1
|
Cai W, Grosh K. Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation. Biophys J 2024; 123:3421-3432. [PMID: 39148291 PMCID: PMC11480764 DOI: 10.1016/j.bpj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
The outer hair cells (OHCs) of the mammalian cochlea are the mediators of an active, nonlinear electromechanical process necessary for sensitive, frequency-specific hearing. The membrane protein prestin conveys to the OHC a piezoelectric-like behavior hypothesized to actuate a high frequency, cycle-by-cycle conversion of electrical to mechanical energy to boost cochlear responses to low-level sound. This hypothesis has been debated for decades, with two key remaining issues: the influence of the rate dependence of conformal changes in prestin and the OHC transmembrane impedance. In this paper, we mainly focus on the rate dependence of the conformal change in prestin. A theoretical electromechanical model of the OHC that explicitly includes rate dependence of conformal transitions, viscoelasticity, and piezoelectricity. Using this theory, we show the influence of rate dependence and viscoelasticity on electromechanical force generation and transmembrane impedance. Furthermore, we stress the importance of using the correct mechanical boundary conditions when estimating the transmembrane capacitance. Finally, a set of experiments is described to uniquely estimate the constitutive properties of the OHC from whole-cell measurements.
Collapse
Affiliation(s)
- Wen Cai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Kresge Hearing Research Institute, University of Michigan, 4605 Medical Science Unit II, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Raphael RM. Outer Hair Cell Electromechanics as a Problem in Soft Matter Physics: Prestin, the Membrane and the Cytoskeleton. Hear Res 2021; 423:108426. [DOI: 10.1016/j.heares.2021.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
|
3
|
State dependent effects on the frequency response of prestin's real and imaginary components of nonlinear capacitance. Sci Rep 2021; 11:16149. [PMID: 34373481 PMCID: PMC8352928 DOI: 10.1038/s41598-021-95121-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The outer hair cell (OHC) membrane harbors a voltage-dependent protein, prestin (SLC26a5), in high density, whose charge movement is evidenced as a nonlinear capacitance (NLC). NLC is bell-shaped, with its peak occurring at a voltage, Vh, where sensor charge is equally distributed across the plasma membrane. Thus, Vh provides information on the conformational state of prestin. Vh is sensitive to membrane tension, shifting to positive voltage as tension increases and is the basis for considering prestin piezoelectric (PZE). NLC can be deconstructed into real and imaginary components that report on charge movements in phase or 90 degrees out of phase with AC voltage. Here we show in membrane macro-patches of the OHC that there is a partial trade-off in the magnitude of real and imaginary components as interrogation frequency increases, as predicted by a recent PZE model (Rabbitt in Proc Natl Acad Sci USA 17:21880–21888, 2020). However, we find similar behavior in a simple 2-state voltage-dependent kinetic model of prestin that lacks piezoelectric coupling. At a particular frequency, Fis, the complex component magnitudes intersect. Using this metric, Fis, which depends on the frequency response of each complex component, we find that initial Vh influences Fis; thus, by categorizing patches into groups of different Vh, (above and below − 30 mV) we find that Fis is lower for the negative Vh group. We also find that the effect of membrane tension on complex NLC is dependent, but differentially so, on initial Vh. Whereas the negative group exhibits shifts to higher frequencies for increasing tension, the opposite occurs for the positive group. Despite complex component trade-offs, the low-pass roll-off in absolute magnitude of NLC, which varies little with our perturbations and is indicative of diminishing total charge movement, poses a challenge for a role of voltage-driven prestin in cochlear amplification at very high frequencies.
Collapse
|
4
|
Kim D, Han SA, Kim JH, Lee JH, Kim SW, Lee SW. Biomolecular Piezoelectric Materials: From Amino Acids to Living Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906989. [PMID: 32103565 DOI: 10.1002/adma.201906989] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Biomolecular piezoelectric materials are considered a strong candidate material for biomedical applications due to their robust piezoelectricity, biocompatibility, and low dielectric property. The electric field has been found to affect tissue development and regeneration, and the piezoelectric properties of biological materials in the human body are known to provide electric fields by pressure. Therefore, great attention has been paid to the understanding of piezoelectricity in biological tissues and its building blocks. The aim herein is to describe the principle of piezoelectricity in biological materials from the very basic building blocks (i.e., amino acids, peptides, proteins, etc.) to highly organized tissues (i.e., bones, skin, etc.). Research progress on the piezoelectricity within various biological materials is summarized, including amino acids, peptides, proteins, and tissues. The mechanisms and origin of piezoelectricity within various biological materials are also covered.
