1
|
Abbassian H, Ilaghi M, Amleshi RS, Whalley BJ, Shabani M. Modulation of CB1 cannabinoid receptor alters the electrophysiological properties of cerebellar Purkinje cells in harmaline-induced essential tremor. IBRO Neurosci Rep 2024; 17:196-206. [PMID: 39262634 PMCID: PMC11388168 DOI: 10.1016/j.ibneur.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Essential tremor (ET) is one of the most common motor disorders with debilitating effects on the affected individuals. The endocannabinoid system is widely involved in cerebellar signaling. Therefore, modulation of cannabinoid-1 receptors (CB1Rs) has emerged as a novel target for motor disorders. In this study, we aimed to assess whether modulation of cannabinoid receptors (CBRs) could alter the electrophysiological properties of Purkinje cells (PCs) in the harmaline-induced ET model. Male Wistar rats were assigned to control, harmaline (30 mg/kg), CBR agonist WIN 55,212-2 (WIN; 1 mg/kg), CB1R antagonists AM251 (1 mg/kg) and rimonabant (10 mg/kg). Spontaneous activity and positive and negative evoked potentials of PCs were evaluated using whole-cell patch clamp recording. Findings demonstrated that harmaline exposure induced alterations in the spontaneous and evoked firing behavior of PCs, as evidenced by a significant decrease in the mean number of spikes and half-width of action potential in spontaneous activity. WIN administration exacerbated the electrophysiological function of PCs, particularly in the spontaneous activity of PCs. However, CB1R antagonists provided protective effects against harmaline-induced electrophysiological changes in the spontaneous activity of PCs. Our findings reinforce the pivotal role of the endocannabinoid system in the underlying electrophysiological mechanisms of cerebellar disorders and suggest that antagonism of CB1R might provide therapeutic utility.
Collapse
Affiliation(s)
- Hassan Abbassian
- Mashhad Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Ilaghi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Benjamin Jason Whalley
- Department of Pharmacy, School of Chemistry, Food & Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire RG6 6AP, UK
- Revelstone Consulting LLC, 1001 New Jersey Ave SE, Washington, DC, 20003
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Motamedi S, Amleshi RS, Javar BA, Shams P, Kohlmeier KA, Shabani M. Cannabis during pregnancy: A way to transfer an impairment to later life. Birth Defects Res 2023; 115:1327-1344. [PMID: 37318343 DOI: 10.1002/bdr2.2207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023]
Abstract
Epidemiological studies examining the influence of cannabis across the lifespan show that exposure to cannabis during gestation or during the perinatal period is associated with later-life mental health issues that manifest during childhood, adolescence, and adulthood. The risk of later-life negative outcomes following early exposure is particularly high in persons who have specific genetic variants, implying that cannabis usage interacts with genetics to heighten mental health risks. Prenatal and perinatal exposure to psychoactive components has been shown in animal research to be associated with long-term effects on neural systems relevant to psychiatric and substance use disorders. The long-term molecular, epigenetic, electrophysiological, and behavioral consequences of prenatal and perinatal exposure to cannabis are discussed in this article. Animal and human studies, as well as in vivo neuroimaging methods, are used to provide insights into the changes induced in the brain by cannabis. Here, based on the literature from both animal models and humans, it can be concluded that prenatal cannabis exposure alters the developmental route of several neuronal regions with correlated functional consequences evidenced as changes in social behavior and executive functions throughout life.
