1
|
Atteia HH. MicroRNAs in Anticancer Drugs Hepatotoxicity: From Pathogenic Mechanism and Early Diagnosis to Therapeutic Targeting by Natural Products. Curr Pharm Biotechnol 2024; 25:1791-1806. [PMID: 38178678 DOI: 10.2174/0113892010282155231222071903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Patients receiving cancer therapies experience severe adverse effects, including hepatotoxicity, even at therapeutic doses. Consequently, monitoring patients on cancer therapy for hepatic functioning is necessary to avoid permanent liver damage. Several pathways of anticancer drug-induced hepatotoxicity involve microRNAs (miRNAs) via targeting mRNAs. These short and non-coding RNAs undergo rapid modulation in non-targeted organs due to cancer therapy insults. Recently, there has been an interest for miRNAs as useful and promising biomarkers for monitoring toxicity since they have conserved sequences across species and are cellular-specific, stable, released during injury, and simple to analyze. Herein, we tried to review the literature handling miRNAs as mediators and biomarkers of anticancer drug-induced hepatotoxicity. Natural products and phytochemicals are suggested as safe and effective candidates in treating cancer. There is also an attempt to combine anticancer drugs with natural compounds to enhance their efficiencies and reduce systemic toxicities. We also discussed natural products protecting against chemotherapy hepatotoxicity via modulating miRNAs, given that miRNAs have pathogenic and diagnostic roles in chemotherapy-induced hepatotoxicity and that many natural products can potentially regulate their expression. Future studies should integrate these findings into clinical trials by formulating suitable therapeutic dosages of natural products to target miRNAs involved in anticancer drug hepatotoxicity.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkia, 44519, Egypt
| |
Collapse
|
2
|
Shihana F, Joglekar MV, Schwantes-An TH, Hardikar AA, Seth D. MicroRNAs Signature Panel Identifies Heavy Drinkers with Alcohol-Associated Cirrhosis from Heavy Drinkers without Liver Injury. BIOLOGY 2023; 12:1314. [PMID: 37887024 PMCID: PMC10604848 DOI: 10.3390/biology12101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Background: Alcohol-associated liver disease (ALD) is the most common disorder of prolonged drinking. Mechanisms underlying cirrhosis in such patients remain unclear. MicroRNAs play regulatory role in several diseases, are affected by alcohol and may be important players in alcohol use disorders, such as cirrhosis. Methods: We investigated serum samples from heavy chronic alcohol users (80 g/day (male) and 50 g/day (female) for ≥10 years) that were available from our previously reported GenomALC study. A subset of GenomALC drinkers with liver cirrhosis (cases, n = 24) and those without significant liver disease (drinking controls, n = 23) were included. Global microRNA profiling was performed using high-throughput real-time quantitative PCR to identify the microRNA signatures associated with cirrhosis. Ingenuity Pathway Analysis (IPA) software was utilized to identify target mRNAs of significantly altered microRNAs, and molecular pathways were analysed. Identified microRNAs were analysed for correlation with traditional liver disease biomarkers and risk gene variants previously reported from GenomALC genome-wide association study. Results: The expression of 21 microRNAs was significantly downregulated in cases compared to drinking controls (p < 0.05, ∆∆Ct > 1.5-fold). Seven microRNAs (miR-16, miR-19a, miR-27a, miR-29b, miR-101, miR-130a, and miR-191) had a highly significant correlation (p < 0.001) with INR, bilirubin and MELD score. Three microRNAs (miR-27a, miR-130a and miR-191) significantly predicted cases with AUC-ROC 0.8, 0.78 and 0.85, respectively (p < 0.020); however, INR performed best (0.97, p < 0.001). A different set of six microRNAs (miR-19a, miR-26a, miR-101, miR-151-3p, miR-221, and miR-301) showed positive correlation (ranging from 0.32 to 0.51, p < 0.05) with rs10433937:HSD17B13 gene variant, associated with the risk of cirrhosis. IPA analysis revealed mRNA targets of the significantly altered microRNAs associated with cell death/necrosis, fibrosis and increased steatosis, particularly triglyceride metabolism. Conclusions: MicroRNA signatures in drinkers distinguished those with liver cirrhosis from drinkers without liver disease. We identified mRNA targets in liver functions that were enriched for disease pathogenesis pathways.
Collapse
Affiliation(s)
- Fathima Shihana
- The Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Sydney, NSW 2006, Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, NSW 2050, Australia
| | - Mugdha V. Joglekar
- Diabetes & Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (M.V.J.); (A.A.H.)
