1
|
Popescu MC, Lee YJ, Kim SS, Wade HM, Papakyrikos AM, Darling LEO. The phosphorylation state of both hERG and KvLQT1 mediates protein-protein interactions between these complementary cardiac potassium channel alpha subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183556. [PMID: 33444623 DOI: 10.1016/j.bbamem.2021.183556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
KvLQT1 and hERG are the α-subunits of the voltage-gated K+ channels which carry the cardiac repolarizing currents IKs and IKr, respectively. These currents function in vivo with some redundancy to maintain appropriate action potential durations (APDs) in cardiomyocytes. As such, protein-protein interactions between hERG and KvLQT1 may be important in normal cardiac electrophysiology, as well as in arrhythmia and sudden cardiac death. Previous phenomenological observations of functional, mutual downregulation between these complementary repolarizing currents in transgenic rabbit models and human cell culture motivate our investigations into protein-protein interactions between hERG and KvLQT1. Previous data suggest that a dynamic, physical interaction between hERG and KvLQT1 modulates the respective currents. However, the mechanism by which hERG-KvLQT1 interactions are regulated is still poorly understood. Phosphorylation is proposed to play a role since modifying the phosphorylation state of each protein has been shown to alter channel kinetics, and both hERG and KvLQT1 are targets of the Ser/Thr protein kinase PKA, activated by elevated intracellular cAMP. In this work, quantitative apFRET analyses of phosphonull and phosphomimetic hERG and KvLQT1 mutants indicate that unphosphorylated hERG does not interact with KvLQT1, suggesting that hERG phosphorylation is important for wild-type proteins to interact. For proteins already potentially interacting, phosphorylation of KvLQT1 appears to be the driving factor abrogating hERG-KvLQT1 interaction. This work increases our knowledge about hERG-KvLQT1 interactions, which may contribute to the efforts to elucidate mechanisms that underlie many types of arrhythmias, and also further characterizes novel protein-protein interactions between two distinct potassium channel families.
Collapse
Affiliation(s)
- Medeea C Popescu
- Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America
| | - Yeon J Lee
- Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America
| | - Stephanie S Kim
- Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America
| | - Heidi M Wade
- Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America
| | - Amanda M Papakyrikos
- Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America
| | - Louise E O Darling
- Department of Biological Sciences and Biochemistry Program, Wellesley College, 106 Central St., Wellesley, MA 02481, United States of America.
| |
Collapse
|
2
|
Wang Y, Yuan J, Qian Z, Zhang X, Chen Y, Hou X, Zou J. β2 adrenergic receptor activation governs cardiac repolarization and arrhythmogenesis in a guinea pig model of heart failure. Sci Rep 2015; 5:7681. [PMID: 25567365 PMCID: PMC4286790 DOI: 10.1038/srep07681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/04/2014] [Indexed: 12/11/2022] Open
Abstract
β2-AR activation increases the risk of sudden cardiac death (SCD) in heart failure (HF) patients. Non-selective β-AR blockers have greater benefits on survival than selective β1-AR blockers in chronic HF patients, indicating that β2-AR activation contributes to SCD in HF. This study investigated the role of β2-AR activation on repolarization and ventricular arrhythmia (VA) in the experimental HF model. The guinea pig HF was induced by descending aortic banding. The effective refractoriness period (ERP), corrected QT (QTc) and the incidence of VA were examined using Langendorff and programmed electrical stimulation. Ikr and APD were recorded by the whole cell patch clamp. Selective β2-AR agonist salbutamol significantly increased the incidence of VA, prolonged QTc and shortened ERP. These effects could be prevented by the selective β2-AR antagonist, ICI118551. Salbutamol prolonged APD90 and reduced Ikr in guinea pig HF myocytes. The antagonists of cAMP (Rp-cAMP) and PKA (KT5720) attenuated Ikr inhibition and APD prolongation induced by salbutamol. However, the antagonists of Gi protein (PTX) and PDE III (amrinone) showed opposite effects. This study indicates that β2-AR activation increases the incidence of VA in the experimental HF model via activation of Gs/cAMP/PKA and/or inhibition of Gi/PDE pathways.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyong Qian
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiwen Zhang
- Department of Cardiology, Huai'an First People's Hospital Affiliated to Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yanhong Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Hou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangang Zou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
WANG SEN, XU DI, WU TINGTING, GUO YAN, CHEN YANHONG, ZOU JIANGANG. β1-adrenergic regulation of rapid component of delayed rectifier K+ currents in guinea-pig cardiac myocytes. Mol Med Rep 2014; 9:1923-8. [DOI: 10.3892/mmr.2014.2035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/21/2014] [Indexed: 11/06/2022] Open
|
4
|
Ma Q, Yu H, Lin J, Sun Y, Shen X, Ren L. Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique. Cell Biol Int 2013; 38:239-45. [PMID: 24154981 DOI: 10.1002/cbin.10196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022]
Abstract
The human ERG protein (HERG or Kv 11.1) encoded by the human ether-a-go-go-related gene (herg) is the pore-forming subunit of the cardiac delayed rectifier potassium current (IKr) responsible for action potential (AP) repolarization. Mutations in HERG lead to long-QT syndrome, a major cause of arrhythmias. Protein-protein interactions are fundamental for ion channel trafficking, membrane localization, and functional modulation. To identify proteins involved in the regulation of the HERG channel, we conducted a yeast two-hybrid screen of a human heart cDNA library using the C-terminus or N-terminus of HERG as bait. Fifteen proteins were identified as HERG amino terminal (HERG-NT)-interacting proteins, including Caveolin-1 (a membrane scaffold protein with multiple interacting partners, including G-proteins, kinases and NOS), the zinc finger protein, FHL2 and PTPN12 (a non-receptor tyrosine phosphatase). Eight HERG carboxylic terminal (HERG-CT)-interacting proteins were also identified, including the NF-κB-interacting protein myotrophin, We have identified multiple potential interacting proteins that may regulate cardiac IKr through cytoskeletal interactions, G-protein modulation, phosphorylation and downstream second messenger and transcription cascades. These findings provide further insight into dynamic modulation of HERG under physiological conditions and arrhythmogenesis.
