1
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Abstract
SignificanceThe discovery that amphiphilic polymers, similar to phospholipids, can self-assemble to vesicles has inspired numerous applications. For instance, these polymersomes are employed for drug delivery due to their increased chemical and mechanical stability. These polymers can be also mixed with lipids to form the so-called hybrid membranes, which provide further biocompatibility, while new properties emerge. However, the fusion of these hybrids is to date barely explored. Herein, we determined that hybrid vesicles made of poly(dimethylsiloxane)-graft-poly(ethylene oxide) and oppositely charged lipids undergo rapid fusion, surpassing the efficiency in natural membranes. We provide biophysical insights into the mechanism and demonstrate that anionic lipids are not strictly required when the process is employed for the integration of membrane proteins.
Collapse
|
3
|
Enhancement of membrane protein reconstitution on 3D free-standing lipid bilayer array in a microfluidic channel. Biosens Bioelectron 2019; 141:111404. [DOI: 10.1016/j.bios.2019.111404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
|
4
|
Uda RM, Yoshikawa Y, Kitaba M, Nishimoto N. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative. Colloids Surf B Biointerfaces 2018; 167:544-549. [DOI: 10.1016/j.colsurfb.2018.04.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/22/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
|
5
|
McBrearty J, Barker D, Damavandi M, Wilson-Nieuwenhuis J, Pilkington LI, Dempsey-Hibbert N, Slate AJ, Whitehead KA. Antimicrobial synergy of cationic grafted poly( para-phenylene ethynylene) and poly( para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium. RSC Adv 2018; 8:23433-23441. [PMID: 35540130 PMCID: PMC9081575 DOI: 10.1039/c8ra02673d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 01/25/2023] Open
Abstract
The rise in multidrug resistant bacteria is an area of growing concern and it is essential to identify new biocidal agents. Cationic grafted compounds were investigated for their antimicrobial properties using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Synergy testing was carried out using the compounds in the presence of ultraviolet (UV). Fractional inhibitory concentration (FIC) and fractional bactericidal concentration (FBC) tests were carried out using the cationic molecules in conjunction with metal ion solutions of gold, silver, palladium, platinum, rhodium, titanium, tin, vanadium and molybdenum. Individually, the cationic compounds containing quaternary amines, polyphenylene vinylene (PPV) with long polyacrylate grafts (PPV-g-PMETAC (HMw)), polyphenylene ethylene (PPE) with long polyacrylate grafts (PPE-g-PMETAC (HMw)), polyphenylene vinylene (PPV) with short polyacrylate grafts (PPV-g-PMETAC (LMw)) and polyphenylene ethylene (PPE) with short polyacrylate grafts (PPE-g-PMETAC (LMw)) were effective against Enterococcus faecium. The most successful compound under UV was PPV-g-PMETAC (HMw). Following the FICs, palladium and rhodium ion solutions caused a synergistic reaction with all four tested compounds. The presence of conjugated bonds in the cationic molecules increased its antimicrobial activity. These results suggest that the chemical backbone of the compounds, alongside the chain lengths and chain attachment affect the antimicrobial efficacy of a compound. These factors should be taken into consideration when formulating new biocidal combinations.
Collapse
Affiliation(s)
- Jordan McBrearty
- Microbiology at Interfaces Group, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK +44(0) 161 247 1157
| | - David Barker
- School of Chemical Sciences, University of Auckland Auckland 1010 New Zealand
| | - Mona Damavandi
- School of Chemical Sciences, University of Auckland Auckland 1010 New Zealand
| | - Joels Wilson-Nieuwenhuis
- Microbiology at Interfaces Group, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK +44(0) 161 247 1157
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland Auckland 1010 New Zealand
| | - Nina Dempsey-Hibbert
- Microbiology at Interfaces Group, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK +44(0) 161 247 1157
| | - Anthony J Slate
- Microbiology at Interfaces Group, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK +44(0) 161 247 1157
| | - Kathryn A Whitehead
- Microbiology at Interfaces Group, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK +44(0) 161 247 1157
| |
Collapse
|
6
|
Galkin MA, Russell AN, Vik SB, Berry RM, Ishmukhametov RR. Detergent-free Ultrafast Reconstitution of Membrane Proteins into Lipid Bilayers Using Fusogenic Complementary-charged Proteoliposomes. J Vis Exp 2018. [PMID: 29683454 PMCID: PMC5933413 DOI: 10.3791/56909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Detergents are indispensable for delivery of membrane proteins into 30-100 nm small unilamellar vesicles, while more complex, larger model lipid bilayers are less compatible with detergents. Here we describe a strategy for bypassing this fundamental limitation using fusogenic oppositely charged liposomes bearing a membrane protein of interest. Fusion between such vesicles occurs within 5 min in a low ionic strength buffer. Positively charged fusogenic liposomes can be used as simple shuttle vectors for detergent-free delivery of membrane proteins into biomimetic target lipid bilayers, which are negatively charged. We also show how to reconstitute membrane proteins into fusogenic proteoliposomes with a fast 30-min protocol. Combining these two approaches, we demonstrate a fast assembly of an electron transport chain consisting of two membrane proteins from E. coli, a primary proton pump bo3-oxidase and F1Fo ATP synthase, in membranes of vesicles of various sizes, ranging from 0.1 to >10 microns, as well as ATP production by this chain.
