1
|
Abstract
Over the past decade, pharmacogenetic testing has emerged in clinical practice to guide selected cardiovascular therapies. The most common implementation in practice is CYP2C19 genotyping to predict clopidogrel response and assist in selecting antiplatelet therapy after percutaneous coronary intervention. Additional examples include genotyping to guide warfarin dosing and statin prescribing. Increasing evidence exists on outcomes with genotype-guided cardiovascular therapies from multiple randomized controlled trials and observational studies. Pharmacogenetic evidence is accumulating for additional cardiovascular medications. However, data for many of these medications are not yet sufficient to support the use of genotyping for drug prescribing. Ultimately, pharmacogenetics might provide a means to individualize drug regimens for complex diseases such as heart failure, in which the treatment armamentarium includes a growing list of medications shown to reduce morbidity and mortality. However, sophisticated analytical approaches are likely to be necessary to dissect the genetic underpinnings of responses to drug combinations. In this Review, we examine the evidence supporting pharmacogenetic testing in cardiovascular medicine, including that available from several clinical trials. In addition, we describe guidelines that support the use of cardiovascular pharmacogenetics, provide examples of clinical implementation of genotype-guided cardiovascular therapies and discuss opportunities for future growth of the field.
Collapse
Affiliation(s)
- Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA.
| |
Collapse
|
2
|
Alhazzani A, Venkatachalapathy P, Padhilahouse S, Sellappan M, Munisamy M, Sekaran M, Kumar A. Biomarkers for Antiplatelet Therapies in Acute Ischemic Stroke: A Clinical Review. Front Neurol 2021; 12:667234. [PMID: 34177775 PMCID: PMC8222621 DOI: 10.3389/fneur.2021.667234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is one of the world's leading causes of disability and death. Antiplatelet agents are administered to acute ischemic stroke patients as secondary prevention. Clopidogrel involves biotransformation by cytochrome P450 (CYP) enzymes into an active metabolite, and single nucleotide polymorphisms (SNPs) can influence the efficacy of this biotransformation. Despite the therapeutic advantages of aspirin, there is significant inter-individual heterogeneity in response to this antiplatelet drug. In this clinical review, the recent advances in the biomarkers of antiplatelet agents in acute ischemic stroke are discussed. The studies reviewed herein highlight the clinical relevance of antiplatelet resistance, pharmacotherapy of antiplatelet agents predicting drug response, strategies for identifying aspirin resistance, pharmacogenetic variants of antiplatelet agents, miRNAs, and extracellular vesicles (EVs) as biomarkers toward the personalized approach in the management of acute ischemic stroke. The precise pathways contributing to antiplatelet resistance are not very well known but are presumably multi-factorial. It is essential to understand the clinical relevance of clopidogrel and aspirin-related single nucleotide polymorphism (SNPs) as potential predictive and prognostic biomarkers. Prasugrel is a next-generation antiplatelet agent that prevents ADP-platelet activation by binding irreversibly to P2Y12 receptor. There are sporadic reports of prasugrel resistance and polymorphisms in the Platelet endothelial aggregation receptor-1 (PEAR1) that may contribute to a change in the pharmacodynamics response. Ticagrelor, a direct-acting P2Y12-receptor antagonist, is easily absorbed and partly metabolized to major AR-C124910XX metabolite (ARC). Ticagrelor's primary active metabolite, ARC124910XX (ARC), is formed via the most abundant hepatic cytochrome P450 (CYP) enzyme, CYP3A4, and CYP3A5. The integration of specific biomarkers, genotype as well as phenotype-related data in antiplatelet therapy stratification in patients with acute ischemic stroke will be of great clinical significance and could be used as a guiding tool for more effective, personalized therapy.