Collapse
Affiliation(s)
- Qingyan Ma
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | | | | | | | | | | |
Collapse
|
5
|
Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. [PMID: 23962792 PMCID: PMC4042478 DOI: 10.4161/chan.26100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
6
|
Sroubek J, Krishnan Y, McDonald TV. Sequence and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. FASEB J 2013; 27:3039-53. [PMID: 23608144 DOI: 10.1096/fj.12-227009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5' sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.
Collapse
Affiliation(s)
- Jakub Sroubek
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
7
|
Wang H, Chen Y, Zhu H, Wang S, Zhang X, Xu D, Cao K, Zou J. Increased response to β₂-adrenoreceptor stimulation augments inhibition of IKr in heart failure ventricular myocytes. PLoS One 2012; 7:e46186. [PMID: 23029432 PMCID: PMC3460863 DOI: 10.1371/journal.pone.0046186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022] Open
Abstract
Background Increasing evidence indicates that the rapid component of delayed rectifier potassium current (IKr) is modulated by α- and β-adrenergic stimulation. However, the role and mechanism regulating IKr through β2-adrenoreceptor (β-AR) stimulation in heart failure (HF) are unclear. Methodology/Principal Findings In the present study, we investigated the effects of fenoterol, a highly selective β2-AR agonist, on IKr in left ventricular myocytes obtained from control and guinea pigs with HF induced by descending aortic banding. IKr was measured by using whole cell patch clamp technique. In control myocytes, superfusion of fenoterol (10 µM) caused a 17% decrease in IKr. In HF myocytes, the same concentration of fenoterol produced a significantly greater decrease (33%) in IKr. These effects were not modified by the incubation of myocytes with CGP-20712A, a β1-AR antagonist, but were abolished by pretreatment of myocytes with ICI-118551, a β2-AR antagonist. An inhibitory cAMP analog, Rp-cAMPS and PKA inhibitor significantly attenuated fenoterol-induced inhibition of IKr in HF myocytes. Moreover, fenoterol markedly prolonged action potential durations at 90% (APD90) repolarization in HF ventricular myocytes. Conclusions The results indicate that inhibition of IKr induced by β2-AR stimulation is increased in HF. The inhibitory effect is likely to be mediated through a cAMP/PKA pathway in HF ventricular myocytes.
Collapse
Affiliation(s)
- Hegui Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Yanhong Chen
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongjun Zhu
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sen Wang
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiwen Zhang
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Dongjie Xu
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Kejiang Cao
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiangang Zou
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
8
|
Vandenberg JI, Perry MD, Perrin MJ, Mann SA, Ke Y, Hill AP. hERG K+ Channels: Structure, Function, and Clinical Significance. Physiol Rev 2012; 92:1393-478. [DOI: 10.1152/physrev.00036.2011] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human ether-a-go-go related gene (hERG) encodes the pore-forming subunit of the rapid component of the delayed rectifier K+ channel, Kv11.1, which are expressed in the heart, various brain regions, smooth muscle cells, endocrine cells, and a wide range of tumor cell lines. However, it is the role that Kv11.1 channels play in the heart that has been best characterized, for two main reasons. First, it is the gene product involved in chromosome 7-associated long QT syndrome (LQTS), an inherited disorder associated with a markedly increased risk of ventricular arrhythmias and sudden cardiac death. Second, blockade of Kv11.1, by a wide range of prescription medications, causes drug-induced QT prolongation with an increase in risk of sudden cardiac arrest. In the first part of this review, the properties of Kv11.1 channels, including biogenesis, trafficking, gating, and pharmacology are discussed, while the second part focuses on the pathophysiology of Kv11.1 channels.
