1
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
2
|
Lopes LB, Pintarelli GB, Guedert R, Andrade DLLS, Antonio AC, Ramos CTS, da Silva JR, Rangel MMM, Suzuki DOH. Novel tetrapolar single-needle electrode for electrochemotherapy in bone cavities: Modeling, design and validation. Med Eng Phys 2024; 125:104120. [PMID: 38508798 DOI: 10.1016/j.medengphy.2024.104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/22/2024]
Abstract
Electrochemotherapy is a cancer treatment in which local pulsed electric fields are delivered through electrodes. The effectiveness of the treatment depends on exposing the tumor to a threshold electric field. Electrode geometry plays an important role in the resulting electric field distribution, especially in hard-to-reach areas and deep-seated tumors. We designed and developed a novel tetrapolar single-needle electrode for proper treatment in bone cavities. In silico and in vitro experiments were performed to evaluate the electric field and electric current produced by the electrode. In addition, tomography images of a real case of nasal cavity tumor were segmented into a 3D simulation to evaluate the electrode performance in a bone cavity. The proposed electrode was validated and its operating range was set up to 650 V. In the nasal cavity tumor, we found that the electrode can produce a circular electric field of 3 mm with an electric current of 14.1 A at 500 V, which is compatible with electrochemotherapy standards and commercial equipment.
Collapse
Affiliation(s)
- Lucas B Lopes
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | - Guilherme B Pintarelli
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil; Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, 89036-004, SC, Brazil
| | - Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Daniella L L S Andrade
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Afrânio C Antonio
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Clara T S Ramos
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Jéssica R da Silva
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | | | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
3
|
Gabay B, Levkov K, Berl A, Wise J, Shir-Az O, Vitkin E, Saulis G, Shalom A, Golberg A. Electroporation-Based Biopsy Treatment Planning with Numerical Models and Tissue Phantoms. Ann Biomed Eng 2024; 52:71-88. [PMID: 37154990 DOI: 10.1007/s10439-023-03208-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Molecular sampling with vacuum-assisted tissue electroporation is a novel, minimally invasive method for molecular profiling of solid lesions. In this paper, we report on the design of the battery-powered pulsed electric field generator and electrode configuration for an electroporation-based molecular sampling device for skin cancer diagnostics. Using numerical models of skin electroporation corroborated by the potato tissue phantom model, we show that the electroporated tissue volume, which is the maximum volume for biomarker sampling, strongly depends on the electrode's geometry, needle electrode skin penetration depths, and the applied pulsed electric field protocol. In addition, using excised human basal cell carcinoma (BCC) tissues, we show that diffusion of proteins out of human BCC tissues into water strongly depends on the strength of the applied electric field and on the time after the field application. The developed numerical simulations, confirmed by experiments in potato tissue phantoms and excised human cancer lesions, provide essential tools for the development of electroporation-based molecular markers sampling devices for personalized skin cancer diagnostics.
Collapse
Affiliation(s)
- Batel Gabay
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Klimentiy Levkov
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Julia Wise
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Shir-Az
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Edward Vitkin
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gintautas Saulis
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava, Israel
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Perera-Bel E, Aycock KN, Salameh ZS, Gomez-Barea M, Davalos RV, Ivorra A, Ballester MAG. PIRET-A Platform for Treatment Planning in Electroporation-Based Therapies. IEEE Trans Biomed Eng 2023; 70:1902-1910. [PMID: 37015676 PMCID: PMC10281020 DOI: 10.1109/tbme.2022.3232038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tissue electroporation is the basis of several therapies. Electroporation is performed by briefly exposing tissues to high electric fields. It is generally accepted that electroporation is effective where an electric field magnitude threshold is overreached. However, it is difficult to preoperatively estimate the field distribution because it is highly dependent on anatomy and treatment parameters. OBJECTIVE We developed PIRET, a platform to predict the treatment volume in electroporation-based therapies. METHODS The platform seamlessly integrates tools to build patient-specific models where the electric field is simulated to predict the treatment volume. Patient anatomy is segmented from medical images and 3D reconstruction aids in placing the electrodes and setting up treatment parameters. RESULTS Four canine patients that had been treated with high-frequency irreversible electroporation were retrospectively planned with PIRET and with a workflow commonly used in previous studies, which uses different general-purpose segmentation (3D Slicer) and modeling software (3Matic and COMSOL Multiphysics). PIRET outperformed the other workflow by 65 minutes (× 1.7 faster), thanks to the improved user experience during treatment setup and model building. Both approaches computed similarly accurate electric field distributions, with average Dice scores higher than 0.93. CONCLUSION A platform which integrates all the required tools for electroporation treatment planning is presented. Treatment plan can be performed rapidly with minimal user interaction in a stand-alone platform. SIGNIFICANCE This platform is, to the best of our knowledge, the most complete software for treatment planning of irreversible electroporation. It can potentially be used for other electroporation applications.
Collapse
|
5
|
Cindrič H, Miklavčič D, Cornelis FH, Kos B. Optimization of Transpedicular Electrode Insertion for Electroporation-Based Treatments of Vertebral Tumors. Cancers (Basel) 2022; 14:cancers14215412. [PMID: 36358829 PMCID: PMC9657605 DOI: 10.3390/cancers14215412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Electroporation-based treatments such as electrochemotherapy and irreversible electroporation ablation have sparked interest with respect to their use in medicine. Treatment planning involves determining the best possible electrode positions and voltage amplitudes to ensure treatment of the entire clinical target volume (CTV). This process is mainly performed manually or with computationally intensive genetic algorithms. In this study, an algorithm was developed to optimize electrode positions for the electrochemotherapy of vertebral tumors without using computationally intensive methods. The algorithm considers the electric field distribution in the CTV, identifies undertreated areas, and uses this information to iteratively shift the electrodes from their initial positions to cover the entire CTV. The algorithm performs successfully for different spinal segments, tumor sizes, and positions within the vertebra. The average optimization time was 71 s with an average of 4.9 iterations performed. The algorithm significantly reduces the time and expertise required to create a treatment plan for vertebral tumors. This study serves as a proof of concept that electrode positions can be determined (semi-)automatically based on the spatial information of the electric field distribution in the target tissue. The algorithm is currently designed for the electrochemotherapy of vertebral tumors via a transpedicular approach but could be adapted for other anatomic sites in the future.
Collapse
Affiliation(s)
- Helena Cindrič
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
6
|
Jarm T, Krmac T, Magjarevic R, Kos B, Cindric H, Miklavcic D. Investigation of safety for electrochemotherapy and irreversible electroporation ablation therapies in patients with cardiac pacemakers. Biomed Eng Online 2020; 19:85. [PMID: 33198769 PMCID: PMC7667796 DOI: 10.1186/s12938-020-00827-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The effectiveness of electrochemotherapy of tumors (ECT) and of irreversible electroporation ablation (IRE) depends on different mechanisms and delivery protocols. Both therapies exploit the phenomenon of electroporation of the cell membrane achieved by the exposure of the cells to a series of high-voltage electric pulses. Electroporation can be fine-tuned to be either reversible or irreversible, causing the cells to either survive the exposure (in ECT) or not (in IRE), respectively. For treatment of tissues located close to the heart (e.g., in the liver), the safety of electroporation-based therapies is ensured by synchronizing the electric pulses with the electrocardiogram. However, the use of ECT and IRE remains contraindicated for patients with implanted cardiac pacemakers if the treated tissues are located close to the heart or the pacemaker. In this study, two questions are addressed: can the electroporation pulses interfere with the pacemaker; and, can the metallic housing of the pacemaker modify the distribution of electric field in the tissue sufficiently to affect the effectiveness and safety of the therapy? RESULTS The electroporation pulses induced significant changes in the pacemaker ventricular pacing pulse only for the electroporation pulses delivered during the pacing pulse itself. No residual effects were observed on the pacing pulses following the electroporation pulses for all tested experimental conditions. The results of numerical modeling indicate that the presence of metal-encased pacemaker in immediate vicinity of the treatment zone should not impair the intended effectiveness of ECT or IRE even when the casing is in direct contact with one of the active electrodes. Nevertheless, the contact between the casing and the active electrode should be avoided due to significant tissue heating at the site of the other active electrode for the IRE protocol and may cause the pulse generator to fail to deliver the pulses due to excessive current draw. CONCLUSIONS The observed effects of electroporation pulses delivered in close vicinity of the pacemaker or its electrodes do not indicate adverse consequences for either the function of the pacemaker or the treatment outcome. These findings should contribute to making electroporation-based treatments accessible also to patients with implanted cardiac pacemakers.