Collapse
Affiliation(s)
- Adel Alhazzani
- Neurology Unit, Medicine Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Sruthi Padhilahouse
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, India
| | - Mohan Sellappan
- Department of Pharmacy Practice, Karpagam College of Pharmacy, Coimbatore, India
| | - Murali Munisamy
- Translational Medicine Centre, All India Institute of Medical Sciences, Bhopal, India
| | - Mangaiyarkarasi Sekaran
- Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Biswas M, Rahaman S, Biswas TK, Ibrahim B. Effects of the ABCB1 C3435T single nucleotide polymorphism on major adverse cardiovascular events in acute coronary syndrome or coronary artery disease patients undergoing percutaneous coronary intervention and treated with clopidogrel: A systematic review and meta-analysis. Expert Opin Drug Saf 2020; 19:1605-1616. [PMID: 33040624 DOI: 10.1080/14740338.2020.1836152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/08/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The effects of the ABCB1 C3435T genetic polymorphism on clopidogrel responses are conflicting and inconclusive especially in patients undergoing percutaneous coronary intervention (PCI). This study examined the pooled risk of major adverse cardiovascular events (MACE) and bleeding events associated with the ABCB1 C3435T polymorphism in acute coronary syndrome or coronary artery disease patients undergoing PCI and treated with clopidogrel. AREAS COVERED Literature was searched in different resources for eligible studies. The pooled risk ratio was measured using RevMan software, with p<0.05 (two-sided) set as statistically significant. EXPERT OPINION The ABCB1 C3435T homozygous mutant (TT) was associated with significantly increased risk of MACE compared to either wild type genotype (CC) or the combination of wild type and heterozygous genotypes (TT vs. CC: RR 1.33; 95% CI 1.06-1.68; p=0.02; TT vs. CC+CT: RR 1.32; 95% CI 1.10-1.60; p=0.004). Safety outcomes, i.e. bleeding events were not significantly different between the genetic models investigated (TT vs. CC: RR 1.93; 95% CI 0.86-4.35; p=0.11; TT vs. CC+CT: RR 1.36; 95% CI 0.89-2.09; p=0.16; CT+TT vs. CC: RR 1.20; 95% CI 0.59-2.44; p=0.61). It is suggested that ABCB1 C3435T genotype should be tested for ACS/CAD patients undergoing PCI to ensure optimum therapy of clopidogrel.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi , Rajshahi, Bangladesh
| | - Shawonur Rahaman
- Department of Pharmacy, University of Rajshahi , Rajshahi, Bangladesh
| | - Tapash Kumar Biswas
- Department of Medicine, Faridpur Medical College Hospital , Faridpur, Bangladesh
| | - Baharudin Ibrahim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia , Penang, Malaysia
| |
Collapse
|
4
|
Ji JZ, Li YF, Jiang LP, Tai T, Ge PX, Mi QY, Zhu T, Xie HG. P-glycoprotein deficiency enhances metabolic activation of and platelet response to clopidogrel through marked up-regulation of Cyp3a11 in mice: Direct evidence for the interplay between P-glycoprotein and Cyp3a. Biochem Pharmacol 2020; 183:114313. [PMID: 33137324 DOI: 10.1016/j.bcp.2020.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Variability in P-glycoprotein (P-gp) efflux transporting activity was supposed to be involved in altered intestinal absorption and bioavailability of clopidogrel in patients; however, reliable evidence is still lacking. In this study, we sought to determine whether P-gp could play an important role in the metabolic activation of and platelet response to clopidogrel in mice. Abcb1a/1b knock-out (KO) and wild-type (WT) mice were used to evaluate differences in the intracellular accumulation of clopidogrel in the intestine, liver, and brain tissues and in systemic exposure of clopidogrel and its main metabolites as well as the mechanisms involved. Results indicated that, compared with WT mice, KO mice exhibited an 84% increase in systemic exposure of clopidogrel active thiol metabolite H4 and a 14.5% rise of suppression of ADP-induced platelet integrin αIIbβ3 activation, paralleled by a 41% decrease in systemic exposure of clopidogrel due to enhanced systemic clearance. Furthermore, KO mice displayed a 45% increase in Cyp3a11 but a 23% decrease in Ces1 at their protein levels compared with WT mice. Concurrently, intracellular clopidogrel concentrations in the tissues examined did not differ significantly between KO and WT mice. We conclude that although P-gp does not transport clopidogrel and its major metabolites in mice, P-gp-deficient mice exhibit elevated formation of the active metabolite H4 and enhanced antiplatelet effect of clopidogrel through up-regulation of Cyp3a11 and down-regulation of Ces1, suggesting that P-gp activity may correlate inversely with the formation of H4 and antiplatelet efficacy of clopidogrel in clinical settings due to P-gp and CYP3A4 interplay.
Collapse
Affiliation(s)
- Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yi-Fei Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Peng-Xin Ge
- Department of Clinical Pharmacy, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ting Zhu
- Department of Clinical Pharmacy, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Department of Clinical Pharmacy, College of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing 211166, China.
| |
Collapse
|
5
|
Ma L, Yuan Y, Li J, Yu C, Zhao J. Distribution of CYP2C19, ABCB1 and PON1 polymorphisms in Chinese Han, Hui, Uygur and Kazak patients with coronary atherosclerotic heart disease. Int J Immunogenet 2020; 47:539-545. [PMID: 32862511 DOI: 10.1111/iji.12511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 01/20/2023]
Abstract
CYP2C19, ABCB1 and PON1 polymorphisms involve in the metabolism and absorption of clopidogrel, which may be associated with interethnic variability of clopidogrel response. In our study, we evaluated the prevalence of CYP2C19, ABCB1 and PON1 single nucleotide polymorphisms (SNP) in patients with coronary atherosclerotic heart disease (CHD) of Chinese Han, Hui, Uygur and Kazak ethnic groups. Five SNPs were detected [CYP2C19 ∗2 (rs4244285), CYP2C19 ∗3 (rs4986893), CYP2C19 ∗17 (rs12248560), ABCB1 (rs1045642) and PON1 (rs662)]. The analysis was performed in 1,337 patients with CHD, including 831 Han, 85 Hui, 352 Uygur and 69 Kazak. The results revealed the differential distribution of the five SNPs. Frequencies of CYP2C19 no function variants in Uygur and Kazak were lower than those in Han and Hui groups (P < .05). CYP2C19 variants with increased function were more common in Uygur (13.6%) and Kazak (10.9%) groups (P < .05). Compared with Han and Hui groups, distribution of ABCB1 allele T was more prevalent in Uygur and Kazak groups (53.8% and 50.7%, respectively, P < .05). PON1 allele A frequencies of 55.7% and 58.7% in Uygur and Kazak showed higher prevalence than in the Han (38.4%) and Hui (43.5%) groups (P < .05). In conclusion, CYP2C19 *2 and *3 alleles are prevalent in Chinese Han and Hui groups, whereas CYP2C19 *17, ABCB1 T and PON1 A variants are relatively frequent in Chinese Uygur and Kazak ethnic groups. Our findings may provide a theoretical basis for the explanation of ethnic differences in determining clinical therapy strategies and predicting adverse effects.
