1
|
High-Resolution Magic Angle Spinning NMR of KcsA in Liposomes: The Highly Mobile C-Terminus. Biomolecules 2022; 12:biom12081122. [PMID: 36009016 PMCID: PMC9405666 DOI: 10.3390/biom12081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
The structure of the transmembrane domain of the pH-activated bacterial potassium channel KcsA has been extensively characterized, yet little information is available on the structure of its cytosolic, functionally critical N- and C-termini. This study presents high-resolution magic angle spinning (HR-MAS) and fractional deuteration as tools to study these poorly resolved regions for proteoliposome-embedded KcsA. Using 1H-detected HR-MAS NMR, we show that the C-terminus transitions from a rigid structure to a more dynamic structure as the solution is rendered acidic. We make previously unreported assignments of residues in the C-terminus of lipid-embedded channels. These data agree with functional models of the C-terminus-stabilizing KcsA tetramers at a neutral pH with decreased stabilization effects at acidic pH. We present evidence that a C-terminal truncation mutation has a destabilizing effect on the KcsA selectivity filter. Finally, we show evidence of hydrolysis of lipids in proteoliposome samples during typical experimental timeframes.
Collapse
|
2
|
Oakes V, Furini S, Domene C. Effect of anionic lipids on ion permeation through the KcsA K+-channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183406. [DOI: 10.1016/j.bbamem.2020.183406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
|
3
|
Modulation of Function, Structure and Clustering of K + Channels by Lipids: Lessons Learnt from KcsA. Int J Mol Sci 2020; 21:ijms21072554. [PMID: 32272616 PMCID: PMC7177331 DOI: 10.3390/ijms21072554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/19/2022] Open
Abstract
KcsA, a prokaryote tetrameric potassium channel, was the first ion channel ever to be structurally solved at high resolution. This, along with the ease of its expression and purification, made KcsA an experimental system of choice to study structure–function relationships in ion channels. In fact, much of our current understanding on how the different channel families operate arises from earlier KcsA information. Being an integral membrane protein, KcsA is also an excellent model to study how lipid–protein and protein–protein interactions within membranes, modulate its activity and structure. In regard to the later, a variety of equilibrium and non-equilibrium methods have been used in a truly multidisciplinary effort to study the effects of lipids on the KcsA channel. Remarkably, both experimental and “in silico” data point to the relevance of specific lipid binding to two key arginine residues. These residues are at non-annular lipid binding sites on the protein and act as a common element to trigger many of the lipid effects on this channel. Thus, processes as different as the inactivation of channel currents or the assembly of clusters from individual KcsA channels, depend upon such lipid binding.
Collapse
|
4
|
Poveda JA, Giudici AM, Renart ML, Millet O, Morales A, González-Ros JM, Oakes V, Furini S, Domene C. Modulation of the potassium channel KcsA by anionic phospholipids: Role of arginines at the non-annular lipid binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183029. [PMID: 31351058 DOI: 10.1016/j.bbamem.2019.183029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
The role of arginines R64 and R89 at non-annular lipid binding sites of KcsA, on the modulation of channel activity by anionic lipids has been investigated. In wild-type (WT) KcsA reconstituted into asolectin lipid membranes, addition of phosphatidic acid (PA) drastically reduces inactivation in macroscopic current recordings. Consistent to this, PA increases current amplitude, mean open time and open probability at the single channel level. Moreover, kinetic analysis reveals that addition of PA causes longer open channel lifetimes and decreased closing rate constants. Effects akin to those of PA on WT-KcsA are observed when R64 and/or R89 are mutated to alanine, regardless of the added anionic lipids. We interpret these results as a consequence of interactions between the arginines and the anionic PA bound to the non-annular sites. NMR data shows indeed that at least R64 is involved in binding PA. Moreover, molecular dynamics (MD) simulations predict that R64, R89 and surrounding residues such as T61, mediate persistent binding of PA to the non-annular sites. Channel inactivation depends on interactions within the inactivation triad (E71-D80-W67) behind the selectivity filter. Therefore, it is expected that such interactions are affected when PA binds the arginines at the non-annular sites. In support of this, MD simulations reveal that PA binding prevents interaction between R89 and D80, which seems critical to the effectiveness of the inactivation triad. This mechanism depends on the stability of the bound lipid, favoring anionic headgroups such as that of PA, which thrive on the positive charge of the arginines.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - A Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - M Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - Oscar Millet
- Structural Biology Unit, CICbioGUNE, Bizkaia Technology Park, Derio, 48160, Vizcaya, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03080 Alicante, Spain
| | - José M González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain.