Collapse
Affiliation(s)
- Daeyeong Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sang A Han
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Ju-Hyuck Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
5
|
Triffo WJ, Palsdottir H, Song J, Morgan DG, McDonald KL, Auer M, Raphael RM. 3D Ultrastructure of the Cochlear Outer Hair Cell Lateral Wall Revealed By Electron Tomography. Front Cell Neurosci 2019; 13:560. [PMID: 31920560 PMCID: PMC6933316 DOI: 10.3389/fncel.2019.00560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.
Collapse
Affiliation(s)
- William Jeffrey Triffo
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Radiology, Geisinger, Danville, PA, United States
| | - Hildur Palsdottir
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - David Gene Morgan
- Interdisciplinary Center for Electron Microscopy, University of California, Davis, Davis, CA, United States
| | - Kent L McDonald
- Electron Microscope Laboratory, University of California, Berkeley, Berkeley, CA, United States
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Robert M Raphael
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
6
|
Jerusalem A, Al-Rekabi Z, Chen H, Ercole A, Malboubi M, Tamayo-Elizalde M, Verhagen L, Contera S. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater 2019; 97:116-140. [PMID: 31357005 DOI: 10.1016/j.actbio.2019.07.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
The current understanding of the role of the cell membrane is in a state of flux. Recent experiments show that conventional models, considering only electrophysiological properties of a passive membrane, are incomplete. The neuronal membrane is an active structure with mechanical properties that modulate electrophysiology. Protein transport, lipid bilayer phase, membrane pressure and stiffness can all influence membrane capacitance and action potential propagation. A mounting body of evidence indicates that neuronal mechanics and electrophysiology are coupled, and together shape the membrane potential in tight coordination with other physical properties. In this review, we summarise recent updates concerning electrophysiological-mechanical coupling in neuronal function. In particular, we aim at making the link with two relevant yet often disconnected fields with strong clinical potential: the use of mechanical vibrations-ultrasound-to alter the electrophysiogical state of neurons, e.g., in neuromodulation, and the theories attempting to explain the action of general anaesthetics. STATEMENT OF SIGNIFICANCE: General anaesthetics revolutionised medical practice; now an apparently unrelated technique, ultrasound neuromodulation-aimed at controlling neuronal activity by means of ultrasound-is poised to achieve a similar level of impact. While both technologies are known to alter the electrophysiology of neurons, the way they achieve it is still largely unknown. In this review, we argue that in order to explain their mechanisms/effects, the neuronal membrane must be considered as a coupled mechano-electrophysiological system that consists of multiple physical processes occurring concurrently and collaboratively, as opposed to sequentially and independently. In this framework the behaviour of the cell membrane is not the result of stereotypical mechanisms in isolation but instead emerges from the integrative behaviour of a complexly coupled multiphysics system.
Collapse
Affiliation(s)
- Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Zeinab Al-Rekabi
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK; WIN, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
7
|
Fang Q, Zhang Y, Da P, Shao B, Pan H, He Z, Cheng C, Li D, Guo J, Wu X, Guan M, Liao M, Zhang Y, Sha S, Zhou Z, Wang J, Wang T, Su K, Chai R, Chen F. Deletion of Limk1 and Limk2 in mice does not alter cochlear development or auditory function. Sci Rep 2019; 9:3357. [PMID: 30833597 PMCID: PMC6399249 DOI: 10.1038/s41598-019-39769-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Inherited hearing loss is associated with gene mutations that result in sensory hair cell (HC) malfunction. HC structure is defined by the cytoskeleton, which is mainly composed of actin filaments and actin-binding partners. LIM motif-containing protein kinases (LIMKs) are the primary regulators of actin dynamics and consist of two members: LIMK1 and LIMK2. Actin arrangement is directly involved in the regulation of cytoskeletal structure and the maturation of synapses in the central nervous system, and LIMKs are involved in structural plasticity by controlling the activation of the actin depolymerization protein cofilin in the olfactory system and in the hippocampus. However, the expression pattern and the role of LIMKs in mouse cochlear development and synapse function also need to be further studied. We show here that the Limk genes are expressed in the mouse cochlea. We examined the morphology and the afferent synapse densities of HCs and measured the auditory function in Limk1 and Limk2 double knockout (DKO) mice. We found that the loss of Limk1 and Limk2 did not appear to affect the overall development of the cochlea, including the number of HCs and the structure of hair bundles. There were no significant differences in auditory thresholds between DKO mice and wild-type littermates. However, the expression of p-cofilin in the DKO mice was significantly decreased. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the DKO and wild-type mice. In summary, our data suggest that the Limk genes play a different role in the development of the cochlea compared to their role in the central nervous system.