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA;
| | - Anandwardhan A. Hardikar
- Diabetes & Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (M.V.J.); (A.A.H.)
| | - Devanshi Seth
- The Centenary Institute of Cancer Medicine & Cell Biology, The University of Sydney, Sydney, NSW 2006, Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, NSW 2050, Australia
- Sydney School of Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Shi H, Zhao XH, Peng Q, Zhou XL, Liu SS, Sun CC, Cao QY, Zhu SP, Sun SY. Green tea polyphenols alleviate di-(2-ethylhexyl) phthalate-induced liver injury in mice. World J Gastroenterol 2023; 29:5054-5074. [PMID: 37753369 PMCID: PMC10518738 DOI: 10.3748/wjg.v29.i34.5054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer known to cause liver injury. Green tea is reported to exert therapeutic effects on heavy metal exposure-induced organ damage. However, limited studies have examined the therapeutic effects of green tea polyphenols (GTPs) on DEHP-induced liver damage. AIM To evaluate the molecular mechanism underlying the therapeutic effects of GTPs on DEHP-induced liver damage. METHODS C57BL/6J mice were divided into the following five groups: Control, model [DEHP (1500 mg/kg bodyweight)], treatment [DEHP (1500 mg/kg bodyweight) + GTP (70 mg/kg bodyweight), oil, and GTP (70 mg/kg bodyweight)] groups. After 8 wk, the liver function, blood lipid profile, and liver histopathology were examined. Differentially expressed micro RNAs (miRNAs) and mRNAs in the liver tissues were examined using high-throughput sequencing. Additionally, functional enrichment analysis and immune infiltration prediction were performed. The miRNA-mRNA regulatory axis was elucidated using the starBase database. Protein expression was evaluated using immunohistochemistry. RESULTS GTPs alleviated DHEP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, liver fibrosis, and mitochondrial and endoplasmic reticulum lesions in mice. The infiltration of macrophages, mast cells, and natural killer cells varied between the model and treatment groups. mmu-miR-141-3p (a differentially expressed miRNA), Zcchc24 (a differentially expressed mRNA), and Zcchc24 (a differentially expressed protein) constituted the miRNA-mRNA-protein regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage in mice. CONCLUSION This study demonstrated that GTPs mitigate DEHP-induced liver dysfunction, blood lipid dysregulation, fatty liver disease, and partial liver fibrosis, and regulate immune cell infiltration. Additionally, an important miRNA-mRNA-protein molecular regulatory axis involved in mediating the therapeutic effects of GTPs on DEHP-induced liver damage was elucidated.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xin-Hai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Xian-Ling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Si-Si Liu
- Department of Pathology, The Central Hospital of Shaoyang, Shaoyang 422000, Hunan Province, China
| | - Chuan-Chuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Qiu-Yu Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Shi-Ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| | - Sheng-Yun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 522000, Guangdong Province, China
| |
Collapse
|
4
|
Singh S, Kumar PVSNK, Kumar JP, Tomo S, Yadav D, Sharma P, Rao M, Banerjee M. Genetic and Epigenetic Basis of Drug-Induced Liver Injury. Semin Liver Dis 2023; 43:163-175. [PMID: 37225145 DOI: 10.1055/a-2097-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Drug-induced liver injury (DILI) is a rare but severe adverse drug reaction seen in pharmacotherapy and a major cause of postmarketing drug withdrawals. Advances in genome-wide studies indicate that genetic and epigenetic diversity can lead to inter-individual differences in drug response and toxicity. It is necessary to identify how the genetic variations, in the presence of environmental factors, can contribute to development and progression of DILI. Studies on microRNA, histone modification, DNA methylation, and single nucleotide polymorphisms related to DILI were retrieved from databases and were analyzed for the current research and updated to develop this narrative review. We have compiled some of the major genetic, epigenetic, and pharmacogenetic factors leading to DILI. Many validated genetic risk factors of DILI, such as variants of drug-metabolizing enzymes, HLA alleles, and some transporters were identified. In conclusion, these studies provide useful information in risk alleles identification and on implementation of personalized medicine.
Collapse
Affiliation(s)
- Snigdha Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - P V S N Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - J Pradeep Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
5
|
Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression. Mol Biol Rep 2022; 49:6041-6052. [PMID: 35357625 DOI: 10.1007/s11033-022-07392-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes. METHODS AND RESULTS A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen-glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression. CONCLUSIONS UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.