Collapse
Affiliation(s)
- Tomaz Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia.
| | - Tadej Krmac
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| | - Ratko Magjarevic
- University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000, Zagreb, Croatia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| | - Helena Cindric
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| |
Collapse
|
7
|
Polajžer T, Miklavčič D. Development of adaptive resistance to electric pulsed field treatment in CHO cell line in vitro. Sci Rep 2020; 10:9988. [PMID: 32561789 PMCID: PMC7305184 DOI: 10.1038/s41598-020-66879-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 12/02/2022] Open
Abstract
Pulsed electric field treatment has increased over the last few decades with successful translation from in vitro studies into different medical treatments like electrochemotherapy, irreversible electroporation for tumor and cardiac tissue ablation and gene electrotransfer for gene therapy and DNA vaccination. Pulsed electric field treatments are efficient but localized often requiring repeated applications to obtain results due to partial response and recurrence of disease. While these treatment times are several orders of magnitude lower than conventional biochemical treatment, it has been recently suggested that cells may become resistant to electroporation in repetitive treatments. In our study, we evaluate this possibility of developing adaptive resistance in cells exposed to pulsed electric field treatment over successive lifetimes. Mammalian cells were exposed to electroporation pulses for 30 generations. Every 5th generation was analyzed by determining permeabilization and survival curve. No statistical difference between cells in control and cells exposed to pulsed electric field treatment was observed. We offer evidence that electroporation does not affect cells in a way that they would become less susceptible to pulsed electric field treatment. Our findings indicate pulsed electric field treatment can be used in repeated treatments with each treatment having equal efficiency to the initial treatment.
Collapse
Affiliation(s)
- Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Cindrič H, Kos B, Tedesco G, Cadossi M, Gasbarrini A, Miklavčič D. Electrochemotherapy of Spinal Metastases Using Transpedicular Approach-A Numerical Feasibility Study. Technol Cancer Res Treat 2019; 17:1533034618770253. [PMID: 29759043 PMCID: PMC5956634 DOI: 10.1177/1533034618770253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vertebral column is the most frequent site for bone metastases. It has been demonstrated in previous studies that bone metastases can be efficiently treated by electrochemotherapy. We developed a novel approach to treat spinal metastases, that is, transpedicular approach that combines electrochemotherapy with already established technologies for insertion of fixation screws in spinal surgery. In the transpedicular approach, needle electrodes are inserted into the vertebral body through pedicles and placed around the tumor. The main goal of our study was to numerically investigate the feasibility of the proposed treatment approach. Three clinical cases were used in this study—1 with a tumor completely contained within the vertebral body and 2 with tumors spread also to the pedicles and spinal canal. Anatomically accurate numerical models were built for all 3 cases, and numerical computations of electric field distribution in tumor and surrounding tissue were performed to determine the treatment outcome. Complete coverage of tumor volume with sufficiently high electric field is a prerequisite for successful electrochemotherapy. Close to 100% tumor coverage was obtained in all 3 cases studied. Two cases exhibited tumor coverage of >99%, while the coverage in the third case was 98.88%. Tumor tissue that remained untreated was positioned on the margin of the tumor volume. We also evaluated hypothetical damage to spinal cord and nerves. Only 1 case, which featured a tumor grown into the spinal canal, exhibited potential risk of neural damage. Our study shows that the proposed transpedicular approach to treat spinal metastases is feasible and safe if the majority of tumor volume is contained within the vertebral body. In cases where the spinal cord and nerves are contained within the margin of the tumor volume, a successful and safe treatment is still possible, but special attention needs to be given to evaluation of potential neural damage.
Collapse
Affiliation(s)
- Helena Cindrič
- 1 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 1 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Giuseppe Tedesco
- 2 Department of Oncologic and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Matteo Cadossi
- 2 Department of Oncologic and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Alessandro Gasbarrini
- 2 Department of Oncologic and Degenerative Spine Surgery, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Damijan Miklavčič
- 1 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Cell-seeded 3D scaffolds as in vitro models for electroporation. Bioelectrochemistry 2019; 125:15-24. [DOI: 10.1016/j.bioelechem.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
|
10
|
Pintar M, Langus J, Edhemović I, Brecelj E, Kranjc M, Sersa G, Šuštar T, Rodič T, Miklavčič D, Kotnik T, Kos B. Time-Dependent Finite Element Analysis of In Vivo Electrochemotherapy Treatment. Technol Cancer Res Treat 2018; 17:1533033818790510. [PMID: 30089424 PMCID: PMC6083743 DOI: 10.1177/1533033818790510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy and irreversible electroporation are gaining importance in clinical practice for the treatment of solid tumors. For successful treatment, it is extremely important that the coverage and exposure time of the treated tumor to the electric field are within the specified range. In order to ensure successful coverage of the entire target volume with sufficiently strong electric fields, numerical treatment planning has been proposed and its use has also been demonstrated in practice. Most of numerical models in treatment planning are based on charge conservation equation and are not able to provide time course of electric current, electrical conductivity, or electric field distribution changes established in the tissue during pulse delivery. Recently, a model based on inverse analysis of experimental data that delivers time course of tissue electroporation has been introduced. The aim of this study was to apply the previously reported time-dependent numerical model to a complex in vivo example of electroporation with different tissue types and with a long-term follow-up. The model, consisting of a tumor placed in the liver with 2 needle electrodes inserted in the center of the tumor and 4 around the tumor, was validated by comparison of measured and calculated time course of applied electric current. Results of simulations clearly indicated that proposed numerical model can successfully capture transient effects, such as evolution of electric current during each pulse, and effects of pulse frequency due to electroporation effects in the tissue. Additionally, the model can provide evolution of electric field amplitude and electrical conductivity in the tumor with consecutive pulse sequences.
Collapse
Affiliation(s)
| | | | | | - Erik Brecelj
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matej Kranjc
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 2 Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Tomaž Rodič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damijan Miklavčič
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Kotnik
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- 3 Laboratory of Biocybernetics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Campana LG, Bullo M, Di Barba P, Dughiero F, Forzan M, Mognaschi ME, Sgarbossa P, Tosi AL, Bernardis A, Sieni E. Effect of Tissue Inhomogeneity in Soft Tissue Sarcomas: From Real Cases to Numerical and Experimental Models. Technol Cancer Res Treat 2018; 17:1533033818789693. [PMID: 30045667 PMCID: PMC6071161 DOI: 10.1177/1533033818789693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy is an established treatment option for patients with superficially
metastatic tumors, mainly malignant melanoma and breast cancer. Based on preliminary
experiences, electrochemotherapy has the potential to be translated in the treatment of
larger and deeper neoplasms, such as soft tissue sarcomas. However, soft tissue sarcomas
are characterized by tissue inhomogeneity and, consequently, by variable electrical
characteristic of tumor tissue. The inhomogeneity in conductivity represents the cause of
local variations in the electric field intensity. Crucially, this fact may hamper the
achievement of the electroporation threshold during the electrochemotherapy procedure. In
order to evaluate the effect of tissue inhomogeneity on the electric field distribution,
we first performed ex vivo analysis of some clinical cases to quantify
the inhomogeneity area. Subsequently, we performed some simulations where the electric
field intensity was evaluated by means of finite element analysis. The results of the
simulation models are finally compared to an experimental model based on potato and tissue
mimic materials. Tissue mimic materials are materials where the conductivity can be
suitably designed. The coupling of computation and experimental results could be helpful
to show the effect of the inhomogeneity in terms of variation in electric field
distribution and characteristics.
Collapse
Affiliation(s)
- Luca Giovanni Campana
- 1 Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,2 Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Marco Bullo
- 3 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Paolo Di Barba
- 4 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Fabrizio Dughiero
- 3 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Michele Forzan
- 3 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Maria Evelina Mognaschi
- 4 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Paolo Sgarbossa
- 3 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Anna Lisa Tosi
- 5 Melanoma and Sarcoma Pathology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Alessia Bernardis
- 3 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Elisabetta Sieni
- 3 Department of Industrial Engineering, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Ongaro A, Campana LG, De Mattei M, Di Barba P, Dughiero F, Forzan M, Mognaschi ME, Pellati A, Rossi CR, Bernardello C, Sieni E. Effect of Electrode Distance in Grid Electrode: Numerical Models and In Vitro Tests. Technol Cancer Res Treat 2018; 17:1533033818764498. [PMID: 29558871 PMCID: PMC5863864 DOI: 10.1177/1533033818764498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy is an emerging local treatment for the management of superficial tumors and, among these, also chest wall recurrences from breast cancer. Generally, the treatment of this peculiar type of tumor requires the coverage of large skin areas. In these cases, electrochemotherapy treatment by means of standard small size needle electrodes (an array of 0.73 cm spaced needles, which covers an area of 1.5 cm2) is time-consuming and can allow an inhomogeneous coverage of the target area. We have previously designed grid devices suitable for treating an area ranging from 12 to 200 cm2. In this study, we propose different approaches to study advantages and drawbacks of a grid device with needles positioned 2 cm apart. The described approach includes a numerical evaluation to estimate electric field intensity, followed by an experimental quantification of electroporation on a cell culture. The electric field generated in a conductive medium has been studied by means of 3-dimensional numerical models with varying needle pair distance from 1 to 2 cm. In particular, the electric field evaluation shows that the electric field intensity with varying needle distance is comparable in the area in the middle of the 2 electrodes. Differently, near needles, the electric field intensity increases with the increasing electrode distance and supply voltage. The computational results have been correlated with experimental ones obtained in vitro on cell culture. In particular, electroporation effect has been assessed on human breast cancer cell line MCF7, cultured in monolayer. The use of 2-cm distant needles, supplied by 2000 V, produced an electroporation effect in the whole area comprised between the electrodes. Areas of cell culture where reversible and irreversible electroporation occurred were identified under microscope by using fluorescent dyes. The coupling of computation and experimental results could be helpful to evaluate the effect of the needle distance on the electric field intensity in cell cultures in terms of reversible or irreversible electroporation.