Collapse
Affiliation(s)
- Qiaojun Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518000, Shenzhen, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 29425, Charleston, South Carolina, USA
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Peng Da
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Nantong University, 226001, Nantong, China
| | - Buwei Shao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Haolai Pan
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, 200233, Shanghai, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 112008, Wenzhou, China
| | - Zuhong He
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China.,Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Cheng Cheng
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Dan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Jiaqi Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Xiaohan Wu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Ming Guan
- Department of Otolaryngology, Hangzhou First People's Hospital, 310006, Hangzhou, Zhejiang, China
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Yuan Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 29425, Charleston, South Carolina, USA
| | - Zikai Zhou
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China
| | - Jian Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, 200233, Shanghai, China.,School of Human Communication Disorders, Dalhousie University, B3J1Y6, Halifax, NS, Canada
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The second Xiangya Hospital, Central South University, 410011, Changsha, Hunan Province, China
| | - Kaiming Su
- Department of Otolaryngology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, 200233, Shanghai, China.
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, 210096, Nanjing, China. .,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, 211189, Nanjing, China. .,Co-innovation Center of Neuroregeneration, Nantong University, 226001, Nantong, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, 518000, Shenzhen, China.
| |
Collapse
|
8
|
Electrorheological Model Based on Liquid Crystals Membranes with Applications to Outer Hair Cells. FLUIDS 2018. [DOI: 10.3390/fluids3020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Marino A, Genchi GG, Sinibaldi E, Ciofani G. Piezoelectric Effects of Materials on Bio-Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17663-17680. [PMID: 28485910 DOI: 10.1021/acsami.7b04323] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrical stimulation of cells and tissues is an important approach of interaction with living matter, which has been traditionally exploited in the clinical practice for a wide range of pathological conditions, in particular, related to excitable tissues. Standard methods of stimulation are, however, often invasive, being based on electrodes and wires used to carry current to the intended site. The possibility to achieve an indirect electrical stimulation, by means of piezoelectric materials, is therefore of outstanding interest for all the biomedical research, and it emerged in the latest decade as a most promising tool in many bioapplications. In this paper, we summarize the most recent achievements obtained by our group and by others in the exploitation of piezoelectric nanoparticles and nanocomposites for cell stimulation, describing the important implications that these studies present in nanomedicine and tissue engineering. A particular attention will be also dedicated to the physical modeling, which can be extremely useful in the description of the complex mechanisms involved in the mechanical/electrical transduction, yet also to gain new insights at the base of the observed phenomena.
Collapse
Affiliation(s)
| | | | | | - Gianni Ciofani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
10
|
Ahmadpoor F, Sharma P. Flexoelectricity in two-dimensional crystalline and biological membranes. NANOSCALE 2015; 7:16555-16570. [PMID: 26399878 DOI: 10.1039/c5nr04722f] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity, on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain (or strain gradients) can polarize the material and conversely non-uniform electric fields may cause mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly, all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between the curvature and electric field. In this review, we highlight the recent advances made in our understanding of flexoelectricity in two-dimensional (2D) membranes-whether the crystalline ones such as dielectric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging directions in this field and discuss applications such as energy harvesting, understanding of the mammalian hearing mechanism and ion transport among others.