Collapse
|
6
|
Variation in the co-expression profile highlights a loss of miRNA-mRNA regulation in multiple cancer types. Noncoding RNA Res 2022; 7:98-105. [PMID: 35387279 PMCID: PMC8958468 DOI: 10.1016/j.ncrna.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Abstract
Recent research provides insight into the ability of miRNA to regulate various pathways in several cancer types. Despite their involvement in the regulation of the mRNA via targeting the 3′UTR, there are relatively few studies examining the changes in these regulatory mechanisms specific to single cancer types or shared between different cancer types. We analyzed samples where both miRNA and mRNA expression had been measured and performed a thorough correlation analysis on 7494 experimentally validated human miRNA-mRNA target-gene pairs in both healthy and tumoral samples. We show how more than 90% of these miRNA-mRNA interactions show a loss of regulation in the tumoral samples compared with their healthy counterparts. As expected, we found shared miRNA-mRNA dysregulated pairs among different tumors of the same tissue. However, anatomically different cancers also share multiple dysregulated interactions, suggesting that some cancer-related mechanisms are not tumor-specific. 2865 unique miRNA-mRNA pairs were identified across 13 cancer types, ≈ 40% of these pairs showed a loss of correlation in the tumoral samples in at least 2 out of the 13 analyzed cancers. Specifically, miR-200 family, miR-155 and miR-1 were identified, based on the computational analysis described below, as the miRNAs that potentially lose the highest number of interactions across different samples (only literature-based interactions were used for this analysis). Moreover, the miR-34a/ALDH2 and miR-9/MTHFD2 pairs show a switch in their correlation between healthy and tumor kidney samples suggesting a possible change in the regulation exerted by the miRNAs. Interestingly, the expression of these mRNAs is also associated with the overall survival. The disruption of miRNA regulation on its target, therefore, suggests the possible involvement of these pairs in cell malignant functions. The analysis reported here shows how the regulation of miRNA-mRNA interactions strongly differs between healthy and tumoral cells, based on the strong correlation variation between miRNA and its target that we obtained by analyzing the expression data of healthy and tumor tissue in highly reliable miRNA-target pairs. Finally, a go term enrichment analysis shows that the critical pairs identified are involved in cellular adhesion, proliferation, and migration.
Collapse
|
7
|
Zhang Q, Liu Y, Yuan Y, Yao F, Zhang H, Zhao C, Luo Y. miR-26a-5p protects against drug-induced liver injury via targeting bid. Toxicol Mech Methods 2021; 32:325-332. [PMID: 34749575 DOI: 10.1080/15376516.2021.2003919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUNDS miR-26a-5p is a short noncoding RNA that is abnormally expressed in drug-induced liver injury (DILI), but its pathophysiologic role in the mechanism of disease in DILI is still vague. METHODS The expression of miR-26a-5p, viability of hepatic stellate cells (HSCs) proliferation, and apoptosis were explored via real-time PCR, CCK-8 assay, Tunel fluorescence, and flow cytometry. The expression of Bid was detected via Western blot assays, real-time PCR, and immunofluorescence. The apoptosis-associated proteins were determined through Western blot. The interaction between miR-26a-5p and Bid was measured via Dual luciferase reporter assay. RESULTS miR-26a-5p expression was greatly decreased in HSCs and serum treated with azithromycin, simvastatin and diclofenac sodium, respectively. Hepatocyte viability was largely suppressed while hepatocyte apoptosis was markedly increased in DILI. Correspondingly, the apoptosis-associated proteins including Bid, caspase-8 and cytochrome C in HSCs were significantly upregulated when treated with either of these drugs. Moreover, miR-26a-5p interacted with Bid, and hepatocyte proliferation and apoptosis influenced by miR-26a-5p mimics were obviously reversed when co-treated with overexpressed Bid plasmids. CONCLUSIONS miR-26a-5p played a protective role against DILI via targeting Bid.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yujie Yuan
- Department of Neurology, The Gucheng County Hospital of Hebei Province, Hebei, China
| | - Feifei Yao
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongmei Zhang
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Caiyan Zhao
- Department of Infectious Diseases, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Luo
