1
|
Mou Q, Bai Y, Xu M, Lv D, Deng J, Hu N, Yang J. Microarray Chip and Method for Simultaneous and Highly Consistent Electroporation of Multiple Cells of Different Sizes. Anal Chem 2023. [PMID: 37230941 DOI: 10.1021/acs.analchem.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cell electroporation is an important cell manipulation technology to artificially transfer specific extracellular components into cells. However, the consistency of substance transport during the electroporation process is still an issue due to the wide size distribution of the natural cells. In this study, a cell electroporation microfluidic chip based on a microtrap array is proposed. The microtrap structure was optimized for single-cell capture and electric field focusing. The effects of the cell size on the cell electroporation in the microchip were investigated through simulation and experiment methods using the giant unilamellar vesicle as the simplified cell model, and a numerical model of a uniform electric field was used as a comparison. Compared with the uniform electric field, a lower threshold electric field is required to induce electroporation and produces a higher transmembrane voltage on the cell under a specific electric field in the microchip, showing an improvement in cell viability and electroporation efficiency. The larger perforated area produced on the cells in the microchip under a specific electric field allows a higher substance transfer efficiency, and the electroporation results are less affected by the cell size, which is beneficial for improving substance transfer consistency. Furthermore, the relative perforation area increases with the decrease of the cell diameter in the microchip, which is exactly opposite to that in a uniform electric field. By manipulating the electric field applied to the microtrap individually, a consistent proportion of substance transfer during electroporation of cells with different sizes can be achieved.
Collapse
Affiliation(s)
- Qiongyao Mou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Dan Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Scuderi M, Dermol-Černe J, Batista Napotnik T, Chaigne S, Bernus O, Benoist D, Sigg DC, Rems L, Miklavčič D. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model. Biomolecules 2023; 13:727. [PMID: 37238597 PMCID: PMC10216437 DOI: 10.3390/biom13050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Electroporation is a biophysical phenomenon involving an increase in cell membrane permeability to molecules after a high-pulsed electric field is applied to the tissue. Currently, electroporation is being developed for non-thermal ablation of cardiac tissue to treat arrhythmias. Cardiomyocytes have been shown to be more affected by electroporation when oriented with their long axis parallel to the applied electric field. However, recent studies demonstrate that the preferentially affected orientation depends on the pulse parameters. To gain better insight into the influence of cell orientation on electroporation with different pulse parameters, we developed a time-dependent nonlinear numerical model where we calculated the induced transmembrane voltage and pores creation in the membrane due to electroporation. The numerical results show that the onset of electroporation is observed at lower electric field strengths for cells oriented parallel to the electric field for pulse durations ≥10 µs, and cells oriented perpendicular for pulse durations ~100 ns. For pulses of ~1 µs duration, electroporation is not very sensitive to cell orientation. Interestingly, as the electric field strength increases beyond the onset of electroporation, perpendicular cells become more affected irrespective of pulse duration. The results obtained using the developed time-dependent nonlinear model are corroborated by in vitro experimental measurements. Our study will contribute to the process of further development and optimization of pulsed-field ablation and gene therapy in cardiac treatments.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tina Batista Napotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastien Chaigne
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Olivier Bernus
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - David Benoist
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Daniel C. Sigg
- Medtronic, Cardiac Ablation Solutions, Minneapolis, MN 55105, USA
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Fang Z, Chen L, Moser MAJ, Zhang W, Qin Z, Zhang B. Electroporation-Based Therapy for Brain Tumors: A Review. J Biomech Eng 2021; 143:100802. [PMID: 33991087 DOI: 10.1115/1.4051184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/21/2022]
Abstract
Electroporation-based therapy (EBT), as a high-voltage-pulse technology has been prevalent with favorable clinical outcomes in the treatment of various solid tumors. This review paper aims to promote the clinical translation of EBT for brain tumors. First, we briefly introduced the mechanism of pore formation in a cell membrane activated by external electric fields using a single cell model. Then, we summarized and discussed the current in vitro and in vivo preclinical studies, in terms of (1) the safety and effectiveness of EBT for brain tumors in animal models, and (2) the blood-brain barrier (BBB) disruption induced by EBT. Two therapeutic effects could be achieved in EBT for brain tumors simultaneously, i.e., the tumor ablation induced by irreversible electroporation (IRE) and transient BBB disruption induced by reversible electroporation (RE). The BBB disruption could potentially improve the uptake of antitumor drugs thereby enhancing brain tumor treatment. The challenges that hinder the application of EBT in the treatment of human brain tumors are discussed in the review paper as well.
Collapse
Affiliation(s)
- Zheng Fang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Bing Zhang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Rankin-Turner S, Vader P, O'Driscoll L, Giebel B, Heaney LM, Davies OG. A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Adv Drug Deliv Rev 2021; 173:479-491. [PMID: 33862168 PMCID: PMC8191593 DOI: 10.1016/j.addr.2021.04.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are complex nanoparticles required for the intercellular transfer of diverse biological cargoes. Unlike synthetic nanoparticles, EVs may provide a natural platform for the enhanced targeting and functional transfer of therapeutics across complex and often impenetrable biological boundaries (e.g. the blood-brain barrier or the matrix of densely organised tumours). Consequently, there is considerable interest in utilising EVs as advanced drug delivery systems for the treatment of a range of challenging pathologies. Within the past decade, efforts have focused on providing standard minimal requirements for conducting basic EV research. However, no standard reporting framework has been established governing the therapeutic loading of EVs for drug delivery applications. The purpose of this review is to critically evaluate progress in the field, providing an initial set of guidelines that can be applied as a benchmark to enhance reproducibility and increase the likelihood of translational outcomes.