Collapse
Affiliation(s)
- Fatemeh Ahmadpoor
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA.
| | | |
Collapse
|
11
|
Vlahovska PM. Voltage-morphology coupling in biomimetic membranes: dynamics of giant vesicles in applied electric fields. SOFT MATTER 2015; 11:7232-7236. [PMID: 26314545 DOI: 10.1039/c5sm01050k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An electric potential difference across the plasma membrane is common to all living cells and is essential to physiological functions such as the generation of action potentials for cell-to-cell communication. While the basics of cell electrical activity are well established (e.g. the Hodgkin-Huxley model of the action potential), the reciprocal coupling of voltage and membrane deformation has received limited attention. In recent years, studies of biomimetic membranes in externally applied electric fields have revealed a plethora of intriguing dynamics (formation of edges, pearling, and phase separation) that challenge the current understanding of membrane electromechanics.
Collapse
|
12
|
Ma L, Yang F, Zheng J. Application of fluorescence resonance energy transfer in protein studies. J Mol Struct 2014; 1077:87-100. [PMID: 25368432 DOI: 10.1016/j.molstruc.2013.12.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Since the physical process of fluorescence resonance energy transfer (FRET) was elucidated more than six decades ago, this peculiar fluorescence phenomenon has turned into a powerful tool for biomedical research due to its compatibility in scale with biological molecules as well as rapid developments in novel fluorophores and optical detection techniques. A wide variety of FRET approaches have been devised, each with its own advantages and drawbacks. Especially in the last decade or so, we are witnessing a flourish of FRET applications in biological investigations, many of which exemplify clever experimental design and rigorous analysis. Here we review the current stage of FRET methods development with the main focus on its applications in protein studies in biological systems, by summarizing the basic components of FRET techniques, most established quantification methods, as well as potential pitfalls, illustrated by example applications.
Collapse
Affiliation(s)
- Linlin Ma
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA ; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fan Yang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| | - Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
13
|
Herrera-Valencia EE, Rey AD. Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20130369. [PMID: 25332388 PMCID: PMC4223674 DOI: 10.1098/rsta.2013.0369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending, and it is used by the outer hair cells (OHCs) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation relevant to OHCs is to find the relations and impact of the electromechanical properties of the membrane, the rheological properties of the viscoelastic media, and the frequency response of the generated mechanical power output. The model developed and used in this work is based on the integration of: (i) the flexoelectric membrane shape equation applied to a circular membrane attached to the inner surface of a circular capillary and (ii) the coupled capillary flow of contacting viscoelastic phases, such that the membrane flexoelectric oscillations drive periodic viscoelastic capillary flows, as in OHCs. By applying the Fourier transform formalism to the governing equation, analytical expressions for the transfer function associated with the curvature and electrical field and for the power dissipation of elastic storage energy were found.
Collapse
Affiliation(s)
- E E Herrera-Valencia
- Chemical Engineering Department, Faculty of Higher Education Zaragoza. National Autonomous University of Mexico, Campus I: Av Guelatao No. 66 Col. Ejército de Oriente, Iztapalapa, C.P. 09230, México
| | - Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada H3A 2B2
| |
Collapse
|
14
|
Ahmadpoor F, Deng Q, Liu LP, Sharma P. Apparent flexoelectricity in lipid bilayer membranes due to external charge and dipolar distributions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:050701. [PMID: 24329201 DOI: 10.1103/physreve.88.050701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/14/2013] [Indexed: 06/03/2023]
Abstract
In this Rapid Communication we show that the interplay between the deformation geometric-nonlinearity and distributions of external charges and dipoles lead to the renormalization of the membrane's native flexoelectric response. Our work provides a framework for a mesoscopic interpretation of flexoelectricity and if necessary, artificially "design" tailored flexoelectricity in membranes. Comparisons with experiments indicate reasonable quantitative agreement.