- Department of Geriatrics, the third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Yao D, Zhou Z, Wang P, Zheng L, Huang Y, Duan Y, Liu B, Li Y. MiR-125-5p/IL-6R axis regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-κB pathway. Cell Cycle 2021; 20:2547-2564. [PMID: 34747340 DOI: 10.1080/15384101.2021.1995128] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study explored the effects of miR-125-5p and interleukin-6 receptor (IL-6 R) on ulcerative colitis (UC) cell models and mouse models. The sera derived from UC patients and healthy subjects were collected for expression analysis. UC in vitro models and in vivo model were constructed and used. Expressions of miR-125-5p, IL-6 R, AK1/STAT3 and NF-κB pathways, and inflammatory factors, histopathology and apoptosis were determined by conducting a series of molecular experiments. The relationship between miR-125-5p and IL-6 R was analyzed by TargetScan7.2 and verified by dual-luciferase assay. The disease activity index (DAI) score, weight change, and colon length of the mice were recorded and analyzed. Decreased expression of miR-125-5p in the sera of UC patients was related to the increased expression of its target gene IL-6 R. In vitro, up-regulation of miR-125-5p decreased IL-6 R expression, contents of inflammatory factors in THP-1 cells and cell apoptosis of NCM460, and inhibited the activation of JAK1/STAT3 and NF-κB pathway. However, down-regulation of miR-125-5p produced the opposite effects to its up-regulation. IL-6 R overexpression partially reversed the effects of miR-125-5p up-regulation on UC cell models. In vivo, miR-125-5p overexpression significantly improved the severity of colitis, including DAI score, colon length, tissue damage, apoptosis, and inflammatory response, in the mice in the UC group. In addition, miR-125-5p up-regulation significantly reduced the expression of IL-6 R in the UC mice, and reduced the expression levels of JAK1, STAT3 and p65 phosphorylation. MiR-125-5p targeting IL-6 R regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-κB pathway.
Collapse
Affiliation(s)
- Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuhua Huang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Chen S, Zhou M, Ying X, Zhou C. Ellagic acid protects rats from chronic renal failure via MiR-182/FOXO3a axis. Mol Immunol 2021; 138:150-160. [PMID: 34428620 DOI: 10.1016/j.molimm.2021.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/20/2023]
Abstract
Studies showed that ellagic acid (EA) can significantly improve kidney function, but the renal-protective effects of EA and the potential mechanism require adequate elucidation. This study investigated the mechanisms of EA in chronic renal failure (CRF) injury. A rat model of CRF was established by 5/6 nephrectomy. The body weight, urine volume and urine protein content of the rat model of CRF with EA treatment (0/20/40 mg/kg/day) were recorded. Hematoxylin&eosin (H&E) staining, Masson staining and TUNEL were used for histopathological observation. Serum levels of creatinine value, blood urea nitrogen, superoxide dismutase, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-6 and intercellular cell adhesion molecule-1 were determined using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of genes involved in CRF damage were detected by quantitative real-time PCR (qRT-PCR) and western blot. The relationships among EA, miR-182 and FOXO3a were verified by TargetScan 7.2, dual-luciferase assay and rescue experiments. In this study, EA treatment significantly increased the body weight, but reduced urination and urine protein content, renal tissue damage, collagen deposition, inflammation and the contents of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), and improved the antioxidant capacity of CRF rats. Moreover, EA treatment inhibited miR-182, TGF-β1, fibronectin and Bax levels, and promoted those of FOXO3a and Bcl-2 in CRF rats. Additionally, miR-182 specifically targeted FOXO3a, and effectively reduced the renal-protective effect of EA. Further research found that overexpressed FOXO3a partially reversed the inhibitory effect of miR-182 on CRF rats. Our results suggest that EA might reduce CRF injury in rats via miR-182/FOXO3a.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Nephrology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Meiyang Zhou
- Department of Nephrology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Xuxia Ying
- Department of Intensive Care Unit, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China
| | - Canxin Zhou
- Department of Nephrology, The Affiliated People's Hospital, Ningbo University, Ningbo, Zhejiang, 315040, China.