Collapse
Affiliation(s)
| | - Aidan N Russell
- Clarendon Laboratory, Department of Physics, Oxford University
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University
| | - Richard M Berry
- Clarendon Laboratory, Department of Physics, Oxford University
| | | |
Collapse
|
7
|
Ishmukhametov RR, Russell AN, Berry RM. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes. Nat Commun 2016; 7:13025. [PMID: 27708275 PMCID: PMC5059690 DOI: 10.1038/ncomms13025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
Abstract
An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ∼10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.
Collapse
Affiliation(s)
- Robert R. Ishmukhametov
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | - Aidan N. Russell
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | - Richard M. Berry
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
8
|
Biner O, Schick T, Müller Y, von Ballmoos C. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion. FEBS Lett 2016; 590:2051-62. [DOI: 10.1002/1873-3468.12233] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Switzerland
| | - Thomas Schick
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Switzerland
| | - Yannic Müller
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
| | | |
Collapse
|
9
|
Zhu T, Jiang Z, Ma Y. Lipid exchange between membranes: effects of membrane surface charge, composition, and curvature. Colloids Surf B Biointerfaces 2012; 97:155-61. [PMID: 22609597 DOI: 10.1016/j.colsurfb.2012.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/15/2012] [Accepted: 04/18/2012] [Indexed: 11/20/2022]
Abstract
Intermembrane lipid exchange is critical to membrane functions and pharmaceutical applications. The exchange process is not fully understood and it is explored by quartz crystal microbalance with dissipation monitor method in this research. It is found that intermembrane lipid exchange is accelerated with the decrease of vesicle size and the increase of charge and liquid crystalline lipid composition ratio. Vesicle adsorption rate, membrane lateral pressure gradient, and lipid lateral diffusion coefficient are inferred to be critical in deciding the lipid exchange kinetics between membranes. Besides that, the membrane contact situation during lipid exchange is also studied. The maximum total membrane contact area is found to increase with the decrease of vesicle size, charged and liquid crystalline lipid composition ratio. A competition mechanism between the vesicle adsorption rate and the intermembrane lipid exchange rate was proposed to control the maximum total membrane contact area.
Collapse
Affiliation(s)
- Tao Zhu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
10
|
Jia Y, Joly H, Omri A. Characterization of the interaction between liposomal formulations and Pseudomonas aeruginosa. J Liposome Res 2012; 20:134-46. [PMID: 19831502 DOI: 10.3109/08982100903218892] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The interactions between three liposomal formulations and Pseudomonas aeruginosa cells were evaluated by a lipid mixing assay and electron paramagnetic resonance (EPR) spectroscopy. The effect of the bacteria on the liposomal phase characteristics, the release of the liposomes' content, and the uptake rate of gentamicin by bacteria were monitored as a function of time, using EPR spectroscopy. The [16-DSA uptake](Total) from DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) liposomes reached 93 +/- 12% over a 3-hour assay period, of which 9% crossed the bacterial inner membrane. A small amount of 16-DSA uptake from DPPC/Chol (cholesterol) vesicles was found throughout the 3-hour period of time. Although DPPC/DMPG (dimyristoylphosphatidylglycerol) vesicles showed a smaller value of [16-DSA uptake](Total) with respect to that of DPPC vesicles, they appeared to be effective in disrupting the bacterial membrane, resulting in a greater accumulation of 16-DSA inside the inner membrane. Exposure to bacteria caused the DPPC/Chol, DPPC, and DPPC/DMPG formulations to release 4.6 +/- 1.5, 17.6 +/- 1.2, and 34 +/- 3.7% of their content, respectively. Time-dependent fluid regions were developed within the vesicles when mixed with bacteria, and their growth over time depended on liposomal formulations. Incubation of gentamicin with bacteria for 3 hours resulted in 87 +/- 3% of the drug crossing the bacterial inner membrane. In conclusion, interaction between the liposome drug carriers and the bacterial cells result in vesicle fusion, disruption of the bacterial membrane, release of the liposomal content in the close vicinity of the bacteria cells, and the subsequent intracellular uptake of the released liposomal content.
Collapse
Affiliation(s)
- Yimei Jia
- Laurentian University, Sudbury, Ontario, Canada
| | | | | |
Collapse
|
11
|
Caracciolo G, Pozzi D, Capriotti AL, Marianecci C, Carafa M, Marchini C, Montani M, Amici A, Amenitsch H, Digman MA, Gratton E, Sanchez SS, Laganà A. Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes. J Med Chem 2011; 54:4160-71. [DOI: 10.1021/jm200237p] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulio Caracciolo
- Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cristina Marchini
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Maura Montani
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Augusto Amici
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Heinz Amenitsch
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedelstrasse 6, A-8042 Graz, Austria
| | - Michelle A. Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
| | - Susana S. Sanchez
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, Fundación CNIC-Carlos III, Madrid, Spain
| | - Aldo Laganà
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Sunami T, Caschera F, Morita Y, Toyota T, Nishimura K, Matsuura T, Suzuki H, Hanczyc MM, Yomo T. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15098-15103. [PMID: 20822108 DOI: 10.1021/la102689v] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a method to evaluate the fusion process of giant vesicles using a fluorescence-activated cell sorter (FACS). Three fluorescent markers and FACS technology were used to evaluate the extent of association and fusion of giant vesicles. Two fluorescent markers encapsulated in different vesicle populations were used as association markers; when these vesicles associate, the two independent markers should be observed simultaneously in a single detection event. The quenched fluorescent marker and the dequencher, which were encapsulated in separate vesicle populations, were used as the fusion marker. When the internal aqueous solutions mix, the quenched marker is liberated by the dequencher and emits the third fluorescent signal. Although populations of pure POPC vesicles showed no detectable association or fusion, the same populations, oppositely charged by the exogenous addition of charged amphiphiles, showed up to 50% association and 30% fusion upon population analysis of 100,000 giant vesicles. Although a substantial fraction of the vesicles associated in response to a small amount of the charged amphiphiles (5% mole fraction compared to POPC alone), a larger amount of the charged amphiphiles (25%) was needed to induce vesicle fusion. The present methodology also revealed that the association and fusion of giant vesicles was dependent on size, with larger giant vesicles associating and fusing more frequently.
