinical significance needs to be seriously considered.
Collapse
Affiliation(s)
- Yue Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Juan Li
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Dongmin Yan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Qian Wang
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Jingyi Jin
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| | - Furong Qiu
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China (Y.L., J.L., D.Y., Q.W., J.J., B.T., F.Q.) and Department of Pharmacy, Pudong New Area People's Hospital, Shanghai, China (J.L.)
| |
Collapse
|
7
|
Zuo Jin Wan Reverses DDP Resistance in Gastric Cancer through ROCK/PTEN/PI3K Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4278568. [PMID: 30622602 PMCID: PMC6304623 DOI: 10.1155/2018/4278568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022]
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death. Chemotherapy resistance remains the major reason for GC treatment failure and poor overall survival of patients. Our previous studies have proved that Zuo Jin Wan (ZJW), a traditional Chinese medicine (TCM) formula, could significantly enhance the sensitivity of cisplatin (DDP)-resistant gastric cancer cells to DDP by inducing apoptosis via mitochondrial translocation of cofilin-1. However, the underlying mechanism remains poorly understood. This study aimed to evaluate the effects of ROCK/PTEN/PI3K on ZJW-induced apoptosis in vitro and in vivo. We found that ZJW could significantly activate the ROCK/PTEN pathway, inhibit PI3K/Akt, and promote the apoptosis of SGC-7901/DDP cells. Inhibition of ROCK obviously attenuated ZJW-induced apoptosis as well as cofilin-1 mitochondrial translocation, while inhibition of PI3K had the opposite effects. In vivo, combination treatment of DDP and ZJW (2000 mg/kg) significantly reduced tumor growth compared with DDP alone. Moreover, the combined administration of ZJW and DDP increased the expression of cleaved ROCK and p-PTEN while it decreased p-PI3K and p-cofilin-1, which was consistent with our in vitro results. These findings indicated that ZJW could effectively inhibit DDP resistance in GC by regulating ROCK/PTEN/PI3K signaling and provide a promising treatment strategy for gastric cancer.
Collapse
|
8
|
Li H, Wang S, Yue Z, Ren X, Xia J. Traditional Chinese herbal injection: Current status and future perspectives. Fitoterapia 2018; 129:249-256. [PMID: 30059719 DOI: 10.1016/j.fitote.2018.07.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 11/26/2022]
Abstract
Traditional Chinese herbal injection, frequently referred to as TCM injection, has evolved over 70 years as a treatment modality that parallels injections of pharmaceutical products. As the market reach has not been analyzed systematically in the past literature this article performed a descriptive analysis of various aspects of TCM injections based on the following data sources: (1) information retrieved from website of drug registration system of China, and (2) regulatory documents, annual reports and ADR Information Bulletins issued by drug regulatory authority. As of December 31, 2017, 134 generic names of TCM injections from 224 manufacturers were approved for sale. Only 5 of the 134 TCM injections are documented in the present version of Ch.P (2015). Most TCM injections are documented in drug standards other than Ch.P. The formulation, ingredients and routes of administration of TCM injections are more complex than conventional chemical injections. Ten TCM injections are covered by national lists of essential medicine and 58 are covered by China's basic insurance program (2017). ADR reports related to TCM injections accounts for >50% of all ADR reports related to TCMs and the percentages have been rising annually. Making traditional medicine injectable might be a promising way to develop traditional medicines. However, many practical challenges need to be overcome by further development before a brighter future for injectable traditional medicines can reasonably be expected.
Collapse
Affiliation(s)
- Haona Li
- Huaihe School of Clinical Medicine, Henan University, Kaifeng, Henan, China; Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siwang Wang
- Department of Natural Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhihua Yue
- Chinese Pharmacopoeia Commission, Beijing, China
| | - Xuequn Ren
- Huaihe School of Clinical Medicine, Henan University, Kaifeng, Henan, China.
| | - Jielai Xia
- Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Bajaj G, Gupta M, Wang HH, Barrett JS, Tan M, Rupalla K, Bertz R, Sheng J. Challenges and Opportunities With Oncology Drug Development in China. Clin Pharmacol Ther 2018; 105:363-375. [DOI: 10.1002/cpt.1017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
|
10
|
Practical considerations when designing and conducting clinical pharmacokinetic herb–drug interaction studies. ACTA ACUST UNITED AC 2017. [DOI: 10.4155/ipk-2016-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pharmacokinetic herb–drug interaction (HDI) research has been ongoing for almost two decades and a significant body of information has been published on the subject, yet much of it is contradictory. Some of this disparity stems from the botanical dosage form itself, as product quality and dosage form performance can vary significantly among brands. Unless products are adequately characterized, HDI study results can be misleading. The purpose of this report is to identify several common weaknesses inherent in many prospective clinical HDI studies and to provide guidance in addressing these shortcomings. Topics such as study design, pharmacokinetic end points, product quality, dosage form performance, gauging clinical relevance, and efforts to minimize dietary influences while improving compliance are discussed.
Collapse
|