| | - Victoria Oakes
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA2 7AY, United Kingdom
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA2 7AY, United Kingdom; Department of Chemistry, University of Oxford, Oxford OX1 3TA, Oxford, United Kingdom.
| |
Collapse
|
5
|
Qasim A, Sher I, Hirschhorn O, Shaked H, Qasem Z, Ruthstein S, Chill JH. Investigation of a KcsA Cytoplasmic pH Gate in Lipoprotein Nanodiscs. Chembiochem 2019; 20:813-821. [PMID: 30565824 DOI: 10.1002/cbic.201800627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/14/2022]
Abstract
The bacterial potassium channel KcsA is gated by pH, opening for conduction under acidic conditions. Molecular determinants responsible for this effect have been identified at the extracellular selectivity filter, at the membrane-cytoplasm interface (TM2 gate), and in the cytoplasmic C-terminal domain (CTD), an amphiphilic four-helix bundle mediated by hydrophobic and electrostatic interactions. Here we have employed NMR and EPR to provide a structural view of the pH-induced open-to-closed CTD transition. KcsA was embedded in lipoprotein nanodiscs (LPNs), selectively methyl-protonated at Leu/Val residues to allow observation of both states by NMR, and spin-labeled for the purposes of EPR studies. We observed a pHinduced structural change between an associated structured CTD at neutral pH and a dissociated flexible CTD at acidic pH, with a transition in the 5.0-5.5 range, consistent with a stabilization of the CTD by channel architecture. A double mutant constitutively open at the TM2 gate exhibited reduced stability of associated CTD, as indicated by weaker spin-spin interactions, a shift to higher transition pH values, and a tenfold reduction in the population of the associated "closed" channels. We extended these findings for isolated CTD-derived peptides to full-length KcsA and have established a contribution of the CTD to KcsA pH-controlled gating, which exhibits a strong correlation with the state of the proximal TM2 gate.
Collapse
Affiliation(s)
- Arwa Qasim
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Inbal Sher
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Orel Hirschhorn
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Zena Qasem
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
6
|
Poveda JA, Marcela Giudici A, Lourdes Renart M, Morales A, González-Ros JM. Towards understanding the molecular basis of ion channel modulation by lipids: Mechanistic models and current paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1507-1516. [PMID: 28408206 DOI: 10.1016/j.bbamem.2017.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Research on ion channel modulation has become a hot topic because of the key roles these membrane proteins play in both prokaryotic and eukaryotic organisms. In this respect, lipid modulation adds to the overall modulatory mechanisms as a potential via to find new pharmacological targets for drug design based on interfering with lipid/channel interactions. However, our knowledge in this field is scarce and often circumscribed to the sites where lipids bind and/or its final functional consequences. To fully understand this process it is necessary to improve our knowledge on its molecular basis, from the binding sites to the signalling pathways that derive in structural and functional effects on the ion channel. In this review, we have compiled information about such mechanisms and established a classification into four different modes of action. Afterwards, we have revised in more detail the lipid modulation of Cys-loop receptors and of the potassium channel KcsA, which were chosen as model channels modulated by specific lipids. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| | - A Marcela Giudici
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - M Lourdes Renart
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03080 Alicante, Spain
| | - José M González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
| |
Collapse
|
7
|
Kamnesky G, Hirschhorn O, Shaked H, Chen J, Yao L, Chill JH. Molecular determinants of tetramerization in the KcsA cytoplasmic domain. Protein Sci 2014; 23:1403-16. [PMID: 25042120 DOI: 10.1002/pro.2525] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/11/2022]
Abstract