Collapse
Affiliation(s)
- Alessia Ongaro
- 1 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca Giovanni Campana
- 2 Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,3 Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Monica De Mattei
- 1 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Di Barba
- 4 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Fabrizio Dughiero
- 5 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Michele Forzan
- 5 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Maria Evelina Mognaschi
- 4 Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Agnese Pellati
- 1 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlo Riccardo Rossi
- 2 Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,3 Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Clara Bernardello
- 5 Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Elisabetta Sieni
- 5 Department of Industrial Engineering, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Garcia PA, Kos B, Rossmeisl JH, Pavliha D, Miklavčič D, Davalos RV. Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant glioma. Med Phys 2017; 44:4968-4980. [DOI: 10.1002/mp.12401] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 04/14/2017] [Accepted: 05/07/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Paulo A. Garcia
- School of Biomedical Engineering and Sciences Virginia Tech – Wake Forest University Blacksburg VA 24061 USA
- Laboratory for Energy and Microsystems Innovation Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge MA 02142 USA
| | - Bor Kos
- Faculty of Electrical Engineering University of Ljubljana Trzaska 25 1000 Ljubljana Slovenia
| | - John H. Rossmeisl
- School of Biomedical Engineering and Sciences Virginia Tech – Wake Forest University Blacksburg VA 24061 USA
- Department of Small Animal Clinical Sciences Virginia‐Maryland Regional College of Veterinary Medicine Blacksburg VA 24060 USA
- Veterinary and Comparative Neuro‐oncology LaboratoryVirginia‐Maryland Regional College of Veterinary Medicine Blacksburg VA 24060 USA
| | - Denis Pavliha
- Faculty of Electrical Engineering University of Ljubljana Trzaska 25 1000 Ljubljana Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering University of Ljubljana Trzaska 25 1000 Ljubljana Slovenia
| | - Rafael V. Davalos
- School of Biomedical Engineering and Sciences Virginia Tech – Wake Forest University Blacksburg VA 24061 USA
| |
Collapse
|
14
|
Campana LG, Matthiessen LW, Snoj M, Sersa G. Electrochemotherapy of Breast Cancer. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Langus J, Kranjc M, Kos B, Šuštar T, Miklavčič D. Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Sci Rep 2016; 6:26409. [PMID: 27211822 PMCID: PMC4876422 DOI: 10.1038/srep26409] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
In silico experiments (numerical simulations) are a valuable tool for non-invasive research of the influences of tissue properties, electrode placement and electric pulse delivery scenarios in the process of electroporation. The work described in this article was aimed at introducing time dependent effects into a finite element model developed specifically for electroporation. Reference measurements were made ex vivo on beef liver samples and experimental data were used both as an initial condition for simulation (applied pulse voltage) and as a reference value for numerical model calibration (measured pulse current). The developed numerical model is able to predict the time evolution of an electric pulse current within a 5% error over a broad range of applied pulse voltages, pulse durations and pulse repetition frequencies. Given the good agreement of the current flowing between the electrodes, we are confident that the results of our numerical model can be used both for detailed in silico research of electroporation mechanisms (giving researchers insight into time domain effects) and better treatment planning algorithms, which predict the outcome of treatment based on both spatial and temporal distributions of applied electric pulses.
Collapse
Affiliation(s)
- J Langus
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - M Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - B Kos
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - T Šuštar
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - D Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Abstract
STUDY DESIGN Preliminary report of new antitumor treatment. OBJECTIVE To evaluate the effectiveness of electrochemotherapy as a novel treatment of spinal metastasis. SUMMARY OF BACKGROUND DATA Electrochemotherapy is a new antitumor treatment that combines systemic bleomycin with electric pulses delivered locally at the tumor site. These electric pulses permeabilize cell membranes in the tissue, allow bleomycin delivery diffusion inside the cells, and increase bleomycin cytotoxicity. Previous clinical studies have demonstrated the effectiveness of electrochemotherapy in the treatment of several primary and metastatic solid tumors. METHODS Treatment planning for electrode positioning and electrical pulse parameters was prepared for 4 needle electrodes. Mini-open surgery with a left L5 laminectomy was performed to introduce the eletrodes. The patient was treated according to the established Electrochemotherapy Protocol with Bleomycin. Clinical efficacy of electrochemotherapy was evaluated according to a visual analog scale of pain, Oswestry Disability Index 2.0, the Karnofsky Performance Scale, and Response Evaluation Criteria in Solid Tumors. RESULTS The assessed follow-up period was 48 months after the electrochemotherapy procedure. Neither serious electrochemotherapy-related adverse events, nor bleomycin toxicity were reported. Overall improvement in pain according to Oswestry Disability Index 2.0 and Karnofsky Performance Scale outcomes was better. CONCLUSION Our case represents, to our knowledge, the first one to test the potential role of electrochemotherapy as treatment of spinal metastasis. Electrochemotherapy allowed a successful treatment of metastatic spinal melanoma. However, we believe that there is a strong scientific rationale to support the potential utility of electrochemotherapy as a novel treatment of spinal metastasis, regardless of the histological types. LEVEL OF EVIDENCE 5.
Collapse
|
17
|
Sersa G, Teissie J, Cemazar M, Signori E, Kamensek U, Marshall G, Miklavcic D. Electrochemotherapy of tumors as in situ vaccination boosted by immunogene electrotransfer. Cancer Immunol Immunother 2015; 64:1315-27. [PMID: 26067277 PMCID: PMC4554735 DOI: 10.1007/s00262-015-1724-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
Electroporation is a platform technology for drug and gene delivery. When applied to cell in vitro or tissues in vivo, it leads to an increase in membrane permeability for molecules which otherwise cannot enter the cell (e.g., siRNA, plasmid DNA, and some chemotherapeutic drugs). The therapeutic effectiveness of delivered chemotherapeutics or nucleic acids depends greatly on their successful and efficient delivery to the target tissue. Therefore, the understanding of different principles of drug and gene delivery is necessary and needs to be taken into account according to the specificity of their delivery to tumors and/or normal tissues. Based on the current knowledge, electrochemotherapy (a combination of drug and electric pulses) is used for tumor treatment and has shown great potential. Its local effectiveness is up to 80 % of local tumor control, however, without noticeable effect on metastases. In an attempt to increase systemic antitumor effectiveness of electrochemotherapy, electrotransfer of genes with immunomodulatory effect (immunogene electrotransfer) could be used as adjuvant treatment. Since electrochemotherapy can induce immunogenic cell death, adjuvant immunogene electrotransfer to peritumoral tissue could lead to locoregional effect as well as the abscopal effect on distant untreated metastases. Therefore, we propose a combination of electrochemotherapy with peritumoral IL-12 electrotransfer, as a proof of principle, using electrochemotherapy boosted with immunogene electrotransfer as in situ vaccination for successful tumor treatment.
Collapse
Affiliation(s)
- Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia,
| | | | | | | | | | | | | |
Collapse
|
18
|
Campana LG, Cesari M, Dughiero F, Forzan M, Rastrelli M, Rossi CR, Sieni E, Tosi AL. Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med Biol Eng Comput 2015; 54:773-87. [PMID: 26324245 DOI: 10.1007/s11517-015-1368-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
This paper presents a study about electrical resistance, which using fixed electrode geometry could be correlated to the tissue resistivity, of different histological types of human soft tissue sarcomas measured during electroporation. The same voltage pulse sequence was applied to the tumor mass shortly after surgical resection by means of a voltage pulse generator currently used in clinical practice for electrochemotherapy that uses reversible electroporation. The voltage pulses were applied by means of a standard hexagonal electrode composed by seven, 20-mm-long equispaced needles. Irrespective of tumor size, the electrode applies electric pulses to the same volume of tissue. The resistance value was computed from the voltage and current recorded by the pulse generator, and it was correlated with the histological characteristics of the tumor tissue which was assessed by a dedicated pathologist. Some differences in resistance values, which could be correlated to a difference in tissue resistivity, were noticed according to sarcoma histotype. Lipomatous tumors (i.e., those rich in adipose tissue) displayed the highest resistance values (up to 1700 Ω), whereas in the other soft tissue sarcomas, such as those originating from muscle, nerve sheath, or fibrous tissue, the electrical resistance measured was between 40 and 110 Ω. A variability in resistance was found also within the same histotype. Among lipomatous tumors, the presence of myxoid tissue between adipocytes reduced the electrical resistance (e.g., 50-100 Ω). This work represents the first step in order to explore the difference in tissue electrical properties of STS. These results may be used to verify whether tuning electric field intensity according to the specific STS histotype could improve tissue electroporation and ultimately treatment efficacy.