Collapse
Affiliation(s)
- Lijuan Ma
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuan Yuan
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Li
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Changzhi Yu
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Liu J, Xu Z, Li Y, Dai S, Liu J, Pan J, Jiang Y. Comparison between MassARRAY and pyrosequencing for CYP2C19 and ABCB1 gene variants of clopidogrel efficiency genotyping. Mol Membr Biol 2020; 35:1-8. [PMID: 30916611 DOI: 10.1080/09687688.2019.1597194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clopidogrel is one of the most frequently used drugs in patients to reduce cardiovascular events. Since patients with different genetic variations respond quite differently to clopidogrel therapy, the related genetic testing plays a vital role in its dosage and genetic testing related to clopidogrel therapy is currently considered as routine test worldwide. In this study, we aim to use two different methods MALDI-TOF mass spectrometry and pyrosequencing to detect gene variant of CYP2C19 and ABCB1. Six single nucleotides polymorphisms (SNP) within CYP2C19 (*2, *3, *4, *5, *17) and ABCB1 C3435T in 458 Chinese Han patients were determined using both MassARRAY and Pyrosequencing. Sanger sequencing was used for verification. Results of both methods were analyzed and compared. Allele frequencies of each SNP and distribution of different genotypes were calculated based on the MassARRAY and Sanger sequencing results. Both methods provided 100% call rates for gene variants, while results of six samples were different with two methods. With Sanger sequencing as the reference results, MassARRAY generated all the same results. The minor allele frequencies of the above six SNPs were 27.1% (CYP2C19*), 5.9% (CYP2C19*3), 0% (CYP2C19*4), 0% (CYP2C19*5), 1.1% (CYP2C19*17), 40.9% (ABCB1), respectively. MassARRAY provides accurate clopidogrel related genotyping with relatively high cost-efficiency, throughput and short time when compared with pyrosequencing.
Collapse
Affiliation(s)
- Juan Liu
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| | - Zesheng Xu
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| | - Ya Li
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| | - Shipeng Dai
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| | - Junying Liu
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| | - Junjun Pan
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| | - Yang Jiang
- a Department of Cardiology , Hebei Cangzhou Central Hospital , Cangzhou , China
| |
Collapse
|
7
|
Berinstein E, Levy A. Recent developments and future directions for the use of pharmacogenomics in cardiovascular disease treatments. Expert Opin Drug Metab Toxicol 2017; 13:973-983. [PMID: 28792790 DOI: 10.1080/17425255.2017.1363887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Cardiovascular disease is still the leading cause of death worldwide. There are many environmental and genetic factors that play a role in the development of cardiovascular disease. The treatment of cardiovascular disease is beginning to move in the direction of personalized medicine by using biomarkers from the patient's genome to design more effective treatment plans. Pharmacogenomics have already uncovered many links between genetic variation and response of many different drugs. Areas covered: This article will focus on the main polymorphisms that impact the risk of adverse effects and response efficacy of statins, clopidogrel, aspirin, β-blockers, warfarin dalcetrapib and vitamin E. The genes discussed include SLCO1B1, ABCB1, CYP3A4, CYP3A5, CYP2C19, PTGS1, PTGS2, ADRB1, ADCY9, CYP2C19, PON1, CES1, PEAR1, GPIIIa, CYP2D6, CKORC1, CYP2C9 and Hp. Expert opinion: Although there are some convincing results that have already been incorporated in the labelling treatment guidelines, most gene-drug relationships have been inconsistent. A better understanding of the relationships between genetic factors and drug response will provide more opportunities for personalized diagnosis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Elliot Berinstein
- a Technion Faculty of Medicine , Technion Israel Institute of Technology , Haifa , Israel
| | - Andrew Levy
- a Technion Faculty of Medicine , Technion Israel Institute of Technology , Haifa , Israel
| |
Collapse
|