Collapse
Affiliation(s)
- Takeshi Sunami
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ma M, Gong Y, Bong D. Lipid membrane adhesion and fusion driven by designed, minimally multivalent hydrogen-bonding lipids. J Am Chem Soc 2010; 131:16919-26. [PMID: 19877659 DOI: 10.1021/ja9072657] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanuric acid (CA) and melamine (M) functionalized lipids can form membranes that exhibit robust hydrogen-bond driven surface recognition in water, facilitated by multivalent surface clustering of recognition groups and variable hydration at the lipid-water interface. Here we describe a minimal lipid recognition cluster: three CA or M recognition groups are forced into proximity by covalent attachment to a single lipid headgroup. This trivalent lipid system guides recognition at the lipid-water interface using cyanurate-melamine hydrogen bonding when incorporated at 0.1-5 mol percent in fluid phospholipid membranes, inducing both vesicle-vesicle binding and membrane fusion. Fusion was accelerated when the antimicrobial peptide magainin was used to anchor trivalent recognition, or when added exogenously to a preassembled lipid vesicle complex, underscoring the importance of coupling recognition with membrane disruption in membrane fusion. Membrane apposition and fusion were studied in vesicle suspensions using light scattering, FRET assays for lipid mixing, surface plasmon resonance, and cryo-electron microscopy. Recognition was found to be highly spatially selective as judged by vesicular adhesion to surface patterned supported lipid bilayers (SLBs). Fusion to SLBs was also readily observed by fluorescence microscopy. Together, these studies indicate effective and functional recognition of trivalent phospholipids, despite low mole percentage concentration, solvent competition for hydrogen bond donor/acceptor sites, and simplicity of structure. This novel designed molecular recognition motif may be useful for directing aqueous-phase assembly and biomolecular interactions.
Collapse
Affiliation(s)
- Mingming Ma
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
14
|
Caschera F, Stano P, Luisi PL. Reactivity and fusion between cationic vesicles and fatty acid anionic vesicles. J Colloid Interface Sci 2010; 345:561-5. [PMID: 20181356 DOI: 10.1016/j.jcis.2010.01.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/18/2010] [Accepted: 01/22/2010] [Indexed: 11/29/2022]
Abstract
The fusion between synthetic vesicles is an interesting mechanism for the stepwise construction of vesicle compartments for origins of life models and synthetic biology. In this communication, we report an innovative study on the not well-known case of fusion between oppositely charged vesicles, in particular by using fatty acid vesicles and DDAB as cationic surfactant. By combining fluorescence, turbidity vs. time profiles and vesicle size distribution obtained by dynamic light scattering, we show that POPC/oleate 1/4 mol/mol anionic vesicles can be fused with POPC/DDAB 1/1 mol/mol cationic vesicles with about 20% yield. Other non-fusion processes also occur, vesicle fusion being more effective by reducing the ionic strength of the buffer. This study also contributes to clarify the term "vesicle fusion", which is not always properly used in describing reactivity among vesicles.
Collapse
Affiliation(s)
- Filippo Caschera
- Biology Department, University of RomaTre, Viale G. Marconi 446, I-00146 Rome, Italy
| | | | | |
Collapse
|
15
|
Abstract
Efficient delivery of genetic material to cells is needed for tasks of utmost importance in the laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising nonviral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficiency for many cell types. Understanding the mechanism of lipid-mediated DNA delivery is essential for their successful application, as well as for a rational design and synthesis of novel cationic lipoid compounds for enhanced gene delivery. A viewpoint now emerging is that the critical factor in lipid-mediated transfection is the structural evolution of lipoplexes within the cell, upon interacting and mixing with cellular lipids. In particular, recent studies showed that the phase evolution of lipoplex lipids upon interaction and mixing with membrane lipids appears to be decisive for transfection success: specifically, lamellar lipoplex formulations, which were readily susceptible to undergoing lamellar-nonlamellar phase transition upon mixing with cellular lipids and were found rather consistently associated with superior transfection potency, presumably as a result of facilitated DNA release. Thus, understanding the lipoplex structure and the phase changes upon interacting with membrane lipids is important for the successful application of the cationic lipids as gene carriers.