| |
Collapse
|
10
|
Hoelzle CR, Arnoult S, Borém CRM, Ottone M, de Magalhães KCSF, da Silva IL, Simões RT. microRNA Levels in Cervical Cancer Samples and Relationship with Lesion Grade and HPV Infection. Microrna 2021; 10:139-145. [PMID: 34086555 DOI: 10.2174/2211536610666210604123534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND miR-21, miR-214, and miR-let-7a are three validated and well-known miRNAs. miR-21 is described as an "oncomir," while miR-214 and miR-let-7a are described mainly as tumor suppressors. The role of these miRNAs remains unclear in cervical cancer, an important malignancy among women worldwide and responsible for many deaths every year. OBJECTIVE The objective of this study was to describe the expression profile of miR-21, miR-214, and miR-let-7a in plasma and cervical scraping from a control group and patients with different grades of cervical lesions and invasive cervical cancer, and then correlate with HPV infection groups. METHODS Plasma and cervical scraping were submitted to DNA and RNA extraction. HPV detection and typing were performed by conventional PCR followed by PAGE to amplicons interpretation. The miRNA relative expression in plasma and cervical scraping samples was performed by real-time PCR using specific TaqMan probes. RESULTS miR-21 (p=0.0277) and miR-214 (p=0.0151) were up-regulated in cervical scraping samples of the invasive cervical cancer (ICC) group. However, miR-214 was also up-regulated in the LSIL group (p=0.0062). Both miRNAs were not related to HPV infection. However, miR-let-7a was higher in HPV positive plasma samples (p=0.0433) than in HPV negative plasma samples, and the correlation analysis confirmed the association between the levels of this miRNA with the presence of HPV (p=0.0407; r=0.3029), but not with lesion grade (p>0.05). CONCLUSION Our results suggest that miR-21 is related to cervical cancer progression and miR-214 appears to have an ambiguous role in cervical lesions. miR-let-7a may be upregulated at the systemic level in patients with HPV infection.
Collapse
Affiliation(s)
- Carolina R Hoelzle
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Solène Arnoult
- Polytech Marseille. Aix-Marseille Université. Marseille, France
| | - Cinthya R M Borém
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Ottone
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Kênia C S F de Magalhães
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Istéfani L da Silva
- Center for Biological and Health Sciences. Federal University of West of Bahia (UFOB), Bahia, Brazil
| | - Renata T Simões
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol 2021; 11:605823. [PMID: 33505311 PMCID: PMC7830880 DOI: 10.3389/fphar.2020.605823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause “turkey X” disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.
Collapse
Affiliation(s)
- Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
12
|
Yin D, Liu L, Shi Z, Zhang L, Yang Y. Ropivacaine Inhibits Cell Proliferation, Migration and Invasion, Whereas Induces Oxidative Stress and Cell Apoptosis by circSCAF11/miR-145-5p Axis in Glioma. Cancer Manag Res 2020; 12:11145-11155. [PMID: 33173347 PMCID: PMC7648566 DOI: 10.2147/cmar.s274975] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is a heterogeneous aggressive tumor. Ropivacaine, a widely used anesthetic, has been shown to repress the progression of multiple cancers, including glioma. In this study, the effects of ropivacaine on cell proliferation, migration, invasion and apoptosis in glioma were revealed. Methods The expression levels of circSCAF11 and miR-145-5p were detected by quantitative real-time polymerase chain reaction (qRT-PCR) in glioma tissues and cells. The expression levels of epithelial–mesenchymal transition (EMT)-related proteins were determined by Western blot. Oxidative stress was evaluated by the measurement of reactive oxygen species (ROS) and determination of mitochondrial 8-hydroxy-2-deoxyguanosine (8-OHdG) assay in glioma cells. Cell proliferation was determined by cell counting kit-8 (CCK-8) assay and cell colony formation assay. Cell apoptosis and metastasis were detected by flow cytometry analysis and transwell assay, respectively. The binding relationship between circSCAF11 and miR-145-5p was predicted by circular RNA Interactome and identified by dual-luciferase reporter assay and RNA immunoprecipitation assay. In vivo tumor formation assay was performed to reveal the effects between ropivacaine and circSCAF11 overexpression on tumorigenesis in vivo. Results CircSCAF11 expression was obviously upregulated and miR-145-5p was significantly downregulated in glioma tissues and cells compared with control groups. Ropivacaine treatment upregulated E-cadherin protein expression and repressed the protein expression of Vimentin. Functionally, ropivacaine exposure promoted ROS and 8-OHdG production and cell apoptosis, whereas inhibited cell proliferation, migration and invasion; however, these effects were hindered by circSCAF11 overexpression. Mechanistically, circSCAF11 was a sponge of miR-145-5p. In addition, ropivacaine was revealed to inhibit tumor growth in vivo by regulating circSCAF11 and miR-145-5p expression. Conclusion Ropivacaine suppressed glioma progression by regulating circSCAF11 and miR-145-5p, which might provide a theoretical foundation in glioma treatment.