Collapse
Affiliation(s)
- Jamie I. Vandenberg
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Matthew D. Perry
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Mark J. Perrin
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Stefan A. Mann
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Ying Ke
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| | - Adam P. Hill
- Mark Cowley Lidwill Research Programme in Cardiac Electrophysiology, Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales, New South Wales, Australia; and University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
9
|
Krishnan Y, Li Y, Zheng R, Kanda V, McDonald TV. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1273-84. [PMID: 22613764 DOI: 10.1016/j.bbamcr.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022]
Abstract
The HERG (human ether-a-go-go related gene) potassium channel aids in the repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cyclic-AMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo.
Collapse
Affiliation(s)
- Yamini Krishnan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | |
Collapse
|
10
|
Sroubek J, McDonald TV. Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG). J Biol Chem 2011; 286:21927-36. [PMID: 21536683 PMCID: PMC3122247 DOI: 10.1074/jbc.m110.201699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/18/2011] [Indexed: 11/06/2022] Open
Abstract
Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells.
Collapse
Affiliation(s)
| | - Thomas V. McDonald
- From the Department of Molecular Pharmacology and
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
11
|
AKAPs in lipid rafts are required for optimal antigen presentation by dendritic cells. Immunol Cell Biol 2011; 89:650-8. [PMID: 21221125 DOI: 10.1038/icb.2010.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dendritic cell (DC) maturation and antigen presentation are regulated by activation of protein kinase A (PKA) signaling pathways, through unknown mechanisms. We have recently shown that interfering with PKA signaling through the use of anchoring inhibitor peptides hinders antigen presentation and DC maturation. These experiments provide evidence that DC maturation and antigen presentation are regulated by A-kinase anchoring proteins (AKAPs). Herein, we determine that the presence of AKAPs and PKA in lipid rafts regulates antigen presentation. Using a combination of western blotting and immuno-cytochemistry, we illustrate the presence of AKAP149, AKAP79, Ezrin and the regulatory subunits of PKA in DC lipid rafts. Incubation of DCs with the type II anchoring inhibitor, AKAP-in silico (AKAP-IS), removes Ezrin and RII from the lipid raft without disrupting raft formation. Addition of a lipid raft disruptor, methyl-β-cyclodextrin, blocks the efficacy of AKAP-IS, suggesting that the lipid raft must be intact for AKAP-IS to inhibit antigen presentation. Ezrin and AKAP79 are present in the lipid raft of stimulated KG1 cells, but Ezrin is not present in the lipid raft of unstimulated KG1 cells and AKAP79 levels are greatly diminished, suggesting that Ezrin and AKAP79 may be the key AKAPs responsible for regulating antigen presentation.
Collapse
|
12
|
Chen J, Sroubek J, Krishnan Y, Li Y, Bian J, McDonald TV. PKA phosphorylation of HERG protein regulates the rate of channel synthesis. Am J Physiol Heart Circ Physiol 2009; 296:H1244-54. [PMID: 19234087 PMCID: PMC2685339 DOI: 10.1152/ajpheart.01252.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/18/2009] [Indexed: 12/15/2022]
Abstract
Acute changes in cAMP and protein kinase A (PKA) signaling can regulate ion channel protein activities such as gating. Effects on channels due to chronic PKA signaling, as in stress or disease states, are less understood. We examined the effects of prolonged PKA activity on the human ether-a-go-go-related gene (HERG) K(+) channel in stably transfected human embryonic kidney (HEK)293 cells. Sustained elevation of cAMP by either chlorophenylthiol (CPT)-cAMP or forskolin increased the HERG channel protein abundance two- to fourfold within 24 h, with measurable difference as early as 4 h. The cAMP-induced augmentation was not due to changes in transcription and was specific for HERG compared with other cardiac K(+) channels (Kv1.4, Kv1.5, Kir2.1, and KvLQT1). PKA activity was necessary for the effect on HERG protein and did not involve other cAMP signaling pathways. Direct PKA phosphorylation of the HERG protein was responsible for the cAMP-induced augmentation. Enhanced abundance of HERG protein was detected in endoplasmic reticulum-enriched, Golgi, and plasma membrane without significant changes in trafficking rates or patterns. An increase in the K(+) current density carried by the HERG channel was also observed, but with a delay, suggesting that traffic to the surface is rate-limiting traffic. Acceleration of the HERG protein synthesis rate was the primary factor in the cAMP/PKA effect with lesser effects on protein stability. These results provide evidence for a novel mechanism whereby phosphorylation of a nascent protein dictates its rate of synthesis, resetting its steady-state abundance.
Collapse
Affiliation(s)
- Jian Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|