Collapse
|
16
|
Pozzi D, Caracciolo G, Caminiti R, De Sanctis SC, Amenitsch H, Marchini C, Montani M, Amici A. Toward the rational design of lipid gene vectors: shape coupling between lipoplex and anionic cellular lipids controls the phase evolution of lipoplexes and the efficiency of DNA release. ACS APPLIED MATERIALS & INTERFACES 2009; 1:2237-2249. [PMID: 20355858 DOI: 10.1021/am900406b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A viewpoint now emerging is that a critical factor in lipid-mediated transfection (lipofection) is the structural evolution of lipoplexes upon interaction with anionic cellular lipids, resulting in DNA release. At the early stages of interaction, we found a universal behavior of lipoplex/anionic lipid (AL) mixtures: the lipoplex structure is slightly perturbed, while the one-dimensional DNA lattice between cationic membranes is largely diluted by ALs. This finding is in excellent agreement with previous suggestions on the mechanism of DNA unbinding from lipoplexes by ALs. Upon further interaction, the propensity of a given lipoplex structure to be solubilized by anionic cellular lipids strongly depends on the shape coupling between lipoplex and ALs. Furthermore, we investigated the effect of the membrane charge density and a general correlation resulted: the higher the membrane charge density of anionic membranes, the higher their ability to solubilize the structure of lipoplexes and to promote DNA release. Lastly, the formation of nonlamellar phases in lipoplex/AL mixtures is regulated by the propensity of anionic cellular lipids to adopt nonlamellar phases. Remarkably, also phase transition rates and DNA release were found to be strongly affected by the shape coupling between lipoplex and ALs. It thus seems likely that the structural and phase evolution of lipoplexes may only be meaningful in the context of specific anionic cellular membranes. These results highlight the phase properties of the carrier lipid/cellular lipid mixtures as a decisive factor for optimal DNA release and suggest a potential strategy for the rational design of efficient cationic lipid carriers.
Collapse
Affiliation(s)
- Daniela Pozzi
- Department of Chemistry, University of Rome La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dimitrievski K, Kasemo B. Simulations of lipid transfer between a supported lipid bilayer and adsorbing vesicles. Colloids Surf B Biointerfaces 2009; 75:454-65. [PMID: 19815394 DOI: 10.1016/j.colsurfb.2009.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/29/2022]
Abstract
Recent experiments demonstrate transfer of lipid molecules between a charged, supported lipid membrane (SLB) and vesicles of opposite charge when the latter adsorb on the SLB. A simple phenomenological bead model has been developed to simulate this process. Beads were defined to be of three types, 'n', 'p', and '0', representing POPS (negatively charged), POEPC (positively charged), and POPC (neutral but zwitterionic) lipids, respectively. Phenomenological bead-bead interaction potentials and lipid transfer rate constants were used to account for the overall interaction and transfer kinetics. Using different bead mixtures in both the adsorbing vesicle and in the SLB (representing differently composed/charged vesicles and SLBs as in the reported experiments), we clarify under which circumstances a vesicle adsorbs to the SLB, and whether it, after lipid transfer and changed composition of the SLB and vesicle, desorbs back to the bulk again or not. With this model we can reproduce and provide a conceptual picture for the experimental findings.
Collapse
Affiliation(s)
- Kristian Dimitrievski
- Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
| | | |
Collapse
|
18
|
Kunze A, Svedhem S, Kasemo B. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5146-58. [PMID: 19326873 DOI: 10.1021/la802758h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The bidirectional transfer of phospholipids between a charged, supported lipid bilayer (SLB) on SiO(2) and oppositely charged, unilamellar vesicles was studied by means of quartz crystal microbalance with dissipation (QCM-D) and optical reflectometry techniques. SLBs and vesicles were prepared from binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) mixed with different fractions of either 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (POPS) (negatively charged) or 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC) (positively charged). The interaction process consists of an attachment-transfer-detachment (ATD) sequence, where added vesicles first attach to and interact with the SLB, after which they detach, leaving behind a compositionally modified SLB and ditto vesicles. When the process is complete, there is no net addition or reduction of total lipid mass in the SLB, but lipid exchange has occurred. The time scale of the process varies from a few to many tens of minutes depending on the type of charged lipid molecule and the relative concentration of charged lipids in the two membranes. Electrostatically symmetric cases, where only the charge sign (but not the fraction of charged lipid) was reversed between the SLB and the vesicles, produce qualitatively similar but quantitatively different kinetics. The time scale of the interaction varies significantly between the two cases, which is attributed to a combination of the differences in the molecular structure of the lipid headgroup for the positively and the negatively charged lipids used, and to nonsymmetric distribution of charged lipids in the lipid membranes. The maximum amounts of attached vesicles during the ATD process were estimated to be 25-40% of a full monolayer of vesicles, with the precise amount depending on the actual charge fractions in the vesicles and the SLB. Interrupted vesicle exposure experiments, and experiments where the bulk concentration of vesicles was varied, show that vesicles in some cases may be trapped irreversibly on the SLB, when only partial transfer of lipid molecules has occurred. Additional supply of vesicles and further transfer induces detachment, when a sufficient amount of oppositely charged lipids has been transferred to the SLB, so that the latter becomes repulsive to the attached vesicles. Possible mechanistic scenarios, including monomer insertion and hemifusion models, are discussed. The observed phenomena and the actual SLB preparation process form a platform both for studies of various intermembrane molecular transfer processes and for modifying the composition of SLBs in a controlled way, for example, for biosensor and cell culture applications.