Collapse
Affiliation(s)
- L G Campana
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| | - M Cesari
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy
| | - F Dughiero
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy
| | - M Forzan
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy
| | - M Rastrelli
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| | - C R Rossi
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| | - E Sieni
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy.
| | - A L Tosi
- Melanoma and Sarcoma Pathology Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| |
Collapse
|
19
|
Modeling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case. Biomed Eng Online 2015; 14 Suppl 3:S1. [PMID: 26355703 PMCID: PMC4565101 DOI: 10.1186/1475-925x-14-s3-s1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer is the most common cancer in women worldwide and is the second most common cause of cancer death in women. Electrochemotherapy (ECT) used in early-phase clinical trials for the treatment of primary breast cancer resulted in a not complete tumor necrosis in most cases. The present study was undertaken to analyze the feasibility to use ECT to treat patients with histologically proven unifocal ductal breast cancer. In particular, results of ECT treatment in a clinical case are compared with the ones of a simplified 3D dosimetric model. Methods This clinical study was conducted with the pulse generator Cliniporator Vitae (IGEA, Carpi, Italy). ECT procedures were performed according to ESOPE standard operating procedures. Five single needle electrodes were used with one positioned in the center of the tumor, and the other four distributed around the nodule. Histological images of the resected tumor are compared with the maps of the electric field obtained with a simplified 3D model in Comsol Multiphysics v 4.3. Results The results of the clinical case demonstrated a reduced efficacy of the ECT treatment described. The proposed simple numerical model of the breast tumor located in a low conductive tissue suggests that this is due to the reduced electric field induced inside the tumor with such 5 electrodes placement. However, where the electric field is predicted higher than the reversible electroporation threshold (E>400 V/cm), also the histological images confirm the necrosis of the target with a good agreement between the modeled and clinical results. Conclusions The results suggest the dependence of the effectiveness of the treatment on the careful placement of the electrodes. A detailed planned procedure for the tumor analysis after the treatment is also needed in order to better correlate the single electrode positions and the histological images. Simulation models could be used to identify better electrodes configuration in planning the experimental protocol for ECT treatment of breast tumors.
Collapse
|
20
|
Groselj A, Kos B, Cemazar M, Urbancic J, Kragelj G, Bosnjak M, Veberic B, Strojan P, Miklavcic D, Sersa G. Coupling treatment planning with navigation system: a new technological approach in treatment of head and neck tumors by electrochemotherapy. Biomed Eng Online 2015; 14 Suppl 3:S2. [PMID: 26355773 PMCID: PMC4565575 DOI: 10.1186/1475-925x-14-s3-s2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Electrochemotherapy provides highly effective local treatment for a variety of tumors. In deep-seated tumors of the head and neck, due to complex anatomy of the region or inability to cover the whole tumor with standard electrodes, the use of long single needle electrodes is mandatory. In such cases, a treatment plan provides the information on the optimal configuration of the electrodes to adequately cover the tumor with electric field, while the accurate placement of the electrodes in the surgical room in patients can remain a problem. Therefore, during electrochemotherapy of two head and neck lymph-node metastases of squamous cell carcinoma origin, a navigation system for placement of electrodes was used. PATIENT AND METHODS Electrochemotherapy of two lymph-node metastases of cutaneous squamous cell carcinoma, one in the left parotid gland and the other in the neck just behind the left mandibular angle, was performed using intravenous administration of bleomycin and long single needle electrodes. The tumors were treated according to the prepared treatment plan, and executed with the use of navigation system. RESULTS Coupling of treatment plan with the navigation system aided to an accurate placement of the electrodes. The navigation system helped the surgeon to identify the exact location of the tumors, and helped with the positioning of the long needle electrodes during their insertion, according to treatment plan. Five electrodes were inserted for each metastasis, one centrally in the tumor and four in the periphery of the tumor. Five weeks after electrochemotherapy, computed tomography images demonstrated partial response of the first metastasis and complete response of the second one. Six weeks after electrochemotherapy, fine-needle aspiration biopsy specimen obtained from the treated lesions revealed necrosis and inflammatory cells, without any viable tumor cells. CONCLUSION We describe a new technological approach for electrochemotherapy of deep-seated head and neck tumors, coupling of the treatment planning with navigation system for accurate placement of the single long needle electrodes into and around the tumors, according to the treatment plan. Evidence of its effectiveness on two lymph-node metastases of cutaneous squamous cell carcinoma origin in neck lymph is provided.
Collapse
|
21
|
Mali B, Gorjup V, Edhemovic I, Brecelj E, Cemazar M, Sersa G, Strazisar B, Miklavcic D, Jarm T. Electrochemotherapy of colorectal liver metastases--an observational study of its effects on the electrocardiogram. Biomed Eng Online 2015; 14 Suppl 3:S5. [PMID: 26356120 PMCID: PMC4565110 DOI: 10.1186/1475-925x-14-s3-s5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Electrochemotherapy (ECT) is a combined treatment in which high voltage electroporation (EP) pulses are used to facilitate the uptake of a chemotherapeutic drug into tumor cells, thus increasing antitumor effectiveness of the drug. The effect of ECT of deep-seated tumors located close to the heart on functioning of the heart has not been previously investigated. In this study, we investigate the effects of intra-abdominal ECT of colorectal liver metastases on functioning of the heart during the early post-operative care period. Methods For ECT high voltage EP pulses with amplitudes of up to 3000 V and 30 A were delivered in synchronization with electrical activity of the heart. Holter electrocardiographic (ECG) signals were obtained from 10 patients with colorectal liver metastases treated with ECT. ECG was recorded during the periods of 24 hours before and after the surgical procedure involving ECT. Four-hour long night-time ECG segments from both periods exhibiting the highest level of signal stationarity were analyzed and compared. Changes in several ECG and heart rate variability (HRV) parameters were evaluated. Results No major heart rhythm changes (i.e., induction of extrasystoles, ventricular tachycardia or fibrillation) or pathological morphological changes (i.e., ST segment changes) indicating myocardial ischemia were found. However, we found several minor statistically significant but clinically irrelevant changes in HRV parameters after ECT procedures: a decrease in median values of the mean NN interval, a decrease in the low-frequency and in the normalized low-frequency component, and an increase in the normalized high-frequency component. Conclusions Only minor effects of intra-abdominal ECT treatment on functioning of the heart were found. They were expressed as statistically significant but clinically irrelevant changes in heart rate and long-term HRV parameters and were as such not life-threatening to the patients. The nature of these changes is such that they can be attributed to the known effects of the drugs given to the patients in the post-operative care. Further investigation is still warranted to unambiguously resolve whether ECT with high voltage EP pulses applied in immediate vicinity of the heart is responsible for the observed effects.
Collapse
|
22
|
Golberg A, Rubinsky B. Towards electroporation based treatment planning considering electric field induced muscle contractions. Technol Cancer Res Treat 2015; 11:189-201. [PMID: 22335414 DOI: 10.7785/tcrt.2012.500249] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The electric field threshold for muscle contraction is two orders of magnitudes lower than that for electroporation. Current electroporation treatment planning and electrode design studies focus on optimizing the delivery of electroporation electric fields to the targeted tissue. The goal of one part of this study was to investigate the relation between the volumes of tissue that experience electroporation electric fields in a targeted tissue volume and the volumes of tissue that experience muscle contraction inducing electric fields around the electroporated tissue volume, (V(MC)), during standard electroporation procedures and for various electroporation electrodes designs. The numerical analysis shows that conventional electroporation protocols and electrode design can generate muscle contraction inducing electric fields in surprisingly large volumes of non-target tissue, around the electroporation treated tissue. In studying various electrode configurations, we found that electrode placement in a structure we refer to as a "Current Cage" can substantially reduce the volume of non-target tissue exposed to electric fields above the muscle contraction threshold. In an experimental study on a tissue phantom we compare a commercial two parallel needle electroporation system with the Current Cage design. While tissue electroporated volumes were similar, V(MC) of tissue treated using the Current Cage design electrodes was an order of magnitude smaller than that using a commercially available system. An important aspect of the entire study is that it suggests the benefit of including the calculations of V(MC) for planning of electroporation based treatments such as DNA vaccination, electrochemotherapy and irreversible electroporation.