Collapse
Affiliation(s)
- F Ahmadpoor
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - Q Deng
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - L P Liu
- Department of Mathematics and Department of Mechanical Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P Sharma
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA and Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
15
|
|
16
|
Kamar RI, Organ-Darling LE, Raphael RM. Membrane cholesterol strongly influences confined diffusion of prestin. Biophys J 2012; 103:1627-36. [PMID: 23083705 DOI: 10.1016/j.bpj.2012.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/04/2023] Open
Abstract
Prestin is the membrane motor protein that drives outer hair cell (OHC) electromotility, a process that is essential for mammalian hearing. Prestin function is sensitive to membrane cholesterol levels, and numerous studies have suggested that prestin localizes in cholesterol-rich membrane microdomains. Previously, fluorescence recovery after photobleaching experiments were performed in HEK cells expressing prestin-GFP after cholesterol manipulations, and revealed evidence of transient confinement. To further characterize this apparent confined diffusion of prestin, we conjugated prestin to a photostable fluorophore (tetramethylrhodamine) and performed single-molecule fluorescence microscopy. Using single-particle tracking, we determined the microscopic diffusion coefficient from the full time course of the mean-squared deviation. Our results indicate that prestin undergoes diffusion in confinement regions, and that depletion of membrane cholesterol increases confinement size and decreases confinement strength. By interpreting the data in terms of a mathematical model of hop-diffusion, we quantified these cholesterol-induced changes in membrane organization. A complementary analysis of the distribution of squared displacements confirmed that cholesterol depletion reduces prestin confinement. These findings support the hypothesis that prestin function is intimately linked to membrane organization, and further promote a regulatory role for cholesterol in OHC and auditory function.
Collapse
Affiliation(s)
- R I Kamar
- Department of Physics and Astronomy, Rice University, Houston, Texas, USA
| | | | | |
Collapse
|
17
|
McGuire RM, Silberg JJ, Pereira FA, Raphael RM. Selective cell-surface labeling of the molecular motor protein prestin. Biochem Biophys Res Commun 2011; 410:134-9. [PMID: 21651892 DOI: 10.1016/j.bbrc.2011.05.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 05/23/2011] [Indexed: 11/19/2022]
Abstract
Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.
Collapse
Affiliation(s)
- Ryan M McGuire
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | | | | | |
Collapse
|
18
|
Nilsen N, Brownell WE, Sun SX, Spector AA. Effect of membrane mechanics on charge transfer by the membrane protein prestin. Biomech Model Mechanobiol 2011; 11:107-18. [PMID: 21365198 DOI: 10.1007/s10237-011-0296-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/12/2011] [Indexed: 10/18/2022]
Abstract
Prestin was found in the membrane of outer hair cells (OHCs) located in the cochlea of the mammalian inner ear. These cells convert changes in the membrane potential into dimensional changes and (if constrained) to an active electromechanical force. The OHCs provide the ear with the mechanism of amplification and frequency selectivity that is effective up to tens of kHz. Prestin is a crucial part of the motor complex driving OHCs. Other cells transfected with prestin acquire electromechanical properties similar to those in the native cell. While the mechanism of prestin has yet to be fully understood, the charge transfer is its critical component. Here we investigate the effect of the mechanics of the surrounding membrane on electric charge transfer by prestin. We simulate changes in the membrane mechanics via the corresponding changes in the free energy of the prestin system. The free energy gradient enters a Fokker-Planck equation that describes charge transfer in our model. We analyze the effects of changes in the membrane tension and membrane elastic moduli. In the case of OHC, we simulate changes in the longitudinal and/or circumferential stiffness of the cell's orthotropic composite membrane. In the case of cells transfected with prestin, we vary the membrane areal modulus. As a result, we show the effects of the membrane mechanics on the probabilistic characteristics of prestin-associated charge transfer for both stationary and high-frequency conditions. We compare our computational results with the available experimental data and find good agreement with the experiment.
Collapse
Affiliation(s)
- Natalie Nilsen
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 411, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
19
|
Harland B, Brownell WE, Spector AA, Sun SX. Voltage-induced bending and electromechanical coupling in lipid bilayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031907. [PMID: 20365770 DOI: 10.1103/physreve.81.031907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/19/2010] [Indexed: 05/29/2023]
Abstract
The electrical properties of the cellular membrane are important for ion transport across cells and electrophysiology. Plasma membranes also resist bending and stretching, and mechanical properties of the membrane influence cell shape and forces in membrane tethers pulled from cells. There exists a coupling between the electrical and mechanical properties of the membrane. Previous work has shown that applied voltages can induce forces and movements in the lipid bilayer. We present a theory that computes membrane bending deformations and forces as the applied voltage is changed. We discover that electromechanical coupling in lipid bilayers depends on the voltage-dependent adsorption of ions into the region occupied by the phospholipid head groups. A simple model of counter-ion absorption is investigated. We show that electromechanical coupling can be measured using membrane tethers and we use our model to predict the membrane tether tension as a function of applied voltage. We also discuss how electromechanical coupling in membranes may influence transmembrane protein function.