Collapse
Affiliation(s)
- Angelika Kunze
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goteborg, Sweden
| | | | | |
Collapse
|
19
|
Li D, Li P, Li G, Wang J, Wang E. The effect of nocodazole on the transfection efficiency of lipid-bilayer coated gold nanoparticles. Biomaterials 2008; 30:1382-8. [PMID: 19091395 DOI: 10.1016/j.biomaterials.2008.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
Abstract
Nonviral vectors are safer than viral systems for gene therapy applications. However, the limited efficacy always prevents their being widely used in clinical practice. Aside from searching new gene nonviral vectors, many researchers focus on finding out new substances to improve the transfection efficiency of existent vectors. In this work, we found a transfection enhancer, nocodazole (NCZ), for dimethyldioctadecylammonium (DODAB, a cationic lipid) bilayer coated gold nanoparticles (AuNPs) mediated gene delivery. It was found that NCZ produces 3-fold transfection enhancement to HEK 293T cells assessed by flow cytometry (FCM). The result was further confirmed by luciferase assay, in which NCZ induced more than 5 times improvement in transfection efficiency after 48 h of transfection. The results from the inductively coupled plasma mass spectrometry (ICP-MS) and FCM showed that NCZ did not affect the internalization of DODAB-AuNPs/DNA complexes. The trafficking of the complexes by transmission electron microscopy (TEM) indicated that the interrupted transportation of the complexes to the lysosomes contributed greatly to the transfection enhancement. Therefore, NCZ can be used as a transfection enhancer in DODAB-AuNPs mediated transfection system. This work also gave an insight to improving the efficiency of lipid-mediated transfection: modifying lipid on gold nanoparticles and pre-treating cells by NCZ before the transfection.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
20
|
Wikström A, Svedhem S, Sivignon M, Kasemo B. Real-Time QCM-D Monitoring of Electrostatically Driven Lipid Transfer between Two Lipid Bilayer Membranes. J Phys Chem B 2008; 112:14069-74. [DOI: 10.1021/jp803938v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Angelica Wikström
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Sofia Svedhem
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Marc Sivignon
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Bengt Kasemo
- Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
21
|
Kato K, Walde P, Koine N, Ichikawa S, Ishikawa T, Nagahama R, Ishihara T, Tsujii T, Shudou M, Omokawa Y, Kuroiwa T. Temperature-sensitive nonionic vesicles prepared from Span 80 (sorbitan monooleate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:10762-10770. [PMID: 18720959 DOI: 10.1021/la801581f] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Different types of nonionic vesicles were prepared from commercial Span 80 (also called sorbitan monooleate), as an inexpensive, biocompatible alternative to conventional phospholipid-based vesicles (liposomes). The vesicles were characterized by different techniques and comparison was made with vesicles formed from POPC (1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine) or DOPC (1,2-dioleoyl- sn-glycero-3-phosphocholine). Dynamic light scattering measurements, electron microscopy analyses, and two types of fusion assays indicate that Span 80 vesicles are stable for at least 7 days at 4 or 25 degrees C, while storage at 42 degrees C causes irreversible vesicle fusion. This indicates that Span 80 vesicles are thermoresponsive with vesicle fusion occurring at elevated temperature. This property may be related to headgroup dehydration and is certainly not directly linked to the phase transition temperature (Tm) of the vesicles, since the Tm is below -30 degrees C, as determined by differential scanning calorimetry (DSC). The measured Tm value for Span 80 vesicles is lower than in the case of DOPC or POPC, correlating with a higher fluidity of Span 80 vesicles as compared to POPC or DOPC vesicles, as determined with DPH (1,6-diphenyl-1,3,5-hexatriene) as fluorescent membrane probe. High fluidity correlates with increased leakage of entrapped water-soluble dye molecules. Addition of cholesterol and soybean phosphatidylcholine lowers the extent of leakage, allowing a tuning of the bilayer permeability.
Collapse
Affiliation(s)
- Keiichi Kato
- Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Saeki D, Sugiura S, Baba T, Kanamori T, Sato S, Mukataka S, Ichikawa S. Dynamic interaction between oppositely charged vesicles: Aggregation, lipid mixing, and disaggregation. J Colloid Interface Sci 2008; 320:611-4. [DOI: 10.1016/j.jcis.2007.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/27/2007] [Accepted: 12/02/2007] [Indexed: 11/26/2022]
|
23
|
Caracciolo G, Marchini C, Pozzi D, Caminiti R, Amenitsch H, Montani M, Amici A. Structural stability against disintegration by anionic lipids rationalizes the efficiency of cationic liposome/DNA complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4498-508. [PMID: 17341104 DOI: 10.1021/la063456o] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Reported here is the correlation between the transfection efficiency of cationic liposome/DNA complexes (lipoplexes) and the structural evolution that they undergo when interacting with anionic membrane lipids. Multicomponent lipoplexes, incorporating from three to six lipid species simultaneously, presented a much higher transfection efficiency than binary lipoplexes, which are more commonly used for gene-delivery purposes. The discovery that a high transfection efficiency can be achieved by employing multicomponent complexes at a lower-than-ever-before membrane charge density of lipoplexes was of primary significance. Synchrotron small-angle X-ray diffraction (SAXD) experiments showed that anionic liposomes made of dioleoylphosphatidylglycerol (DOPG) disintegrated the lamellar phase of lipoplexes. DNA unbinding was measured by electrophoresis on agarose gels. Most importantly, structural changes induced by anionic lipids strictly depended on the lipid composition of lipoplexes. We found evidence of the existence of three different regimes of stability related to the interaction between complexes and anionic membranes. Both unstable (with low membrane charge density, sigmaM) and highly stable lipoplexes (with high sigmaM) exhibited low transfection efficiency whereas highly efficient multicomponent lipoplexes exhibited an "optimal stability". This intermediate regime reflects a compromise between two opposing constraints: protection of DNA in the cytosol and endosomal escape. Here we advance the concept that structural stability, upon interaction with cellular anionic lipids, is a key factor governing the transfection efficiency of lipoplexes. Possible molecular mechanisms underlying experimental observations are also discussed.