Collapse
Affiliation(s)
- Alex Golberg
- Department of Mechanical Engineering, Etcheverry Hall, 6124, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
23
|
Effect of blood vessel segmentation on the outcome of electroporation-based treatments of liver tumors. PLoS One 2015; 10:e0125591. [PMID: 25941806 PMCID: PMC4420486 DOI: 10.1371/journal.pone.0125591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based treatments rely on increasing the permeability of the cell membrane by high voltage electric pulses applied to tissue via electrodes. To ensure that the whole tumor is covered with sufficiently high electric field, accurate numerical models are built based on individual patient anatomy. Extraction of patient's anatomy through segmentation of medical images inevitably produces some errors. In order to ensure the robustness of treatment planning, it is necessary to evaluate the potential effect of such errors on the electric field distribution. In this work we focus on determining the effect of errors in automatic segmentation of hepatic vessels on the electric field distribution in electroporation-based treatments in the liver. First, a numerical analysis was performed on a simple 'sphere and cylinder' model for tumors and vessels of different sizes and relative positions. Second, an analysis of two models extracted from medical images of real patients in which we introduced variations of an error of the automatic vessel segmentation method was performed. The results obtained from a simple model indicate that ignoring the vessels when calculating the electric field distribution can cause insufficient coverage of the tumor with electric fields. Results of this study indicate that this effect happens for small (10 mm) and medium-sized (30 mm) tumors, especially in the absence of a central electrode inserted in the tumor. The results obtained from the real-case models also show higher negative impact of automatic vessel segmentation errors on the electric field distribution when the central electrode is absent. However, the average error of the automatic vessel segmentation did not have an impact on the electric field distribution if the central electrode was present. This suggests the algorithm is robust enough to be used in creating a model for treatment parameter optimization, but with a central electrode.
Collapse
|
24
|
Cadossi R, Ronchetti M, Cadossi M. Locally enhanced chemotherapy by electroporation: clinical experiences and perspective of use of electrochemotherapy. Future Oncol 2014; 10:877-90. [PMID: 24799067 DOI: 10.2217/fon.13.235] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electroporation is used to enhance drug diffusion and gene delivery into the cytosol. The combination of electroporation and cytotoxic drugs, electrochemotherapy (ECT), is used to treat metastatic tumor nodules located at the skin and subcutaneous tissue. The objective response rate following a single session of treatment exceeds 80%, with minimal toxicity for the patients. The efficacy of ECT in the bone and visceral metastasis is currently investigated, and Phase II studies have been completed. ECT has been used to treat skin primary tumors, except melanoma, and is under investigation for locally advanced pancreatic cancer. Early evidence suggests that treatment of tumor nodules with ECT recruits components of the immune system and eliciting a systemic immune response against cancer is a challenging clinical perspective. Considering the proven safety in several different clinical applications electroporation should be viewed as a clinical platform technology with wide perspectives for use in ECT, gene therapy and DNA vaccination.
Collapse
Affiliation(s)
- Ruggero Cadossi
- Clinical Research, IGEA SpA, Via Parmenide 10/A, Carpi, Italy
| | | | | |
Collapse
|
25
|
Campana LG, Bianchi G, Mocellin S, Valpione S, Campanacci L, Brunello A, Donati D, Sieni E, Rossi CR. Electrochemotherapy treatment of locally advanced and metastatic soft tissue sarcomas: results of a non-comparative phase II study. World J Surg 2014; 38:813-22. [PMID: 24170155 DOI: 10.1007/s00268-013-2321-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Our aim was to evaluate the activity, toxicity, and feasibility of electrochemotherapy (ECT) in patients with soft-tissue sarcomas (STS). METHODS A two-stage phase II trial was conducted between October 2006 and March 2012. Patients (N = 34) with locally advanced or metastatic STS, unsuitable for standard oncological treatments and with maximum 3-cm deep tumors, received an intravenous bolus of bleomycin (15,000 IU/m(2)), followed by tumor electroporation according to the European Standard Operating Procedures of ECT. Outcome measures included local response according to response evaluation criteria in solid tumors (RECIST), toxicity and tumor control. Feasibility measures included the accuracy of electrode placement and the intensity of electric current flowing in tumor tissue. RESULTS Median tumor size was 4.0 cm (range 2-12). Objective response, assessed on 71 target lesions, was 92.2 % (complete 32.3, 95 % CI 28-64). A total of 15 patients received up to four cycles due to incomplete response, but re-treatment did not significantly improve outcome (p = 0.205). After a median follow-up of 19.3 months, 2-year local control rate was 72.5 %. Median time to local failure (N = 11 patients) was 5.1 months. Tumor response (p = 0.041) and control (p = 0.047) correlated with histological grading. Relevant toxicity consisted of G3 skin ulceration and soft tissue necrosis (35 and 23 % of patients, respectively), although this was manageable on an outpatient basis. The accuracy of electrode placement was 47.1 %, and the adequacy of electroporative current 85.3 %. CONCLUSIONS ECT may represent an active and safe treatment to achieve local control in advanced STS patients with symptomatic disease. Future research challenges include the improvement of electrode placement and voltage delivery together with the containment of soft tissue toxicity.
Collapse
Affiliation(s)
- Luca G Campana
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology (IOV-IRCCS), Via Gattamelata-64, 35128, Padua, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marcan M, Pavliha D, Music MM, Fuckan I, Magjarevic R, Miklavcic D. Segmentation of hepatic vessels from MRI images for planning of electroporation-based treatments in the liver. Radiol Oncol 2014; 48:267-81. [PMID: 25177241 PMCID: PMC4110083 DOI: 10.2478/raon-2014-0022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Electroporation-based treatments rely on increasing the permeability of the cell membrane by high voltage electric pulses delivered to tissue via electrodes. To ensure that the whole tumor is covered by the sufficiently high electric field, accurate numerical models are built based on individual patient geometry. For the purpose of reconstruction of hepatic vessels from MRI images we searched for an optimal segmentation method that would meet the following initial criteria: identify major hepatic vessels, be robust and work with minimal user input. MATERIALS AND METHODS We tested the approaches based on vessel enhancement filtering, thresholding, and their combination in local thresholding. The methods were evaluated on a phantom and clinical data. RESULTS Results show that thresholding based on variance minimization provides less error than the one based on entropy maximization. Best results were achieved by performing local thresholding of the original de-biased image in the regions of interest which were determined through previous vessel-enhancement filtering. In evaluation on clinical cases the proposed method scored in average sensitivity of 93.68%, average symmetric surface distance of 0.89 mm and Hausdorff distance of 4.04 mm. CONCLUSIONS The proposed method to segment hepatic vessels from MRI images based on local thresholding meets all the initial criteria set at the beginning of the study and necessary to be used in treatment planning of electroporation-based treatments: it identifies the major vessels, provides results with consistent accuracy and works completely automatically. Whether the achieved accuracy is acceptable or not for treatment planning models remains to be verified through numerical modeling of effects of the segmentation error on the distribution of the electric field.
Collapse
Affiliation(s)
- Marija Marcan
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Denis Pavliha
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | | | - Igor Fuckan
- Clinical Department for Diagnostic and Interventional Radiology, Clinical Hospital “Dubrava”, Zagreb, Croatia
| | - Ratko Magjarevic
- University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
27
|
Kranjc M, Markelc B, Bajd F, Čemažar M, Serša I, Blagus T, Miklavčič D. In situ monitoring of electric field distribution in mouse tumor during electroporation. Radiology 2014; 274:115-23. [PMID: 25144647 DOI: 10.1148/radiol.14140311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To investigate the feasibility of magnetic resonance (MR) electric impedance tomography ( EIT electric impedance tomography ) technique for in situ monitoring of electric field distribution during in vivo electroporation of mouse tumors to predict reversibly electroporated tumor areas. MATERIALS AND METHODS All experiments received institutional animal care and use committee approval. Group 1 consisted of eight tumors that were used for determination of predicted area of reversibly electroporated tumor cells with MR EIT electric impedance tomography by using a 2.35-T MR imager. In addition, T1-weighted images of tumors were acquired to determine entrapment of contrast agent within the reversibly electroporated area. A correlation between predicted reversible electroporated tumor areas as determined with MR EIT electric impedance tomography and areas of entrapped MR contrast agent was evaluated to verify the accuracy of the prediction. Group 2 consisted of seven tumors that were used for validation of radiologic imaging with histopathologic staining. Histologic analysis results were then compared with predicted reversible electroporated tumor areas from group 1. Results were analyzed with Pearson correlation analysis and one-way analysis of variance. RESULTS Mean coverage ± standard deviation of tumors with electric field that leads to reversible electroporation of tumor cells obtained with MR EIT electric impedance tomography (38% ± 9) and mean fraction of tumors with entrapped MR contrast agent (41% ± 13) were correlated (Pearson analysis, r = 0.956, P = .005) and were not statistically different (analysis of variance, P = .11) from mean fraction of tumors from group 2 with entrapped fluorescent dye (39% ± 12). CONCLUSION MR EIT electric impedance tomography can be used for determining electric field distribution in situ during electroporation of tissue. Implementation of MR EIT electric impedance tomography in electroporation-based applications, such as electrochemotherapy and irreversible electroporation tissue ablation, would enable corrective interventions before the end of the procedure and would additionally improve the treatment outcome.