Collapse
Affiliation(s)
- Sina Motamedi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Saboori Amleshi
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnoush Akbari Javar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Health Foresight and Innovation Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Shams
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Effects of Cannabinoid Exposure during Neurodevelopment on Future Effects of Drugs of Abuse: A Preclinical Perspective. Int J Mol Sci 2021; 22:ijms22189989. [PMID: 34576153 PMCID: PMC8472179 DOI: 10.3390/ijms22189989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system plays a central role in the earliest stages of embryonic, postnatal and adolescent neurodevelopment. Aberrant activity of this system at key developmental phases has been shown to affect neural development. The aim of this review is to synthesise and analyse preclinical insights within rodent populations, focusing on the effects that perinatal (embryonic, gestational and early postnatal developmental stages) and adolescent (postnatal day 21–60) cannabinoid exposure impose across time on the subsequent activity of various drugs of abuse. Results in rodents show that exposure to cannabinoids during the perinatal and adolescent period can lead to multifaceted behavioural and molecular changes. In the perinatal period, significant effects of Δ9-THC exposure on subsequent opiate and amphetamine reward-related behaviours were observed primarily in male rodents. These effects were not extended to include cocaine or alcohol. In adolescence, various cannabinoid agonists were used experimentally. This array of cannabinoids demonstrated consistent effects on opioids across sex. In contrast, no significant effects were observed regarding the future activity of amphetamines and cocaine. However, these studies focused primarily on male rodents. In conclusion, numerous gaps and limitations are apparent in the current body of research. The sparsity of studies analysing the perinatal period must be addressed. Future research within both periods must also focus on delineating sex-specific effects, moving away from a male-centric focus. Studies should also aim to utilise more clinically relevant cannabinoid treatments.
Collapse
|
4
|
Ramshini E, Sheykhzade M, Dabiri S, Shabani M. Cannabinoid CB1 receptor mediates METH-induced electrophysiological and morphological alterations in cerebellum Purkinje cells. Hum Exp Toxicol 2020; 40:940-951. [PMID: 33249856 DOI: 10.1177/0960327120975448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our previous studies on cannabinoid type1 receptor (CB1R) activation on Methamphetamine (METH)-induced neurodegeneration and locomotion impairments in male rats suggest an interaction between CB1Rs and METH. However, the role of these receptors in METH-neurotoxicity has not been fully identified. Therefore, the purpose of the present study is to investigate the involvement of CB1Rs in these effects. We conducted an electrophysiological study to evaluate functional interactions between METH and CB1Rs using whole-cell patch current clamp recording. Furthermore, we designed the Nissl staining protocol to assess the effect of METH on the basic cerebellar Purkinje cell structure. Our findings revealed that METH significantly increased the action potential half-width, spontaneous interspike intervals, first spike latency, and decreased the rebound action potential and spontaneous firing frequency. Using CB1R agonist and antagonist, our results showed a significant interaction with some of the electrophysiological alterations induced by METH. Further, Nissl staining revealed that the exposure to the combination of METH and SR141716A resulted in the necrotic cell death. Results of the current study raises the possibility that METH consumption profoundly affect the intrinsic membrane properties of cerebellar Purkinje neurons and cannabinoid system manipulations may counteract some of these effects. In summary, our findings provide further insights into the modulatory role of the endocannabinoid system in METH-induced neurologic changes, which can be used in the development of potential therapeutic interventions for METH dependence.
Collapse
Affiliation(s)
- Effat Ramshini
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran.,158777Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Sheykhzade
- 365660Department of Drug Design and Pharmacology, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- 158777Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Aghaei I, Hajali V, Dehpour A, Haghani M, Sheibani V, Shabani M. Alterations in the intrinsic electrophysiological properties of Purkinje neurons in a rat model of hepatic encephalopathy: Relative preventing effect of PPARγ agonist. Brain Res Bull 2016; 121:16-25. [DOI: 10.1016/j.brainresbull.2015.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022]
|
6
|
Crawford S. On the origins of autism: The Quantitative Threshold Exposure hypothesis. Med Hypotheses 2015; 85:798-806. [PMID: 26481157 DOI: 10.1016/j.mehy.2015.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 09/21/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
The Quantitative Threshold Exposure (QTE) hypothesis is a multifactorial threshold model that accounts for the cumulative effects of risk factor exposure in both the causation of autism spectrum disorder (ASD) and its dramatic increase over the past 30 years. The QTE hypothesis proposes that ASD is triggered by the cumulative effects of high-level exposure to endogenous and environmental factors that act as antigens to impair normal immune system (IS) and associated central nervous system (CNS) functions during critical developmental stages. The quantitative threshold parameters that comprise a cumulative risk for the development of ASD are identified by the assessment of documented epidemiological factors that, in sum, determine the likelihood that ASD will occur as a result of their effects on critically integrated IS and CNS pathways active during prenatal, neo-natal and early childhood brain maturation. The model proposes an explanation for the relationship between critical developmental stages of brain/immune system development in conjunction with the quantitative effects of genetic and environmental risk factors that may interface with these critical developmental windows. This model may be useful even when the individual contributions of specific risk factors cannot be quantified, as it proposes that the combined quantitative level of exposure to risk factors for ASD rather than exposure to any one risk factor per se defines threshold occurrence rates.