Collapse
Affiliation(s)
- Giulio Caracciolo
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hofmann MW, Poschner BC, Hauser S, Langosch D. pH-Activated fusogenic transmembrane LV-peptides. Biochemistry 2007; 46:4204-9. [PMID: 17346063 DOI: 10.1021/bi602539n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LV-peptides mimic the in vitro fusogenicity of synthetic fusion protein transmembrane domains. The original versions of these peptides consist of a variable hydrophobic core (containing leucine and/or valine residues (LV)) that is flanked by invariant lysine triplets at both termini. Previously, peptide fusogenicity was correlated with the structural plasticity of their hydrophobic cores. Here, we examined the functional importance of positively charged flanking residues. To this end, we determined the fusogenicities of peptide variants that contain terminal His and/or Lys triplets. Interestingly, liposome fusion by peptides with His triplets was triggered by acidic pH. The pH dependence of fusion is reflected by a sigmoidal titration curve whose midpoint is close to the pKa value of histidine. Thus, only peptides with positively charged residues at both termini are fusogenic. The previously established dependence of fusogenicity on the sequence of the hydrophobic peptide core of Lys-flanked LV-peptides was preserved with the His-flanked versions at low pH. We propose that the structural flexibility of the core region as well as positive terminal charges are required for LV-peptide function in lipid mixing. In a potential practical application, the pH-dependent LV-peptides might prove to be useful in the lipofection of eukaryotic cells.
Collapse
Affiliation(s)
- Mathias W Hofmann
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | |
Collapse
|
25
|
Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, Geisler C, Andersen P. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 2007; 121:216-26. [PMID: 17302734 PMCID: PMC2265938 DOI: 10.1111/j.1365-2567.2007.02560.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes did not have an effect on the maturation of murine bone-marrow-derived dendritic cells (BM-DCs) related to the surface expression of major histocompatibility complex (MHC) class II, CD40, CD80 and CD86. We found that ovalbumin (OVA) readily associated with the liposomes (> 90%) when mixed in equal concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D. In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake by T cells in mixed splenocyte cultures. The adsorption of antigen onto the liposomes increased the efficiency of antigen presentation more than 100 times in a responder assay with MHC class II-restricted OVA-specific T-cell receptor transgenic DO11.10 T cells. Our data therefore suggest that the primary adjuvant mechanism of cationic DDA liposomes is to target the cell membrane of antigen-presenting cells, which subsequently leads to enhanced uptake and presentation of antigen.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Stebelska K, Wyrozumska P, Gubernator J, Sikorski AF. Higly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells. Cell Mol Biol Lett 2006; 12:39-50. [PMID: 17103091 PMCID: PMC6275732 DOI: 10.2478/s11658-006-0049-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 08/09/2006] [Indexed: 11/29/2022] Open
Abstract
Cationic liposomes can efficiently carry nucleic acids into mammalian cells. This property is tightly connected with their ability to fuse with negatively charged natural membranes (i.e. the plasma membrane and endosomal membrane). We used FRET to monitor and compare the efficiency of lipid mixing of two liposomal preparations — one of short-chained diC14-amidine and one of long-chained unsaturated DOTAP — with the plasma membrane of HeLa cells. The diC14-amidine liposomes displayed a much higher susceptibility to lipid mixing with the target membranes. They disrupted the membrane integrity of the HeLa cells, as detected using the propidium iodide permeabilization test. Morphological changes were transient and essentially did not affect the viability of the HeLa cells. The diC14-amidine liposomes were much more effective at either inducing lipid mixing or facilitating transfection.
Collapse
Affiliation(s)
- Katarzyna Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wrocław, Wrocław, Poland
| | | | | | | |
Collapse
|
27
|
Koynova R, Tarahovsky YS, Wang L, MacDonald RC. Lipoplex formulation of superior efficacy exhibits high surface activity and fusogenicity, and readily releases DNA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:375-86. [PMID: 17156744 PMCID: PMC1861830 DOI: 10.1016/j.bbamem.2006.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/20/2006] [Accepted: 10/26/2006] [Indexed: 11/23/2022]
Abstract
Lipoplexes containing a mixture of cationic phospholipids dioleoylethylphosphatidylcholine (EDOPC) and dilauroylethylphosphatidylcholine (EDLPC) are known to be far more efficient agents in transfection of cultured primary endothelial cells than are lipoplexes containing either lipid alone. The large magnitude of the synergy permits comparison of the physical and physico-chemical properties of lipoplexes that have very different transfection efficiencies, but minor chemical differences. Here we report that the superior transfection efficiency of the EDLPC/EDOPC lipoplexes correlates with higher surface activity, higher affinity to interact and mix with negatively charged membrane-mimicking liposomes, and with considerably more efficient DNA release relative to the EDOPC lipoplexes. Observations on cultured cells agree with the results obtained with model systems; confocal microscopy of transfected human umbilical artery endothelial cells (HUAEC) demonstrated more extensive DNA release into the cytoplasm and nucleoplasm for the EDLPC/EDOPC lipoplexes than for EDOPC lipoplexes; electron microscopy of cells fixed and embedded directly on the culture dish revealed contact of EDLPC/EDOPC lipoplexes with various cellular membranes, including those of the endoplasmic reticulum, mitochondria and nucleus. The sequence of events outlining efficient lipofection is discussed based on the presented data.