Collapse
Affiliation(s)
- Matej Kranjc
- From the Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia (M.K., D.M.); Ljubljana Institute of Oncology, Ljubljana, Slovenia (B.M., M. Č., T.B.); Department of Condensed Matter Physics, Jozef Stefan Institute, Ljubljana, Slovenia (F.B., I.S.); Department of Biomedical Engineering, Kyung Hee University, Republic of Korea (I.S.); and Faculty of Health Sciences, University of Primorska, Izola, Slovenia (M.Č.)
| | | | | | | | | | | | | |
Collapse
|
28
|
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 2014; 9:e103083. [PMID: 25115970 PMCID: PMC4130512 DOI: 10.1371/journal.pone.0103083] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.
Collapse
Affiliation(s)
- Paulo A. Garcia
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|
29
|
Kranjc M, Bajd F, Serša I, Miklavčič D. Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation. Physiol Meas 2014; 35:985-96. [PMID: 24844299 DOI: 10.1088/0967-3334/35/6/985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The electroporation effect on tissue can be assessed by measurement of electrical properties of the tissue undergoing electroporation. The most prominent techniques for measuring electrical properties of electroporated tissues have been voltage-current measurement of applied pulses and electrical impedance tomography (EIT). However, the electrical conductivity of tissue assessed by means of voltage-current measurement was lacking in information on tissue heterogeneity, while EIT requires numerous additional electrodes and produces results with low spatial resolution and high noise. Magnetic resonance EIT (MREIT) is similar to EIT, as it is also used for reconstruction of conductivity images, though voltage and current measurements are not limited to the boundaries in MREIT, hence it yields conductivity images with better spatial resolution. The aim of this study was to investigate and demonstrate the feasibility of the MREIT technique for assessment of conductivity images of tissues undergoing electroporation. Two objects were investigated: agar phantoms and ex vivo liver tissue. As expected, no significant change of electrical conductivity was detected in agar phantoms exposed to pulses of all used amplitudes, while a considerable increase of conductivity was measured in liver tissue exposed to pulses of different amplitudes.
Collapse
Affiliation(s)
- M Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
30
|
Predicting electroporation of cells in an inhomogeneous electric field based on mathematical modeling and experimental CHO-cell permeabilization to propidium iodide determination. Bioelectrochemistry 2014; 100:52-61. [PMID: 24731594 DOI: 10.1016/j.bioelechem.2014.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 03/13/2014] [Accepted: 03/24/2014] [Indexed: 01/25/2023]
Abstract
High voltage electric pulses cause electroporation of the cell membrane. Consequently, flow of the molecules across the membrane increases. In our study we investigated possibility to predict the percentage of the electroporated cells in an inhomogeneous electric field on the basis of the experimental results obtained when cells were exposed to a homogeneous electric field. We compared and evaluated different mathematical models previously suggested by other authors for interpolation of the results (symmetric sigmoid, asymmetric sigmoid, hyperbolic tangent and Gompertz curve). We investigated the density of the cells and observed that it has the most significant effect on the electroporation of the cells while all four of the mathematical models yielded similar results. We were able to predict electroporation of cells exposed to an inhomogeneous electric field based on mathematical modeling and using mathematical formulations of electroporation probability obtained experimentally using exposure to the homogeneous field of the same density of cells. Models describing cell electroporation probability can be useful for development and presentation of treatment planning for electrochemotherapy and non-thermal irreversible electroporation.
Collapse
|
31
|
Miklavčič D, Mali B, Kos B, Heller R, Serša G. Electrochemotherapy: from the drawing board into medical practice. Biomed Eng Online 2014; 13:29. [PMID: 24621079 PMCID: PMC3995705 DOI: 10.1186/1475-925x-13-29] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
Electrochemotherapy is a local treatment of cancer employing electric pulses to improve transmembrane transfer of cytotoxic drugs. In this paper we discuss electrochemotherapy from the perspective of biomedical engineering and review the steps needed to move such a treatment from initial prototypes into clinical practice. In the paper also basic theory of electrochemotherapy and preclinical studies in vitro and in vivo are briefly reviewed. Following this we present a short review of recent clinical publications and discuss implementation of electrochemotherapy into standard of care for treatment of skin tumors, and use of electrochemotherapy for other targets such as head and neck cancer, deep-seated tumors in the liver and intestinal tract, and brain metastases. Electrodes used in these specific cases are presented with their typical voltage amplitudes used in electrochemotherapy. Finally, key points on what should be investigated in the future are presented and discussed.
Collapse
Affiliation(s)
- Damijan Miklavčič
- Faculty of electrical Engineering, Department of Biomedical Engineering, University of Ljubljana, Trzaska 25, Ljubljana SI-1000, Slovenia.
| | | | | | | | | |
Collapse
|
32
|
Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments. Methods Mol Biol 2014; 1121:3-23. [PMID: 24510808 DOI: 10.1007/978-1-4614-9632-8_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thirty years after the publication of the first report on gene electrotransfer in cultured cells by the delivery of delivering electric pulses, this technology is starting to be applied to humans. In 2008, at the time of the publication of the first edition of this book, reversible cell electroporation for gene transfer and gene therapy (nucleic acids electrotransfer) was at a cross roads in its development. In 5 years, basic and applied developments have brought gene electrotransfer into a new status. Present knowledge on the effects of cell exposure to appropriate electric field pulses, particularly at the level of the cell membrane, is reported here, as an introduction to the large range of applications described in this book. The importance of the models of electric field distribution in tissues and of the correct choice of electrodes and applied voltages is highlighted, as well as the large range of new specialized electrodes, developed also in the frame of the other electroporation-based treatments (electrochemotherapy). Indeed, electric pulses are now routinely applied for localized drug delivery in the treatment of solid tumors by electrochemotherapy. The mechanisms involved in DNA electrotransfer, which include cell electropermeabilization and DNA electrophoresis, are also surveyed: noticeably, the first molecular description of the crossing of a lipid membrane by a nucleic acid was reported in 2012. The progress in the understanding of cell electroporation as well as developments of technological aspects, in silico, in vitro and in vivo, have contributed to bring gene electrotransfer development to the clinical stage. However, spreading of the technology will require not only more clinical trials but also further homogenization of the protocols and the preparation and validation of Standard Operating Procedures.
Collapse
|
33
|
Pavliha D, Kos B, Marčan M, Zupanič A, Serša G, Miklavčič D. Planning of electroporation-based treatments using Web-based treatment-planning software. J Membr Biol 2013; 246:833-42. [PMID: 23780414 DOI: 10.1007/s00232-013-9567-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
Electroporation-based treatment combining high-voltage electric pulses and poorly permanent cytotoxic drugs, i.e., electrochemotherapy (ECT), is currently used for treating superficial tumor nodules by following standard operating procedures. Besides ECT, another electroporation-based treatment, nonthermal irreversible electroporation (N-TIRE), is also efficient at ablating deep-seated tumors. To perform ECT or N-TIRE of deep-seated tumors, following standard operating procedures is not sufficient and patient-specific treatment planning is required for successful treatment. Treatment planning is required because of the use of individual long-needle electrodes and the diverse shape, size and location of deep-seated tumors. Many institutions that already perform ECT of superficial metastases could benefit from treatment-planning software that would enable the preparation of patient-specific treatment plans. To this end, we have developed a Web-based treatment-planning software for planning electroporation-based treatments that does not require prior engineering knowledge from the user (e.g., the clinician). The software includes algorithms for automatic tissue segmentation and, after segmentation, generation of a 3D model of the tissue. The procedure allows the user to define how the electrodes will be inserted. Finally, electric field distribution is computed, the position of electrodes and the voltage to be applied are optimized using the 3D model and a downloadable treatment plan is made available to the user.
Collapse
Affiliation(s)
- Denis Pavliha
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška c. 25, SI-1000, Ljubljana, Slovenia,
| | | | | | | | | | | |
Collapse
|
34
|
Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D. Modeling of electric field distribution in tissues during electroporation. Biomed Eng Online 2013; 12:16. [PMID: 23433433 PMCID: PMC3614452 DOI: 10.1186/1475-925x-12-16] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. METHODS We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. RESULTS The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of electric field distribution modeling in linear model of composite tissue (i.e. in the subcutaneous tumor model that do not take into account the relationship σ(E)) showed that a very high electric field (above irreversible threshold value) was concentrated only in the stratum corneum while the target tumor tissue was not successfully treated. Furthermore, the calculated volume of the target tumor tissue exposed to the electric field above reversible threshold in the subcutaneous model was zero assuming constant conductivities of each tissue.Our results also show that the inverse analysis allows for identification of both baseline tissue conductivity (i.e. conductivity of non-electroporated tissue) and tissue conductivity vs. electric field (σ(E)) of electroporated tissue. CONCLUSION Our results of modeling of electric field distribution in tissues during electroporation show that the changes in electrical conductivity due to electroporation need to be taken into account when an electroporation based treatment is planned or investigated. We concluded that the model of electric field distribution that takes into account the increase in electric conductivity due to electroporation yields more precise prediction of successfully electroporated target tissue volume. The findings of our study can significantly contribute to the current development of individualized patient-specific electroporation based treatment planning.
