1
|
Martorana F, Sanò MV, Valerio MR, Fogli S, Vigneri P, Danesi R, Gebbia V. Abemaciclib pharmacology and interactions in the treatment of HR+/HER2- breast cancer: a critical review. Ther Adv Drug Saf 2024; 15:20420986231224214. [PMID: 38665218 PMCID: PMC11044790 DOI: 10.1177/20420986231224214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/17/2023] [Indexed: 04/28/2024] Open
Abstract
Abemaciclib (ABE) in combination with endocrine therapy represents the mainstay treatment for either endocrine-resistant metastatic or high-risk early-stage HR+/HER2- breast cancer patients. Hence, an adequate knowledge of this agent pharmacodynamic, pharmacokinetic, and of its drug-drug interactions (DDIs) is crucial for an optimal patients management. Additionally, ABE interference with food and complementary/alternative medicines should be taken into account in the clinical practice. Several online tools allow to freely check DDIs and can be easily consulted before prescribing ABE. According to one of this instruments, ABE display the lowest number of interactions among the available cyclin-dependent kinase 4/6 inhibitors. Still, clinicians should be aware that online tools cannot replace the technical datasheet of the drug as well as a comprehensive clinical assessment for each patient. Here we critically review the main pharmacological features of ABE, then focusing on its potential interactions with drugs, food, and alternative medicine, in order to provide a guide for its optimal use in the treatment of HR+/HER2- breast cancer patients.
Collapse
Affiliation(s)
- Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Vita Sanò
- Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Maria Rosaria Valerio
- Medical Oncology Unit, Policlinico P. Giaccone, University of Palermo, Palermo, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vittorio Gebbia
- Faculty of Medicine and Surgery, Kore University of Enna, Piazza dell’Università, Enna 94100, Italy
- Casa di Cura Torina, Palermo, Italy
| |
Collapse
|
2
|
Peruzzi E, Gerratana L, Montico M, Posocco B, Corsetti S, Bartoletti M, Gagno S, Orleni M, De Mattia E, Baraldo M, Cecchin E, Puglisi F, Toffoli G, Roncato R. Association of ADME gene polymorphisms on toxicity to CDK4/6 inhibitors in patients with HR+ HER2- metastatic breast cancer. Biomed Pharmacother 2023; 167:115479. [PMID: 37734262 DOI: 10.1016/j.biopha.2023.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
A wide interindividual variability in therapeutic response to cyclin-dependent kinases 4 and 6 inhibitors (CDKis) palbociclib, ribociclib and abemaciclib, among patients with HR+/HER2- metastatic breast cancer has been reported. This study explored the impact of genetic polymorphisms in ADME genes (responsible for drug absorption, distribution, metabolism, and elimination) on CDKis safety profiles in 230 patients. Selected endpoints include grade 3/4 neutropenia at day 14 of the first treatment cycle, early dose-limiting toxicities (DLTs), and dose reductions within the initial three cycles. Our analysis revealed associations between these endpoints and polymorphisms in CYP3A4, CYP3A5, ABCB1, and ABCG2 genes. Their impact on CDKis plasma concentrations (Ctrough) was also examined. Specifically, ABCB1 c.1236C>T and c.2677C>T polymorphisms correlated significantly with grade 3/4 neutropenia at day 14 (OR 3.94, 95% CI 1.32-11.75; p = 0.014 and OR 3.32, 95% CI 1.12-9.85; p = 0.030). Additionally, ABCB1 c.3435C>T was associated with an elevated risk of early DLTs and dose reductions (OR 3.28, 95% CI 1.22-8.84, p = 0.019; OR 2.60, 95% CI 1.20-5.60, p = 0.015). Carriers of the CYP3A4*22 allele also demonstrated in univariate a higher risk of early DLTs (OR 3.10, 95% CI 1.01-9.56, p = 0.049). Furthermore, individuals with the ABCB1 1236T-3435T-2677T(A) variant haplotype exhibited significant associations with grade 3/4 neutropenia at day 14 (OR 3.36, 95% CI 1.20-9.41; p = 0.021) and early DLTs in univariate (OR 3.08, 95% CI 1.19-7.95; p = 0.020). Homozygous carriers of the ABCB1 T-T-T(A) haplotype tended to have a higher mean ribociclib Ctrough (934.0 ng/mL vs. 752.0 ng/mL and 668.0 ng/mL). Regardless preliminary, these findings offer promising insights into the role of pharmacogenetic markers in CDKis safety profiles, potentially contributing to address the interindividual variability in CDKis responses.