Collapse
Affiliation(s)
- Danqin Yin
- Department of Anesthesiology, Danyang People's Hospital of Jiangsu, Danyang City, Jiangsu Province, People's Republic of China
| | - Li Liu
- Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin City, People's Republic of China
| | - Zhengyuan Shi
- Department of Anesthesiology, Danyang People's Hospital of Jiangsu, Danyang City, Jiangsu Province, People's Republic of China
| | - Lihui Zhang
- Department of Anesthesiology, Hulunbeier Municipal People's Hospital (Hulunbuir Hospital Affiliated to Suzhou University), Hulunbeier City, Inner Mongolia Province, People's Republic of China
| | - Yan Yang
- Department of Anesthesiology, The First People's Hospital of Jiangxia District, Wuhan City, Hubei Province, People's Republic of China
| |
Collapse
|
13
|
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
14
|
Moosa MS, Maartens G, Gunter H, Allie S, Chughlay MF, Setshedi M, Wasserman S, Hickman N, Stewart A, Sonderup M, Spearman CW, Cohen K. A Randomized Controlled Trial of Intravenous N-acetylcysteine in the Management of Anti-tuberculosis Drug-Induced Liver Injury. Clin Infect Dis 2020; 73:e3377-e3383. [PMID: 32845997 DOI: 10.1093/cid/ciaa1255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver injury is a common complication of first-line anti-tuberculosis therapy. N-acetylcysteine (NAC) is widely used in patients with paracetamol toxicity with limited evidence of benefit in liver injury due to other causes. METHODS We conducted a randomized, double-blind, placebo-controlled trial to assess whether intravenous NAC hastens liver recovery in hospitalized adult patients with anti-tuberculosis drug induced liver injury (AT-DILI). The primary endpoint was the time for serum alanine aminotransferase (ALT) to fall below 100 U/L. Secondary endpoints included length of hospital stay, in-hospital mortality and adverse events. RESULTS Fifty-three participants were randomized to NAC and 49 to placebo. Mean age was 38 (SD±10) years, 58 (57%) were female and 89 (87%) were HIV-positive. Median serum ALT and total bilirubin at presentation were 462 U/L (IQR 266-790) and 56 μmol/L (IQR 25-100) respectively. Median time to ALT&100 U/L was 7.5 days (IQR 6 -11) in the NAC arm and 8 days (IQR 5 -13) in the placebo arm. Median time to hospital discharge was shorter in the NAC arm (9 days; IQR 6-15) than in the placebo arm (18 days; IQR 10-25), hazard ratio 1.73 (95% CI 1.13-2.65). Mortality was 14% overall and did not differ by study arm. The study infusion was stopped early due to an adverse reaction in 5 participants receiving NAC [nausea and vomiting (3), anaphylaxis (1), pain at drip site (1)]. CONCLUSION NAC did not shorten time to ALT&100 U/L in participants with AT-DILI, but significantly reduced length of hospital stay. NAC should be considered in management of AT-DILI.
Collapse
Affiliation(s)
- Muhammed S Moosa
- Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, New Somerset Hospital, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Hannah Gunter
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaazia Allie
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mohamed F Chughlay
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mashiko Setshedi
- Division of Gastroenterology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Hickman
- Clinical Research Centre, University of Cape Town, Cape Town, South Africa
| | - Annemie Stewart
- Clinical Research Centre, University of Cape Town, Cape Town, South Africa
| | - Mark Sonderup
- Division of Hepatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Catherine Wendy Spearman
- Division of Hepatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Karen Cohen
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Yang G, Wang T, Qu X, Chen S, Han Z, Chen S, Chen M, Lin J, Yu S, Gao L, Peng K, Kang M. Exosomal miR-21/Let-7a ratio distinguishes non-small cell lung cancer from benign pulmonary diseases. Asia Pac J Clin Oncol 2020; 16:280-286. [PMID: 32525285 PMCID: PMC7496917 DOI: 10.1111/ajco.13343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Aim To assess the exosomal miR‐21/Let‐7a ratio, a noninvasive method, in distinguishing non‐small cell lung cancer (NSCLC) from benign pulmonary diseases. Methods The exosomes were extracted from the peripheral blood serum using serum exosomal extraction kit. miR‐21 and Let‐7a levels were evaluated by quantitative reverse transcription polymerase chain reaction. Results We found that miR‐21/Let‐7a ratio of NSCLC patients was significantly higher than that of healthy people, patients with pulmonary inflammation diseases, and benign pulmonary nodules, respectively. Receiver‐operating characteristic analysis revealed that as compared with healthy controls, miR‐21/Let‐7a produced the area under the curve (AUC) at 0.8029 in patients with NSCLC, which helped to distinguish NSCLC from healthy controls with 81.33% sensitivity and 69.57% specificity. In addition, the AUC of miR‐21/Let‐7a in NSCLC patients was 0.8196 in comparison to patients with pulmonary inflammation diseases. Meanwhile, the sensitivity and specificity were 56.00% and 100%, respectively. Furthermore, compared with patients with benign pulmonary nodules, the AUC of miR‐21/Let‐7a in NSCLC patients was 0.7539. The sensitivity and specificity were 56.00% and 82.61%, respectively. Conclusion In the present study, our findings revealed that exosomal miR‐21/Let‐7a ratio holds considerable promise as a noninvasive biomarker for the diagnosis of NSCLC from benign pulmonary diseases.