Collapse
Affiliation(s)
- Selma Corovic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana Slovenia
| | - Igor Lackovic
- University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, HR-10000, Zagreb, Croatia
| | - Primoz Sustaric
- C3M, d. o. o., Centre for Computational Continuum Mechanics, Technological Park 21, SI-1000 Ljubljana, Slovenia
| | - Tomaz Sustar
- C3M, d. o. o., Centre for Computational Continuum Mechanics, Technological Park 21, SI-1000 Ljubljana, Slovenia
| | - Tomaz Rodic
- C3M, d. o. o., Centre for Computational Continuum Mechanics, Technological Park 21, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska cesta 25, SI-1000 Ljubljana Slovenia
| |
Collapse
|
35
|
Mahnič-Kalamiza S, Kotnik T, Miklavčič D. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation. BMC MEDICAL EDUCATION 2012; 12:102. [PMID: 23107609 PMCID: PMC3528424 DOI: 10.1186/1472-6920-12-102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 10/25/2012] [Indexed: 05/15/2023]
Abstract
BACKGROUND Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure. RESULTS In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages. CONCLUSION In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.
Collapse
Affiliation(s)
- Samo Mahnič-Kalamiza
- Faculty of Electrical Engineering, University of Ljubljana, Tr&2;aška 25, Ljubljana, SI-1000, Slovenia
| | - Tadej Kotnik
- Faculty of Electrical Engineering, University of Ljubljana, Tr&2;aška 25, Ljubljana, SI-1000, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tr&2;aška 25, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
36
|
Kranjc M, Bajd F, Sersa I, Woo EJ, Miklavcic D. Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments. PLoS One 2012; 7:e45737. [PMID: 23029212 PMCID: PMC3447863 DOI: 10.1371/journal.pone.0045737] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/24/2012] [Indexed: 01/20/2023] Open
Abstract
Magnetic resonance electrical impedance tomography (MREIT) was recently proposed for determining electric field distribution during electroporation in which cell membrane permeability is temporary increased by application of an external high electric field. The method was already successfully applied for reconstruction of electric field distribution in agar phantoms. Before the next step towards in vivo experiments is taken, monitoring of electric field distribution during electroporation of ex vivo tissue ex vivo and feasibility for its use in electroporation based treatments needed to be evaluated. Sequences of high voltage pulses were applied to chicken liver tissue in order to expose it to electric field which was measured by means of MREIT. MREIT was also evaluated for its use in electroporation based treatments by calculating electric field distribution for two regions, the tumor and the tumor-liver region, in a numerical model based on data obtained from clinical study on electrochemotherapy treatment of deep-seated tumors. Electric field distribution inside tissue was successfully measured ex vivo using MREIT and significant changes of tissue electrical conductivity were observed in the region of the highest electric field. A good agreement was obtained between the electric field distribution obtained by MREIT and the actual electric field distribution in evaluated regions of a numerical model, suggesting that implementation of MREIT could thus enable efficient detection of areas with insufficient electric field coverage during electroporation based treatments, thus assuring the effectiveness of the treatment.
Collapse
Affiliation(s)
- Matej Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | - Igor Sersa
- Institut Jozef Stefan, Ljubljana, Slovenia
| | - Eung Je Woo
- Department of Biomedical Engineering, Kyung Hee University, Seoul, Republic of Korea
| | - Damijan Miklavcic
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
37
|
Zupanic A, Kos B, Miklavcic D. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation. Phys Med Biol 2012; 57:5425-40. [PMID: 22864181 DOI: 10.1088/0031-9155/57/17/5425] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, cancer electrochemotherapy (ECT), gene electrotransfer for gene therapy and DNA vaccination (GET) and tissue ablation with irreversible electroporation (IRE) have all entered clinical practice. We present a method for a personalized treatment planning procedure for ECT, GET and IRE, based on medical image analysis, numerical modelling of electroporation and optimization with the genetic algorithm, and several visualization tools for treatment plan assessment. Each treatment plan provides the attending physician with optimal positions of electrodes in the body and electric pulse parameters for optimal electroporation of the target tissues. For the studied case of a deep-seated tumour, the optimal treatment plans for ECT and IRE require at least two electrodes to be inserted into the target tissue, thus lowering the necessary voltage for electroporation and limiting damage to the surrounding healthy tissue. In GET, it is necessary to place the electrodes outside the target tissue to prevent damage to target cells intended to express the transfected genes. The presented treatment planning procedure is a valuable tool for clinical and experimental use and evaluation of electroporation-based treatments.
Collapse
Affiliation(s)
- Anze Zupanic
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|
38
|
Sersa G, Cemazar M, Snoj M. Electrochemotherapy of solid tumors--preclinical and clinical experience. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:728-31. [PMID: 22254413 DOI: 10.1109/iembs.2011.6090165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electrochemotherapy consists of administration of the chemotherapeutic drug followed by application of electric pulses to the tumor, in order to facilitate the drug uptake into the cells. Only two chemotherapeutics are currently used in electrochemotherapy, bleomycin and cisplatin, which both have hampered transport through the plasma membrane without electroporation of tumors. Based on extensive preclinical studies, elaborating on parameters for effective tumor treatment and elucidating the mechanisms of this therapy, electrochemotherapy is now in clinical use. It is in standard treatment of melanoma cutaneous metastases in Europe. However it is effective also for cutaneous metastases of other tumor types. Currently the technology is being developed also for treatment of bigger, deep seated tumors. With long needle electrodes and new electric pulse generators, clinical trials are on-going for treatment of liver metastases, bone metastases and soft tissue sarcomas.
Collapse
Affiliation(s)
- G Sersa
- Institute of Oncology Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
39
|
Čorović S, Mir LM, Miklavčič D. In vivo muscle electroporation threshold determination: realistic numerical models and in vivo experiments. J Membr Biol 2012; 245:509-20. [PMID: 22622286 DOI: 10.1007/s00232-012-9432-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/30/2012] [Indexed: 11/21/2022]
Abstract
In vivo electroporation is used as an effective technique for delivery of therapeutic agents such as chemotherapeutic drugs or DNA into target tissue cells for different biomedical purposes. In order to successfully electroporate a target tissue, it is essential to know the local electric field distribution produced by an application of electroporation voltage pulses. In this study three-dimensional finite element models were built in order to analyze local electric field distribution and corresponding tissue conductivity changes in rat muscle electroporated either transcutaneously or directly (i.e., two-plate electrodes were placed either on the skin or directly on the skeletal muscle after removing the skin). Numerical calculations of electroporation thresholds and conductivity changes in skin and muscle were validated with in vivo measurements. Our model of muscle with skin also confirms the in vivo findings of previous studies that electroporation "breaks" the skin barrier when the applied voltage is above 50 V.
Collapse
Affiliation(s)
- Selma Čorović
- University of Ljubljana, Trzaska 25, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
40
|
The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma. Radiol Oncol 2012; 46:126-35. [PMID: 23077449 PMCID: PMC3472940 DOI: 10.2478/v10019-012-0026-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/07/2012] [Indexed: 12/12/2022] Open
Abstract
Background Irreversible electroporation (IRE) is a novel ablation tool that uses brief high-voltage pulses to treat cancer. The efficacy of the therapy depends upon the distribution of the electric field, which in turn depends upon the configuration of electrodes used. Methods We sought to optimize the electrode configuration in terms of the distance between electrodes, the depth of electrode insertion, and the number of electrodes. We employed a 3D Finite Element Model and systematically varied the distance between the electrodes and the depth of electrode insertion, monitoring the lowest voltage sufficient to ablate the tumor, VIRE. We also measured the amount of normal (non-cancerous) tissue ablated. Measurements were performed for two electrodes, three electrodes, and four electrodes. The optimal electrode configuration was determined to be the one with the lowest VIRE, as that minimized damage to normal tissue. Results The optimal electrode configuration to ablate a 2.5 cm spheroidal tumor used two electrodes with a distance of 2 cm between the electrodes and a depth of insertion of 1 cm below the halfway point in the spherical tumor, as measured from the bottom of the electrode. This produced a VIRE of 3700 V. We found that it was generally best to have a small distance between the electrodes and for the center of the electrodes to be inserted at a depth equal to or deeper than the center of the tumor. We also found the distance between electrodes was far more important in influencing the outcome measures when compared with the depth of electrode insertion. Conclusions Overall, the distribution of electric field is highly dependent upon the electrode configuration, but the optimal configuration can be determined using numerical modeling. Our findings can help guide the clinical application of IRE as well as the selection of the best optimization algorithm to use in finding the optimal electrode configuration.