Collapse
Affiliation(s)
- Elena Peruzzi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bianca Posocco
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Serena Corsetti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michele Bartoletti
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Sara Gagno
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Marco Orleni
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Massimo Baraldo
- Clinical Pharmacology and Toxicology Institute, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy; Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy; Department of Medicine (DAME), University of Udine, Udine, Italy.
| |
Collapse
|
3
|
Sajid A, Rahman H, Ambudkar SV. Advances in the structure, mechanism and targeting of chemoresistance-linked ABC transporters. Nat Rev Cancer 2023; 23:762-779. [PMID: 37714963 DOI: 10.1038/s41568-023-00612-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/17/2023]
Abstract
Cancer cells frequently display intrinsic or acquired resistance to chemically diverse anticancer drugs, limiting therapeutic success. Among the main mechanisms of this multidrug resistance is the overexpression of ATP-binding cassette (ABC) transporters that mediate drug efflux, and, specifically, ABCB1, ABCG2 and ABCC1 are known to cause cancer chemoresistance. High-resolution structures, biophysical and in silico studies have led to tremendous progress in understanding the mechanism of drug transport by these ABC transporters, and several promising therapies, including irradiation-based immune and thermal therapies, and nanomedicine have been used to overcome ABC transporter-mediated cancer chemoresistance. In this Review, we highlight the progress achieved in the past 5 years on the three transporters, ABCB1, ABCG2 and ABCC1, that are known to be of clinical importance. We address the molecular basis of their broad substrate specificity gleaned from structural information and discuss novel approaches to block the function of ABC transporters. Furthermore, genetic modification of ABC transporters by CRISPR-Cas9 and approaches to re-engineer amino acid sequences to change the direction of transport from efflux to import are briefly discussed. We suggest that current information regarding the structure, mechanism and regulation of ABC transporters should be used in clinical trials to improve the efficiency of chemotherapeutics for patients with cancer.
Collapse
Affiliation(s)
- Andaleeb Sajid
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hadiar Rahman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Zhu Z, Zhu Q. Differences in metabolic transport and resistance mechanisms of Abemaciclib, Palbociclib, and Ribociclib. Front Pharmacol 2023; 14:1212986. [PMID: 37475713 PMCID: PMC10354263 DOI: 10.3389/fphar.2023.1212986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) play a crucial role in cancer treatment, particularly in breast cancer, and their mechanism of drug resistance is a topic of global interest in research. Hence, it is vital to comprehend the distinctions between various CDK4/6i, including their mechanisms of action and resistance mechanisms. This article aims to summarize the metabolic and transport variations as well as the differences in resistance among the three FDA-approved CDK4/6 inhibitors: Abemaciclib, Palbociclib, and Ribociclib. It also aims to discuss how these differences impact the effectiveness and safety of anticancer drugs. It was conducted in March 2023 to search PubMed, Embase, and Web of Science for literature related to this topic. Despite all being CDK4/6i, differences in their metabolism and transport were found, which are related to their chemical structure. Moreover, there are variations in preclinical pharmacology, pharmacokinetics, and clinical safety and efficacy of the different inhibitors. Genetic mutations, drug tolerance, and other factors may influence CDK4/6 resistance mechanisms. Currently, the resistance mechanisms differences of the three drugs remain largely unknown, and there are differences in the resistance mechanisms among them, necessitating further exploration and research.
Collapse
Affiliation(s)
- Zhimin Zhu
- Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Qiongni Zhu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zuccoli JR, Pagnotta PA, Melito VA, Lavandera JV, Parera VE, Buzaleh AM. An Improved Technique for Genotyping the ABCB1 Gene Variant of Exon 21. Methods Protoc 2023; 6:53. [PMID: 37367997 DOI: 10.3390/mps6030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
The Multidrug Resistance protein (ABCB1, MDR1) is involved in the transport of xenobiotics and antiretroviral drugs. Some variants of the ABCB1 gene are of clinical importance; among them, exon 12 (c.1236C>T, rs1128503), 21 (c.2677G>T/A, rs2032582), and 26 (c.3435C>T, rs1045642) have a high incidence in Caucasians. Several protocols have been used for genotyping the exon 21 variants, such as allele-specific PCR-RFLP using adapted primer to generate a digestion site for several enzymes and automatic sequencing to detect the SNVs, TaqMan Allele Discrimination assay and High-Resolution Melter analysis (HRMA). The aim was to describe a new approach to genotype the three variants c.2677G>T/A for the exon 21 doing only one PCR with the corresponding primers and the digestion of the PCR product with two restriction enzymes: BrsI to identify A allele and BseYI to differentiate between G or T. An improvement of this methodology was also described. The proposal technique here described is demonstrated to be very efficient, easy, fast, reproducible, and cost-effective.
Collapse
Affiliation(s)
- Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires 1120, Argentina
| | - Priscila Ayelén Pagnotta
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 2610, Argentina
- Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires 2490, Argentina
| | - Viviana Alicia Melito
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires 1120, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 2610, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Victoria Estela Parera
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires 1120, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires 1120, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 2610, Argentina
| |
Collapse
|