Collapse
Affiliation(s)
- Rumiana Koynova
- Department of Biochemistry, Molecular Biology and Cell Biology Northwestern University 2205 Tech Drive, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Cationic lipids are conceptually and methodologically simple tools to deliver nucleic acids into the cells. Strategies based on cationic lipids are viable alternatives to viral vectors and are becoming increasingly popular owing to their minimal toxicity. The first-generation cationic lipids were built around the quaternary nitrogen primarily for binding and condensing DNA. A large number of lipids with variations in the hydrophobic and hydrophilic region were generated with excellent transfection efficiencies in vitro. These cationic lipids had reduced efficiencies when tested for gene delivery in vivo. Efforts in the last decade delineated the cell biological basis of the cationic lipid gene delivery to a significant detail. The application of techniques such as small angle X-ray spectroscopy (SAXS) and fluorescence microscopy, helped in linking the physical properties of lipid:DNA complex (lipoplex) with its intracellular fate. This biological knowledge has been incorporated in the design of the second-generation cationic lipids. Lipid-peptide conjugates (peptoids) are effective strategies to overcome the various cellular barriers along with the lipoplex formulations methodologies. In this context, cationic lipid-mediated gene delivery is considerably benefited by the methodologies of liposome-mediated drug delivery. Lipid mediated gene delivery has an intrinsic advantage of being a biomimetic platform on which considerable variations could be built to develop efficient in vivo gene delivery protocols.
Collapse
Affiliation(s)
- N Madhusudhana Rao
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
29
|
Koynova R, Wang L, MacDonald RC. An intracellular lamellar-nonlamellar phase transition rationalizes the superior performance of some cationic lipid transfection agents. Proc Natl Acad Sci U S A 2006; 103:14373-8. [PMID: 16983097 PMCID: PMC1599970 DOI: 10.1073/pnas.0603085103] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Indexed: 11/18/2022] Open
Abstract
Two cationic phospholipid derivatives with asymmetric hydrocarbon chains were synthesized: ethyl esters of oleoyldecanoyl-ethylphosphatidylcholine (C18:1/C10-EPC) and stearoyldecanoyl-ethylphosphatidylcholine (C18:0/C10-EPC). The former was 50 times more effective as a DNA transfection agent (human umbilical artery endothelial cells) than the latter, despite their similar chemical structure and virtually identical lipoplex organization. A likely reason for the superior effectiveness of C18:1/C10-EPC relative to C18:0/C10-EPC (and to many other cationic lipoids) was suggested by the phases that evolved when these lipoids were mixed with negatively charged membrane lipid formulations. The saturated C18:0/C10-EPC remained lamellar in mixtures with biomembrane-mimicking lipid formulations [e.g., dioleoyl-phosphatidylcholine/dioleoyl-phosphatidylethanolamine/dioleoyl-phosphatidylserine/cholesterol at 45:20:20:15 (wt/wt)]; in contrast, the unsaturated C18:1/C10-EPC exhibited a lamellar-nonlamellar phase transition in such mixtures, which took place at physiological temperatures, approximately 37 degrees C. As is well known, lipid vehicles exhibit maximum leakiness and contents release in the vicinity of phase transitions, especially those involving nonlamellar phase formation. Moreover, nonlamellar phase-forming compositions are frequently highly fusogenic. Indeed, FRET experiments showed that C18:1/C10-EPC exhibits lipid mixing with negatively charged membranes that is several times more extensive than that of C18:0/C10-EPC. Thus, C18:1/C10-EPC lipoplexes are likely to easily fuse with membranes, and, as a result of lipid mixing, the resultant aggregates should exhibit extensive phase coexistence and heterogeneity, thereby facilitating DNA release and leading to superior transfection efficiency. These results highlight the phase properties of the carrier lipid/cellular lipid mixtures as a decisive factor for transfection success and suggest a strategy for the rational design of superior cationic lipid carriers.
Collapse
Affiliation(s)
- Rumiana Koynova
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| | | | | |
Collapse
|
30
|
Macdonald RC, Gorbonos A, Momsen MM, Brockman HL. Surface properties of dioleoyl-sn-glycerol-3-ethylphosphocholine, a cationic phosphatidylcholine transfection agent, alone and in combination with lipids or DNA. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:2770-9. [PMID: 16519481 DOI: 10.1021/la0524566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-chain cationic amphipaths are routinely used for transfecting DNA into cells, although the mechanism of DNA delivery by these agents is poorly understood. Since their interfacial properties are undoubtedly involved at some stage in the process, a comprehensive study of the surface behavior of at least one of these compounds is highly desirable. Hence, the behavior of the cationic transfection agent EDOPC (dioleoyl-sn-glycerol-3-ethylphosphocholine or O-ethyldioleoylphosphatidylcholine), has been characterized at the air-water interface, by itself and in mixtures with other phospholipids. Surface pressure-molecular area isotherms obtained at the argon-buffer interface revealed that EDOPC is considerably (5-10 A(2)) more expanded than the parent phosphatidylcholine (DOPC) and even more expanded than the corresponding phosphatidylglycerol (DOPG), which has a similar charge density (of opposite polarity) as EDOPC. A 1:1 mixture of EDOPC and DOPG is very slightly condensed relative to DOPG and considerably condensed relative to EDOPC. The surface/dipole potential of this mixture is the mean of those of EDOPC and DOPG and is almost the same as that of DOPC. When the composition of EDOPC mixtures was varied, several surface parameters, including surface dipole moment, collapse pressure, and compressibility, exhibited discontinuities at a 1:1 mole ratio. EDOPC is unusually surface-active; the equilibrium surface tension of its dispersion was lower and the rate of fall of the surface tension (dynamic surface activity) of a dispersion with an initially clean surface was more than an order of magnitude greater than that for dispersions of DOPG. A 1:1 mixture of the cationic lipoid and phosphatidylglycerol had lower surface activity than DOPC in water but similar surface activity in 0.1 NaCl. Analysis, in terms of surface concentration, of the formation of EDOPC monolayers at the air interface of vesicle dispersions revealed a simple exponential rise to a maximum, at least for higher concentrations. Addition of a small proportion of DNA to EDOPC increased its dynamic surface activity even though DNA alone has no detectable surface activity at the concentrations used. This enhancement by DNA is presumably due to the disruption of the continuity of the bilayer and creation of defects from which lipoid spreads readily. The surface properties of this cationic compound, both alone and in combination with anionic lipids, provide insight into the previously described nonbilayer phase preferences of cationic-anionic lipid mixtures. In addition, they provide critical data (area condensation of mixed cationic-anionic monolayers) supporting a previously proposed mechanism of fusion of cationic bilayers with anionic bilayers. Such a process, involving anionic cellular membranes, is believed to be required for release of DNA from lipoplexes and is therefore a key stage of transfection.