Collapse
Affiliation(s)
- Guofeng Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tao Wang
- Jiangsu Engineering Research Center for Tumor Molecular Diagnosis, Suzhou, China
| | - Xiangyun Qu
- Jiangsu Engineering Research Center for Tumor Molecular Diagnosis, Suzhou, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingduan Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kaiming Peng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Liu Y, Li J, Wang S, Song H, Yu T. STAT4-mediated down-regulation of miR-3619-5p facilitates stomach adenocarcinoma by modulating TBC1D10B. Cancer Biol Ther 2020; 21:656-664. [PMID: 32397798 DOI: 10.1080/15384047.2020.1754690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) as the subtype of non-coding RNAs are revealed to be crucial players in cellular activities. It has been reported that miR-3619-5p functions as a tumor inhibitor in several cancers. However, the connection between miR-3619-5p and stomach adenocarcinoma (STAD) remains to be discovered. AIM OF THE STUDY The purpose of the study is to figure out the role and molecular regulation mechanism of miR-3619-5p in STAD. METHODS The expression of miR-3619-5p was evaluated via qRT-PCR analysis. Gain-of-function experiments demonstrated the effects of miR-3619-5p on cellular functions. The upper-stream transcription factor STAT4 and downstream target gene TBC1D10B of miR-3619-5p were identified by bioinformatic analysis. The binding and interaction between the indicated molecules were verified by RNA pull-down and luciferase reporter assays. RESULTS The expression of miR-3619-5p was prominently down-regulated in STAD cells and tissues. MiR-3619-5p suppresses cell proliferation, migration, invasion and tumor growth in STAD. Further, STAT4 bound with miR-3619-5p promoter and inhibited its transcription. MiR-3619-5p was also recognized to modulate STAD progression through the regulation of downstream target gene TBC1D10B. CONCLUSION STAT4-mediated miR-3619-5p controls STAD carcinogenesis and progression through modulating TBC1D10B expression, which may provide a novel insight for researching the STAD-related molecular mechanism.
Collapse
Affiliation(s)
- Yinhua Liu
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Jiaping Li
- Department of Cardiothoracic Surgery, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Sufeng Wang
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Hong Song
- Department of Pathology, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| | - Tao Yu
- Department of Neurosurgical Intensive Care Unit, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China.,Research Center for Functional Maintenance and Reconstruction of Viscera, Wannan Medical College First Affiliated Hospital, Yijishan Hospital , Wuhu, Anhui Province, China
| |
Collapse
|
17
|
Liu X, Zhao H, Luo C, Du D, Huang J, Ming Q, Jin F, Wang D, Huang W. Acetaminophen Responsive miR-19b Modulates SIRT1/Nrf2 Signaling Pathway in Drug-Induced Hepatotoxicity. Toxicol Sci 2019; 170:476-488. [PMID: 31077331 DOI: 10.1093/toxsci/kfz095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractPrevious studies suggest that activation of SIRT1 protects liver from acetaminophen (APAP)-induced injury; however, the detailed mechanism of SIRT1 modulation in this process is still incomplete. Therefore, this study was to investigate the pathophysiological role of SIRT1 in APAP-mediated hepatotoxicity. We found that SIRT1 mRNA and protein were markedly upregulated in human LO2 cells and mouse liver upon APAP exposure. In vitro, the specific knockdown of SIRT1 expression ultimately aggravated APAP-evoked cellular antioxidant defense in LO2 cells. Moreover, lentivirus-mediated knockdown of hepatic SIRT1 expression exacerbated APAP-induced oxidative stress and liver injury, especially reduction of Nrf2 and subsequent downregulation of several antioxidant genes. Intriguingly, 30 mg/kg SRT1720, the specific SIRT1 activator, which greatly enhanced Nrf2 expression and antioxidant defense, and then eventually reversed APAP-induced hepatic liver injury in mice. Furthermore, APAP responsive miR-19b played an important role in regulating SIRT1 expression, whereas overexpression miR-19b largely abolished the induction of SIRT1 by APAP in vitro and in vivo. Specific SIRT1 3′-UTR mutation, which disrupted the interaction of miRNA-3′UTR, and successfully abrogated the modulation by miR-19b. Notably, hepatic miR-19b overexpression worsened the APAP-induced hepatotoxicity. In general, our results support the notion that the strong elevation of SIRT1 by APAP responsive miR-19b may represent a compensatory mechanism to protect liver against the drug-induced damage, at least in part by enhancing Nrf2-mediated antioxidant capacity in the liver.