Collapse
Affiliation(s)
- Ben Harland
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
20
|
Liu YW, Neely ST. Outer hair cell electromechanical properties in a nonlinear piezoelectric model. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:751-761. [PMID: 19640041 PMCID: PMC2730720 DOI: 10.1121/1.3158919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 05/28/2023]
Abstract
A nonlinear piezoelectric circuit is proposed to model electromechanical properties of the outer hair cell (OHC) in mammalian cochleae. The circuit model predicts (a) that the nonlinear capacitance decreases as the stiffness of the load increases, and (b) that the axial compliance of the cell reaches a maximum at the same membrane potential for peak capacitance. The model was also designed to be integrated into macro-mechanical models to simulate cochlear wave propagation. Analytic expressions of the cochlear-partition shunt admittance and the wave propagation function are derived in terms of OHC electro-mechanical parameters. Small-signal analyses indicate that, to achieve cochlear amplification, (1) nonlinear capacitance must be sufficiently high and (2) the OHC receptor current must be sensitive to the velocity of the reticular lamina.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA.
| | | |
Collapse
|
21
|
Rabbitt RD, Clifford S, Breneman KD, Farrell B, Brownell WE. Power efficiency of outer hair cell somatic electromotility. PLoS Comput Biol 2009; 5:e1000444. [PMID: 19629162 PMCID: PMC2705677 DOI: 10.1371/journal.pcbi.1000444] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 06/23/2009] [Indexed: 11/18/2022] Open
Abstract
Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.
Collapse
Affiliation(s)
- Richard D. Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
- Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Sarah Clifford
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Kathryn D. Breneman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America
| | - Brenda Farrell
- Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - William E. Brownell
- Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
22
|
Organ LE, Raphael RM. Lipid lateral mobility in cochlear outer hair cells: regional differences and regulation by cholesterol. J Assoc Res Otolaryngol 2009; 10:383-96. [PMID: 19517190 DOI: 10.1007/s10162-009-0171-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 04/26/2009] [Indexed: 11/29/2022] Open
Abstract
The outer hair cell (OHC) lateral plasma membrane houses the transmembrane protein prestin, a necessary component of the yet unknown molecular mechanism(s) underlying electromotility and the exquisite sensitivity and frequency selectivity of mammalian hearing. The importance of the plasma membrane environment in modulating OHC electromotility has been substantiated by recent studies demonstrating that membrane cholesterol alters prestin activity in a manner consistent with cholesterol-induced changes in auditory function. Cholesterol is known to affect membrane material properties, and measurements of lipid lateral mobility provide a method to asses these changes in living OHCs. Using fluorescence recovery after photobleaching (FRAP), we characterized regional differences in the lateral diffusion of the lipid analog di-8-ANEPPS in OHCs and investigated whether lipid mobility, which reflects membrane fluidity, is sensitive to membrane cholesterol. FRAP experiments revealed quantitative differences in lipid lateral mobility among the apical, lateral, and basal regions of the OHC and demonstrated that diffusion in individual regions is uniquely sensitive to cholesterol manipulations. Interestingly, in the lateral region, both cholesterol depletion and loading significantly reduced the effective diffusion coefficient from control values. Thus, the fluidity of the OHC lateral plasma membrane is regulated by cholesterol levels in a non-monotonic manner, suggesting that the overall material properties of the lateral plasma membrane are optimally tuned for OHC function in the native state. These results support the idea that the cholesterol-dependent regulation of prestin function and electromotility correlates with changes in the properties of the lipid environment that surrounds and supports prestin.