Collapse
Affiliation(s)
- Robert C Macdonald
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA.
| | | | | | | |
Collapse
|
31
|
Stebelska K, Dubielecka PM, Sikorski AF. The effect of PS content on the ability of natural membranes to fuse with positively charged liposomes and lipoplexes. J Membr Biol 2006; 206:203-14. [PMID: 16456715 DOI: 10.1007/s00232-005-0793-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca(2+), indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.
Collapse
Affiliation(s)
- K Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | | | | |
Collapse
|
32
|
Stebelska K, Wyrozumska P, Sikorski AF. PS exposure increases the susceptibility of cells to fusion with DOTAP liposomes. Chem Biol Interact 2006; 160:165-74. [PMID: 16483559 DOI: 10.1016/j.cbi.2006.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 01/08/2006] [Accepted: 01/11/2006] [Indexed: 02/01/2023]
Abstract
Cationic liposomes are used as efficient carriers for gene delivery into mammalian cells due to their ability to bind nucleic acids, adsorb onto the cell surface and fuse with negatively charged membranes. This last property enables the release and escape of their cargo from endosomal compartments. The efficiency of this fusion mainly depends on the surface charge of the target membranes. Here, we report that cells of two different lines, epithelial adenocarcinoma HeLa and lymphocytic leukemia Jurkat T, which externalize PS, are more susceptible to fusion with DOTAP liposomes than control cells. We compared the ability to undergo fusion of untreated and apoptotic cells. Apoptosis was induced by various pro-apoptotic agents and treatments, namely: incubation in the presence of MnCl(2), cytostatic drugs fludarabine and mitoxantrone, staurosporine and serum depletion in the case of HeLa cells. Jurkat T cells were treated similarly except apoptosis was additionally induced by incubation in the presence of 4% EtOH. Epithelial cells fused with the highest efficiencies of lipid mixing, when pretreated with staurosporine. Jurkat T cells were less susceptible to fusion, but they also displayed an increase in fusion efficiency after the induction of apoptosis. Alternatively, we treated the cells with metabolic inhibitors causing ATP-depletion in order to inactivate aminophospholipid translocase. After ATP-depletion, HeLa and Jurkat T cells fused with DOTAP liposomes with higher efficiencies than control cells. Our conclusion is that the lipid asymmetry of natural membranes may limit fusion with cationic liposomes.
Collapse
Affiliation(s)
- Katarzyna Stebelska
- Laboratory of Cytobiochemistry, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | | | | |
Collapse
|
33
|
Chapter 2: Surface Properties of Liposomes Depending on Their Composition. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 2005; 199:1-14. [PMID: 15366419 DOI: 10.1007/s00232-004-0669-8] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The main steps of viral membrane fusion are local membrane approach, hemifusion, pore formation, and pore enlargement. Experiments and theoretical analyses have helped determine the relative energies required for each step. Key protein structures and conformational changes of the fusion process have been identified. The physical deformations of monolayer bending and lipid tilt have been applied to the steps of membrane fusion. Experiment and theory converge to strongly indicate that, contrary to former conceptions, the fusion process is progressively more energetically difficult: hemifusion has a relatively low energy barrier, pore formation is more energy-consuming, and pore enlargement is the most difficult to achieve.
Collapse
Affiliation(s)
- F S Cohen
- Rush University Medical Center, Department of Molecular Biophysics and Physiology, 1653 W Congress Parkway, Chicago, IL 60612, USA.
| | | |
Collapse
|
35
|
Hed G, Safran SA. Attractive instability of oppositely charged membranes induced by charge density fluctuations. PHYSICAL REVIEW LETTERS 2004; 93:138101. [PMID: 15524764 DOI: 10.1103/physrevlett.93.138101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Indexed: 05/24/2023]
Abstract
We predict the conditions under which two oppositely charged membranes show a dynamic, attractive instability. Two layers with unequal charges of opposite sign can repel or be stable when in close proximity. However, dynamic charge density fluctuations can induce an attractive instability and thus facilitate fusion. We predict the dominant instability modes and time scales and show how these are controlled by the relative charge and membrane viscosities. These dynamic instabilities may be the precursors of membrane fusion in systems where artificial vesicles are engulfed by biological cells of opposite charge.
Collapse
Affiliation(s)
- Guy Hed
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|