The cytoplasmic C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is an amphiphilic domain that forms a helical bundle with four-fold symmetry mediated by hydrophobic and electrostatic interactions. Previously we have established that a CTD-derived 34-residue peptide associates into a tetramer in a pH-dependent manner (Kamnesky et al., JMB 2012;418:237-247). Here we further investigate the molecular determinants of tetramer formation in the CTD by characterizing the kinetics of monomer-tetramer equilibrium for 10 alanine mutants using NMR, sedimentation equilibrium (SE) and molecular dynamics simulation. NMR and SE concur in finding single-residue contributions to tetramer stability to be in the 0.5 to 3.5 kcal/mol range. Hydrophobic interactions between residues lining the tetramer core generally contributed more to formation of tetramer than electrostatic interactions between residues R147, D149 and E152. In particular, alanine replacement of residue R147, a key contributor to inter-subunit salt bridges, resulted in only a minor effect on tetramer dissociation. Mutations outside of the inter-subunit interface also influenced tetramer stability by affecting the tetramerization on-rate, possibly by changing the inherent helical propensity of the peptide. These findings are interpreted in the context of established paradigms of protein-protein interactions and protein folding, and lay the groundwork for further studies of the CTD in full-length KcsA channels.
Collapse
Affiliation(s)
- Guy Kamnesky
- Department of Chemistry, Bar Ilan University, Ramat Gan, 52900, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Raja M. Special Interaction of Anionic Phosphatidic Acid Promotes High Secondary Structure in Tetrameric Potassium Channel. J Membr Biol 2014; 247:747-52. [DOI: 10.1007/s00232-014-9704-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|
9
|
Targeted molecular dynamics (TMD) of the full-length KcsA potassium channel: on the role of the cytoplasmic domain in the opening process. J Mol Model 2013; 19:1651-66. [PMID: 23292250 DOI: 10.1007/s00894-012-1726-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
Some recent papers clearly indicate that the cytoplasmic domain of KcsA plays a role in pH sensing. We have performed, for the first time, a targeted molecular dynamics (TMD) simulation of the opening of full-length KcsA at pH 4 and pH 7, with a special interest for the cytoplasmic domain. Association energy calculations show a stabilization at pH 7 confirming that the protonation of some amino-acids at pH 4 in this domain plays a role in the opening process. A careful analysis of the pH dependent charges borne by residues in the cytoplasmic domain and their interactions confirms some literature experimental data and permits to give further insight into the role played by some of them in the opening process.
Collapse
|
10
|
Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:776-84. [PMID: 23159810 DOI: 10.1016/j.bbamem.2012.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 11/04/2012] [Accepted: 11/06/2012] [Indexed: 12/12/2022]
Abstract
Production of helical integral membrane proteins (IMPs) in a folded state is a necessary prerequisite for their functional and structural studies. In many cases large-scale expression of IMPs in cell-based and cell-free systems results in misfolded proteins, which should be refolded in vitro. Here using examples of the bacteriorhodopsin ESR from Exiguobacterium sibiricum and full-length homotetrameric K(+) channel KcsA from Streptomyces lividans we found that the efficient in vitro folding of the transmembrane domains of the polytopic and multimeric IMPs could be achieved during the protein encapsulation into the reconstructed high-density lipoprotein particles, also known as lipid-protein nanodiscs. In this case the self-assembly of the IMP/nanodisc complexes from a mixture containing apolipoprotein, lipids and the partially denatured protein solubilized in a harsh detergent induces the folding of the transmembrane domains. The obtained folding yields showed significant dependence on the properties of lipids used for nanodisc formation. The largest recovery of the spectroscopically active ESR (~60%) from the sodium dodecyl sulfate (SDS) was achieved in the nanodiscs containing anionic saturated lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPG) and was approximately twice lower in the zwitterionic DMPC lipid. The reassembly of tetrameric KcsA from the acid-dissociated monomer solubilized in SDS was the most efficient (~80%) in the nanodiscs containing zwitterionic unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The charged and saturated lipids provided lower tetramer quantities, and the lowest yield (<20%) was observed in DMPC. The overall yield of the ESR and KcsA folding was mainly restricted by the efficiency of the protein encapsulation into the nanodiscs.