Collapse
Affiliation(s)
- Louise E Organ
- Department of Bioengineering, Rice University, MS-142, Houston, TX 77251-1892, USA
| | | |
Collapse
|
23
|
Sun SX, Farrell B, Chana MS, Oster G, Brownell WE, Spector AA. Voltage and frequency dependence of prestin-associated charge transfer. J Theor Biol 2009; 260:137-44. [PMID: 19490917 DOI: 10.1016/j.jtbi.2009.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 05/07/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage- and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degrees as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein.
Collapse
Affiliation(s)
- Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
24
|
Greeson JN, Raphael RM. Amphipath-induced nanoscale changes in outer hair cell plasma membrane curvature. Biophys J 2009; 96:510-20. [PMID: 19167301 DOI: 10.1016/j.bpj.2008.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022] Open
Abstract
Outer hair cell (OHC) electromotility enables frequency selectivity and sensitivity in mammalian audition. Electromotility is generated by the transmembrane protein prestin and is sensitive to amphipathic compounds including salicylate, chlorpromazine (CPZ), and trinitrophenol (TNP). Although these compounds induce observable membrane curvature changes in erythrocytes, their effects on OHC membrane curvature are unknown. In this work, fluorescence polarization microscopy was applied to investigate the effects of salicylate, CPZ, and TNP on di-8-ANEPPS orientation in the OHC plasma membrane. Our results demonstrate the ability of fluorescence polarization microscopy to measure amphipath-induced changes in di-8-ANEPPS orientation, consistent with nanoscale changes in membrane curvature between regularly spaced proteins connecting the OHC plasma membrane and cytoskeleton. Simultaneous application of oppositely charged amphipaths generally results in no net membrane bending, consistent with predictions of the bilayer couple hypothesis; however, the application of salicylate (10 mM), which inhibits electromotility, is not reversed by the addition of CPZ. This result supports other findings that suggest salicylate primarily influences electromotiliy and OHC nonlinear capacitance via a direct interaction with prestin. In contrast, we find that CPZ and TNP influence the voltage sensitivity of prestin via membrane bending, demonstrating the mechanosensitivity of this unique membrane motor protein.
Collapse
Affiliation(s)
- Jennifer N Greeson
- Rice University, Department of Bioengineering, Houston, Texas 77251-1892, USA
| | | |
Collapse
|
25
|
Abstract
Mammalian hearing is boosted by mechanically active auditory receptor cells, the outer hair cells which amplify the actions of incoming sounds. Recent evidence indicates that the molecular motor that drives this amplification, prestin, may do more than boogie.
Collapse
Affiliation(s)
- Joseph Santos-Sacchi
- Department of Surgery, Otolaryngology, Cellular and Molecular Physiology, and Neurobiology, Yale University School of Medicine, BML 244, 333 Cedar Street, New Haven, Connecticut 06510, USA.
| |
Collapse
|
26
|
Abstract
The outer hair cell from Corti's organ possesses voltage-dependent intramembranous molecular motors evolved from the SLC26 anion transporter family. The motor, identified as prestin (SLC26a5), is responsible for electromotility of outer hair cells and mammalian cochlear amplification, a process that heightens our auditory responsiveness. Here, we describe experiments designed to evaluate the effects of anions on the motor's voltage-sensor charge movement, focusing on prestin's voltage-dependent Boltzmann characteristics. We find that the nature of the anion, including species, valence, and structure, regulates characteristics of the charge movement, signifying that anions play a more complicated role than simple voltage sensing in cochlear amplification.
Collapse
|
27
|
Triffo WJ, Palsdottir H, McDonald KL, Lee JK, Inman JL, Bissell MJ, Raphael RM, Auer M. Controlled microaspiration for high-pressure freezing: a new method for ultrastructural preservation of fragile and sparse tissues for TEM and electron tomography. J Microsc 2008; 230:278-87. [PMID: 18445158 PMCID: PMC2734140 DOI: 10.1111/j.1365-2818.2008.01986.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-pressure freezing is the preferred method to prepare thick biological specimens for ultrastructural studies. However, the advantages obtained by this method often prove unattainable for samples that are difficult to handle during the freezing and substitution protocols. Delicate and sparse samples are difficult to manipulate and maintain intact throughout the sequence of freezing, infiltration, embedding and final orientation for sectioning and subsequent transmission electron microscopy. An established approach to surmount these difficulties is the use of cellulose microdialysis tubing to transport the sample. With an inner diameter of 200 microm, the tubing protects small and fragile samples within the thickness constraints of high-pressure freezing, and the tube ends can be sealed to avoid loss of sample. Importantly, the transparency of the tubing allows optical study of the specimen at different steps in the process. Here, we describe the use of a micromanipulator and microinjection apparatus to handle and position delicate specimens within the tubing. We report two biologically significant examples that benefit from this approach, 3D cultures of mammary epithelial cells and cochlear outer hair cells. We illustrate the potential for correlative light and electron microscopy as well as electron tomography.