Collapse
Affiliation(s)
- S Crawford
- Department of Biology, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515, United States.
| |
Collapse
|
7
|
Aghaei I, Rostampour M, Shabani M, Naderi N, Motamedi F, Babaei P, Khakpour-Taleghani B. Palmitoylethanolamide attenuates PTZ-induced seizures through CB1 and CB2 receptors. Epilepsy Res 2015; 117:23-8. [PMID: 26370914 DOI: 10.1016/j.eplepsyres.2015.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022]
Abstract
Epilepsy is one of the most common neurologic disorders. Though there are effective medications available to reduce the symptoms of the disease, their side effects have limited their usage. Palmitoylethanolamide (PEA) has been shown to attenuate seizure in different animal models. The objective of the current study was to evaluate the role of CB1 and CB2 receptors in this attenuation. Male wistar rats were used for the current experiment. PTZ was injected to induce chemical kindling in animals. After verification of kindling in animals, treatment was performed with PEA, AM251 and AM630 in different groups. Latency to induce seizure, seizure stages and latency and duration of fifth stage of seizure was recorded for each animal. Injection of PTZ led to seizure in the animals. Pretreatment with PEA increased the latency to initiate seizures and reduced the duration of seizure. Pretreatment with different dosages of AM251 had contrary effects so that at lower doses they increased the seizure in animals but at higher doses led to the attenuation of seizure. AM630 increased seizures in a dose dependent manner. Combination of the antagonists increased the seizure parameters and attenuated the effect of PEA on seizure. PEA attenuated the PTZ-induced seizures and pretreatment with CB1 and CB2 antagonists diminished this effect of PEA, but still PEA was effective, which might be attributed to the contribution of other receptors in PEA anti-epileptic properties. Findings of the current study implied that endocannabinoid signaling pathway might have an important role in the effects of PEA.
Collapse
Affiliation(s)
- Iraj Aghaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostampour
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | - Nima Naderi
- Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Babaei
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran
| | - Behrooz Khakpour-Taleghani
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Higuera-Matas A, Ucha M, Ambrosio E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev 2015; 55:119-46. [PMID: 25960036 DOI: 10.1016/j.neubiorev.2015.04.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/30/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Marihuana is the most widely consumed illicit drug, even among adolescents and pregnant women. Given the critical developmental processes that occur in the adolescent and fetal nervous system, marihuana consumption during these stages may have permanent consequences on several brain functions in later adult life. Here, we review what is currently known about the long-term consequences of perinatal and adolescent cannabinoid exposure. The most consistent findings point to long-term impairments in cognitive function that are associated with structural alterations and disturbed synaptic plasticity. In addition, several neurochemical modifications are also evident after prenatal or adolescent cannabinoid exposure, especially in the endocannabinoid, glutamatergic, dopaminergic and opioidergic systems. Important sexual dimorphisms are also evident in terms of the long-lasting effects of cannabinoid consumption during pregnancy and adolescence, and cannabinoids possibly have a protective effect in adolescents who have suffered traumatic life challenges, such as maternal separation or intense stress. Finally, we suggest some future research directions that may encourage further advances in this exciting field.
Collapse
Affiliation(s)
- Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain.
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, National University of Distance Learning (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain
| |
Collapse
|
9
|
Abstract
Microtubule turnover in the growing axons is required for directional axonal growth and synapse formation in the developing brain. In this issue of The EMBO Journal, Tortoriello et al (2014) show that the microtubule-binding protein SCG10/stathmin-2 is a specific molecular target for a CB1 receptor-mediated effect of Δ(9)-tetrahydrocannabinol (THC), the psychoactive ingredient of smoked marijuana, in the fetal brain. Considering the role of CB1 in modulating the specification and long-distance migration of neurons in the perinatal brain, this study reveals an interesting mechanism potentially accounting for connectivity deficits during cortical development following exposure to CB1 agonists or THC during pregnancy.
Collapse
Affiliation(s)
- Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | | |
Collapse
|