Collapse
|
41
|
Patient-specific treatment planning of electrochemotherapy: procedure design and possible pitfalls. Bioelectrochemistry 2012; 87:265-73. [PMID: 22341626 DOI: 10.1016/j.bioelechem.2012.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/06/2012] [Accepted: 01/20/2012] [Indexed: 01/25/2023]
Abstract
Electrochemotherapy uses electroporation for enhancing chemotherapy. Electrochemotherapy can be performed using standard operating procedures with predefined electrode geometries, or using patient-specific treatment planning to predict electroporation. The latter relies on realistic computer models to provide optimal results (i.e. electric field distribution as well as electrodes' position and number) and is suitable for treatment of deep-seated tumors. Since treatment planning for deep-seated tumors has been used in radiotherapy, we expose parallelisms with radiotherapy in order to establish the procedure for electrochemotherapy of deep-seated tumors. We partitioned electrochemotherapy in the following phases: the mathematical model of electroporation, treatment planning, set-up verification, treatment delivery and monitoring, and response assessment. We developed a conceptual treatment planning software that incorporates mathematical models of electroporation. Preprocessing and segmentation of the patient's medical images are performed, and a 3D model is constructed which allows placement of electrodes and implementation of the mathematical model of electroporation. We demonstrated the feasibility of electrochemotherapy of deep-seated tumors treatment planning within a clinical study where treatment planning contributed to the effective electrochemotherapy treatment of deep-seated colorectal metastases in the liver. The described procedure can provide medical practitioners with information on using electrochemotherapy in the clinical setting. The main aims of this paper are: 1) to present the procedure for treating deep-seated tumors by electrochemotherapy based on patient-specific treatment planning, and 2) to identify gaps in knowledge and possible pitfalls of such procedure.
Collapse
|
42
|
Edhemovic I, Gadzijev EM, Brecelj E, Miklavcic D, Kos B, Zupanic A, Mali B, Jarm T, Pavliha D, Marcan M, Gasljevic G, Gorjup V, Music M, Vavpotic TP, Cemazar M, Snoj M, Sersa G. Electrochemotherapy: a new technological approach in treatment of metastases in the liver. Technol Cancer Res Treat 2012; 10:475-85. [PMID: 21895032 PMCID: PMC4527414 DOI: 10.7785/tcrt.2012.500224] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electrochemotherapy is now in development for treatment of deep-seated tumors, like in bones and internal organs, such as liver. The technology is available with a newly developed electric pulse generator and long needle electrodes; however the procedures for the treatment are not standardized yet. In order to describe the treatment procedure, including treatment planning, within the ongoing clinical study, a case of successful treatment of a solitary metastasis in the liver of colorectal cancer is presented. The procedure was performed intraoperatively by inserting long needle electrodes, two in the center of the tumor and four around the tumor into the normal tissue. The insertion of electrodes proved to be feasible and was done according to the treatment plan, prepared by numerical modeling. After intravenous bolus injection of bleomycin the tumor was exposed to electric pulses. The delivery of the electric pulses did not interfere with functioning of the heart, since the pulses were synchronized with electrocardiogram in order to be delivered outside the vulnerable period of the ventricles. Also the post treatment period was uneventful without side effects. Re-operation of the treated metastasis demonstrated feasibility of the reoperation, without secondary effects of electrochemotherapy on normal tissue. Good antitumor effectiveness with complete tumor destruction was confirmed with histological analysis. The patient is disease-free 16 months after the procedure. In conclusion, treatment procedure for electrochemotherapy proved to be a feasible technological approach for treatment of liver metastasis. Due to the absence of the side effects and the first complete destruction of the treated tumor, treatment procedure for electrochemotherapy seems to be a safe method for treatment of liver metastases with good treatment effectiveness even in difficult-to-reach locations.
Collapse
Affiliation(s)
- I Edhemovic
- Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Neal RE, Garcia PA, Robertson JL, Davalos RV. Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning. IEEE Trans Biomed Eng 2012; 59:1076-85. [PMID: 22231669 DOI: 10.1109/tbme.2012.2182994] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Irreversible electroporation is a new technique to kill cells in targeted tissue, such as tumors, through a nonthermal mechanism using electric pulses to irrecoverably disrupt the cell membrane. Treatment effects relate to the tissue electric field distribution, which can be predicted with numerical modeling for therapy planning. Pulse effects will change the cell and tissue properties through thermal and electroporation (EP)-based processes. This investigation characterizes these changes by measuring the electrical conductivity and temperature of ex vivo renal porcine tissue within a single pulse and for a 200 pulse protocol. These changes are incorporated into an equivalent circuit model for cells and tissue with a variable EP-based resistance, providing a potential method to estimate conductivity as a function of electric field and pulse length for other tissues. Finally, a numerical model using a human kidney volumetric mesh evaluated how treatment predictions vary when EP- and temperature-based electrical conductivity changes are incorporated. We conclude that significant changes in predicted outcomes will occur when the experimental results are applied to the numerical model, where the direction and degree of change varies with the electric field considered.
Collapse
Affiliation(s)
- Robert E Neal
- Bioelectromechanical Systems Laboratory, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24060, USA.
| | | | | | | |
Collapse
|
44
|
Kranjc M, Bajd F, Serša I, Miklavčič D. Magnetic resonance electrical impedance tomography for monitoring electric field distribution during tissue electroporation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1771-1778. [PMID: 21521664 DOI: 10.1109/tmi.2011.2147328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Electroporation is a phenomenon caused by externally applied electric field of an adequate strength and duration to cells that results in the increase of cell membrane permeability to various molecules, which otherwise are deprived of transport mechanism. As accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful electroporation, applications based on electroporation would greatly benefit with a method of monitoring the electric field, especially if it could be done during the treatment. As the membrane electroporation is a consequence of an induced transmembrane potential which is directly proportional to the local electric field, we propose current density imaging (CDI) and magnetic resonance electrical impedance tomography (MREIT) techniques to measure the electric field distribution during electroporation. The experimental part of the study employs CDI with short high-voltage pulses, while the theoretical part of the study is based on numerical simulations of MREIT. A good agreement between experimental and numerical results was obtained, suggesting that CDI and MREIT can be used to determine the electric field during electric pulse delivery and that both of the methods can be of significant help in planning and monitoring of future electroporation based clinical applications.
Collapse
Affiliation(s)
- M Kranjc
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
45
|
Garcia PA, Rossmeisl JH, Neal RE, Ellis TL, Davalos RV. A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure. Biomed Eng Online 2011; 10:34. [PMID: 21529373 PMCID: PMC3108916 DOI: 10.1186/1475-925x-10-34] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/30/2011] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating. METHODS We developed numerical simulations of typical protocols based on a previously published computed tomographic (CT) guided in vivo procedure. These models were adapted to assess the effects of temperature, electroporation, pulse duration, and repetition rate on the volumes of tissue undergoing IRE alone or in superposition with thermal damage. RESULTS Nine different combinations of voltage and pulse frequency were investigated, five of which resulted in IRE alone while four produced IRE in superposition with thermal damage. CONCLUSIONS The parametric study evaluated the influence of pulse frequency and applied voltage on treatment volumes, and refined a proposed method to delineate IRE from thermal damage. We confirm that determining an IRE treatment protocol requires incorporating all the physical effects of electroporation, and that these effects may have significant implications in treatment planning and outcome assessment. The goal of the manuscript is to provide the reader with the numerical methods to assess multiple-pulse electroporation treatment protocols in order to isolate IRE from thermal damage and capitalize on the benefits of a non-thermal mode of tissue ablation.
Collapse
Affiliation(s)
- Paulo A Garcia
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Blacksburg, VA, USA
| | - John H Rossmeisl
- Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA USA
| | - Robert E Neal
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Blacksburg, VA, USA
| | - Thomas L Ellis
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Rafael V Davalos
- Bioelectromechanical Systems Laboratory, School of Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University, Blacksburg, VA, USA
| |
Collapse
|
46
|
Agerholm-Larsen B, Iversen HK, Ibsen P, Moller JM, Mahmood F, Jensen KS, Gehl J. Preclinical validation of electrochemotherapy as an effective treatment for brain tumors. Cancer Res 2011; 71:3753-62. [PMID: 21507935 DOI: 10.1158/0008-5472.can-11-0451] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electrochemotherapy represents a strategy to enhance chemotherapeutic drug uptake by delivering electrical pulses which exceed the dielectric strength of the cell membrane, causing transient formation of structures that enhance permeabilization. Here we show that brain tumors in a rat model can be eliminated by electrochemotherapy with a novel electrode device developed for use in the brain. By using this method, the cytotoxicity of bleomycin can be augmented more than 300-fold because of increased permeabilization and more direct passage of drug to the cytosol, enabling highly efficient local tumor treatment. Bleomycin was injected intracranially into male rats inoculated with rat glia-derived tumor cells 2 weeks before the application of the electrical field (32 pulses, 100 V, 0.1 ms, and 1 Hz). In this model, where presence of tumor was confirmed by magnetic resonance imaging (MRI) before treatment, we found that 9 of 13 rats (69%) receiving electrochemotherapy displayed a complete elimination of tumor, in contrast to control rats treated with bleomycin only, pulses only, or untreated where tumor progression occurred in each case. Necrosis induced by electrochemotherapy was restricted to the treated area, which MRI and histology showed to contain a fluid-filled cavity. In a long-range survival study, treatment side effects seemed to be minimal, with normal rat behavior observed after electrochemotherapy. Our findings suggest that electrochemotherapy may offer a safe and effective new tool to treat primary brain tumors and brain metastases.
Collapse
|