Collapse
Affiliation(s)
- Xing Liu
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Hongqian Zhao
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Chunyan Luo
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Debin Du
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Jinlong Huang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Quan Ming
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Fen Jin
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| | - Weifeng Huang
- Medical College, China Three Gorges University, Yichang 443002, China
- The Institute of Infection and Inflammation, China Three Gorges University, Yichang 443002, China
- The Third Hospital of Yichang City, Yichang 443003, China
| |
Collapse
|
18
|
Barnhill MS, Real M, Lewis JH. Latest advances in diagnosing and predicting DILI: what was new in 2017? Expert Rev Gastroenterol Hepatol 2018; 12:1033-1043. [PMID: 30111182 DOI: 10.1080/17474124.2018.1512854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug-induced liver injury (DILI) remains an increasingly recognized cause of hepatotoxicity and liver failure worldwide. In 2017, we continued to learn about predicting, diagnosing, and prognosticating drug hepatotoxicity. Areas covered: In this review, we selected from over 1200 articles from 2017 to synopsize updates in DILI. There were new HLA haplotypes associated with medications including HLA-C0401 and HLA-B*14. There has been continued work with quantitative systems pharmacology, particularly with the DILIsym® initiative, which employs mathematical representations of DILI mechanisms to predict hepatotoxicity in simulated populations. Additionally, knowledge regarding microRNAs (miRNAs) continues to expand. Some new miRNAs this past year include miRNA-223 and miRNA-605. Aside from miRNAs, other biomarkers for diagnosis, prognosis, and even prediction of DILI were explored. Studies on K18, OPN, and MCSFR have correlated DILI and liver-associated death within 6 months. Conversely, a new prognostic panel using apolipoportein-A1 and haptoglobin has been proposed to predict recovery. Further study of CDH5 has also provided researchers a possible new biomarker for prediction and susceptibility to DILI. Expert commentary: Although research on DILI remains quite promising, there is yet to be a reliable, simple method to predict, diagnose, and risk assess this form of hepatotoxicity.
Collapse
Affiliation(s)
- Michele S Barnhill
- a Department of Internal Medicine , Medstar Georgetown University Hospital , Washington , DC , USA
| | - Mark Real
- a Department of Internal Medicine , Medstar Georgetown University Hospital , Washington , DC , USA
| | - James H Lewis
- b Department of Gastroenterology , Medstar Georgetown University Hospital , Washington , DC , USA
| |
Collapse
|
19
|
Kuna L, Božić I, Kizivat T, Bojanić K, Mršo M, Kralj E, Smolić R, Wu GY, Smolić M. Models of Drug Induced Liver Injury (DILI) - Current Issues and Future Perspectives. Curr Drug Metab 2018; 19:830-838. [PMID: 29788883 PMCID: PMC6174638 DOI: 10.2174/1389200219666180523095355] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) is an important cause of acute liver failure cases in the United States, and remains a common cause of withdrawal of drugs in both preclinical and clinical phases. METHODS A structured search of bibliographic databases - Web of Science Core Collection, Scopus and Medline for peer-reviewed articles on models of DILI was performed. The reference lists of relevant studies was prepared and a citation search for the included studies was carried out. In addition, the characteristics of screened studies were described. RESULTS One hundred and six articles about the existing knowledge of appropriate models to study DILI in vitro and in vivo with special focus on hepatic cell models, variations of 3D co-cultures, animal models, databases and predictive modeling and translational biomarkers developed to understand the mechanisms and pathophysiology of DILI are described. CONCLUSION Besides descriptions of current applications of existing modeling systems, associated advantages and limitations of each modeling system and future directions for research development are discussed as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Martina Smolić
- Address correspondence to this author at the J. J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Department of Pharmacology, J. Huttlera 4, 31 000 Osijek, Croatia; Tel: + 0385-31-512-800; Fax: +385-31-512-833; E-mail:
| |
Collapse
|
20
|
Bailey WJ, Glaab W. Derisking drug-induced liver injury from bench to bedside. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
|