Collapse
MESH Headings
- Animals
- Biopsy, Fine-Needle
- Cells, Cultured
- Dialysis
- Epithelial Cells/ultrastructure
- Freeze Substitution
- Freezing
- Guinea Pigs
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/ultrastructure
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/growth & development
- Mice
- Micromanipulation
- Microscopy, Electron, Transmission/methods
- Organ Culture Techniques
- Pressure
- Tomography/methods
Collapse
Affiliation(s)
- W J Triffo
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop Donner, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Organ LE, Raphael RM. Application of fluorescence recovery after photobleaching to study prestin lateral mobility in the human embryonic kidney cell. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:021003. [PMID: 17477710 DOI: 10.1117/1.2715202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The transmembrane protein prestin is crucial to outer hair cell (OHC) electromotility and contributes to the sensitivity and frequency selectivity of mammalian hearing. The molecular mechanisms of electromotility remain unclear, but prestin is purported to function as both a voltage sensor and a molecular motor. Understanding the role of prestin requires characterizing its organization and behavior in the plasma membrane. Fluorescence recovery after photobleaching (FRAP) provides a powerful means to quantitatively study molecular diffusion. However, OHCs are inherently fragile ex vivo, and dynamic studies of prestin require model systems, such as human embryonic kidney (HEK) cells, expressing fluorescently labeled prestin. Utilizing this system, we provide the first direct, quantitative measurement of prestin lateral mobility. The results show remarkably different diffusion behavior for prestin-green fluorescent protein (GFP) as compared to a control protein, human somatostatin receptor 5 (SSTR5). Prestin-GFP FRAP experiments reveal immobile fractions approaching 50%, low effective diffusion coefficients, and recovery times slower than those of SSTR5. Secondary bleaching of a region reveals distinctly different diffusion parameters, which we propose reflect the transient confinement of prestin in the HEK cell. Although uncharacterized, intermolecular interactions between prestin and the membrane and/or cytoskeleton may be important for the unique properties of prestin in electromotile OHCs.
Collapse
Affiliation(s)
- Louise E Organ
- Rice University, Department of Bioengineering, MS-142, P.O. Box 1892, Houston, Texas 77251-1892, USA
| | | |
Collapse
|
29
|
Greeson JN, Raphael RM. Application of fluorescence polarization microscopy to measure fluorophore orientation in the outer hair cell plasma membrane. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:021002. [PMID: 17477709 DOI: 10.1117/1.2717499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The biophysical properties and organization of cell membranes regulate many membrane-based processes, including electromotility in outer hair cells (OHCs) of the cochlea. Studies of the membrane environment can be carried out by measuring the orientation of membrane-bound fluorophores using fluorescence polarization microscopy (FPM). Due to the cylindrical shape of OHCs, existing FPM theory developed for spherical cells is not applicable. We develop a new method for analyzing FPM data suitable for the quasi-cylindrical OHC. We present the theory for this model, as well as a study of the orientation of the fluorescent probe pyridinium, 4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]-1-(3-sulfopropyl) (di-8-ANEPPS) in the OHC membrane. Our results indicate that the absorption transition dipole moment of di-8-ANEPPS orients symmetrically about the membrane normal at 27 deg with respect to the plane of the membrane. The observed agreement between theoretical predictions and experimental measurements establishes the applicability of FPM to study OHC plasma membrane properties.
Collapse
Affiliation(s)
- Jennifer N Greeson
- Rice University, Department of Bioengineering, MS 142, P.O. Box 1892, Houston, Texas 77251-1892, USA
| | | |
Collapse
|