Collapse
|
11
|
The distal C-terminal region of the KcsA potassium channel is a pH-dependent tetramerization domain. J Mol Biol 2012; 418:237-47. [PMID: 22370557 DOI: 10.1016/j.jmb.2012.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/30/2012] [Accepted: 02/20/2012] [Indexed: 11/20/2022]
Abstract
The intracellular C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is a 40-residue-long segment that natively adopts a helical bundle conformation with 4-fold symmetry. A hallmark of KcsA behavior is pH-induced conformational change, which leads to the opening of the channel at acidic pH. Previous studies have reached conflicting conclusions as to the role of the CTD in this transition. Here, we investigate the involvement of this domain in pH-mediated channel opening by NMR using a soluble peptide corresponding to residues 128-160 of the CTD (CTD34). At neutral pH, CTD34 exhibits concentration-dependent spectral changes consistent with oligomer formation. We prove this slowly tumbling species to be a tetramer with a dissociation constant of (2.0±0.5)×10(-)(11) M(3) by NMR and sedimentation equilibrium experiments. Whereas monomeric CTD34 is only mildly helical, secondary chemical shifts prove that the tetrameric species adopts a tight native-like helical bundle conformation. The tetrameric species undergoes pH-dependent dissociation, and CTD34 is fully monomeric below pH 5.0. The structural basis for this phenomenon is the destabilization of the tetrameric CTD34 by protonation of residue H145 in the monomeric form of the peptide. We conclude that (i) the CTD34 peptide is independently capable of forming a tetrameric helical bundle, and (ii) this structurally significant conformational shift is modulated by the effects of solution pH on residue H145. Therefore, the involvement of this domain in the pH gating of the channel is strongly suggested.
Collapse
|
12
|
Raja M, Olrichs NK, Vales E, Schrempf H. Transferring knowledge towards understanding the pore stabilizing variations in K+ channels. J Bioenerg Biomembr 2012; 44:199-205. [DOI: 10.1007/s10863-012-9407-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Do small headgroups of phosphatidylethanolamine and phosphatidic acid lead to a similar folding pattern of the K(+) channel? J Membr Biol 2011; 242:137-43. [PMID: 21744243 PMCID: PMC3146712 DOI: 10.1007/s00232-011-9384-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/27/2011] [Indexed: 11/27/2022]
Abstract
Phospholipid headgroups act as major determinants in proper folding of oligomeric membrane proteins. The K(+)-channel KcsA is the most popular model protein among these complexes. The presence of zwitterionic nonbilayer lipid phosphatidylethanolamine (PE) is crucial for efficient tetramerization and stabilization of KcsA in a lipid bilayer. In this study, the influence of PE on KcsA folding properties was analyzed by tryptophan fluorescence and acrylamide quenching experiments and compared with the effect of anionic phosphatidic acid (PA). The preliminary studies suggest that the small size and hydrogen bonding capability of the PE headgroup influences KcsA folding via a mechanism quite similar to that observed for anionic PA.
Collapse
|
14
|
The potassium channel KcsA: a model protein in studying membrane protein oligomerization and stability of oligomeric assembly? Arch Biochem Biophys 2011; 510:1-10. [PMID: 21458409 DOI: 10.1016/j.abb.2011.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 01/01/2023]
Abstract
Many membrane proteins are functional as stable oligomers. An understanding of the conditions that elicit and enhance oligomerization is important in many therapeutics. In this regard, protein-protein and protein-lipid interactions play crucial roles in the assembly and stability of oligomeric complexes. Recent years have seen a rapid increase in the mechanistic information on the importance of cytoplasmic termini in determining subunit assembly and stability of oligomeric complexes. In addition, the role of specific protein-lipid interaction between anionic phospholipids and "hot spots" on the protein surface has also become evident in stabilizing oligomeric assemblies. This review focuses on several contemporary developments of membrane proteins that stabilize oligomers by taking the potassium channel KcsA as an exemplary ion channel.
Collapse
|