Collapse
Affiliation(s)
- Stephanie Rankin-Turner
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Pieter Vader
- CDL Research, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Experimental Cardiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstraβe 179, 45147 Essen, Germany
| | - Liam M Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
5
|
De Angelis A, Denzi A, Merla C, Andre FM, Mir LM, Apollonio F, Liberti M. Confocal Microscopy Improves 3D Microdosimetry Applied to Nanoporation Experiments Targeting Endoplasmic Reticulum. Front Bioeng Biotechnol 2020; 8:552261. [PMID: 33072718 PMCID: PMC7537786 DOI: 10.3389/fbioe.2020.552261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
In the last years, microdosimetric numerical models of cells including intracellular compartments have been proposed, aiming to investigate the poration induced by the application of nanosecond pulsed electric fields (nsPEFs). A limitation of such models was the extremely approximate cell and organelle shapes, leading to an incorrect estimation of the electric field or transmembrane potential distribution in the studied domain. In order to obtain a reliable model of in vitro experiments and a one-to-one comparison between experimental and simulated results, here, a realistic model of 12 human mesenchymal stem cells was built starting from their optical microscopy images where different cell compartments were highlighted. The microdosimetric analysis of the cells group was quantified in terms of electric field and transmembrane potentials (TMPs) induced by an externally applied 10-ns trapezoidal pulse with rise and fall times of 2 ns, with amplitudes ranging from 2 to 30 MV/m. The obtained results showed that the plasma and endoplasmic reticulum (ER) membrane of each cell respond in a different way to the same electric field amplitude, depending on differences in shape, size, and position of the single cell with respect to the applied electric field direction. Therefore, also the threshold for an efficient electroporation is highly different from cell to cell. This difference was quantitatively estimated through the cumulative distribution function of the pore density for the plasma and ER membrane of each cell, representing the probability that a certain percentage of membrane has reached a specific value of pore density. By comparing the dose-response curves resulted from the simulations and those from the experimental study of De Menorval et al. (2016), we found a very good matching of results for plasma and ER membrane when 2% of the porated area is considered sufficient for permeabilizing the membrane. This result is worth of noting as it highlights the possibility to effectively predict the behavior of a cell (or of a population of cells) exposed to nsPEFs. Therefore, the microdosimetric realistic model described here could represent a valid tool in setting up more efficient and controlled electroporation protocols.
Collapse
Affiliation(s)
- Annalisa De Angelis
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Agnese Denzi
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy
| | - Caterina Merla
- National Italian Agency for Energy, New Technologies and Sustainable Economic Development - Department of Sustainability (ENEA, SSPT) - Division of Health Protection Technologies, Rome, Italy
| | - Frank M Andre
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis, Villejuif, France
| | - Lluis M Mir
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis, Villejuif, France
| | - Francesca Apollonio
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Micaela Liberti
- Inter University Center for the Study of Electromagnetic Fields and Biological Systems (ICEmB) at Department of Electronic Engineering and Telecommunications (DIET), University of Rome "La Sapienza", Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| |
Collapse
|
6
|
Caramazza L, Nardoni M, De Angelis A, Paolicelli P, Liberti M, Apollonio F, Petralito S. Proof-of-Concept of Electrical Activation of Liposome Nanocarriers: From Dry to Wet Experiments. Front Bioeng Biotechnol 2020; 8:819. [PMID: 32793572 PMCID: PMC7390969 DOI: 10.3389/fbioe.2020.00819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing interest toward biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes of liposomes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility to control the release from liposome vesicles, using nanosecond pulsed electric fields characterized by a 10 ns duration and intensity in the order of MV/m. The results are supported by multiphysics simulations which consider the coupling of three physics (electromagnetics, thermal and pore kinetics) in order to explain the occurring physical interactions at the microscopic level and provide useful information on the characteristics of the train of pulses needed to obtain quantitative results in terms of liposome electropermeabilization. Finally, a complete characterization of the exposure system is also provided to support the reliability and validity of the study.
Collapse
Affiliation(s)
- Laura Caramazza
- ICEmB at DIET, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Martina Nardoni
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Annalisa De Angelis
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Micaela Liberti
- ICEmB at DIET, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Francesca Apollonio
- ICEmB at DIET, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Stefania Petralito
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
De Angelis A, Denzi A, Merla C, Andre FM, Garcia-Sanchez T, Mir LM, Apollonio F, Liberti M. Microdosimetric Realistic Model of a Cell with Endoplasmic Reticulum. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:134-137. [PMID: 31945862 DOI: 10.1109/embc.2019.8857540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When investigating the biophysical effects induced by the interaction between electromagnetic fields and biological cells, it is crucial to estimate the electromagnetic field intensity at the microscopic scale (microdosimetry). This information allows to find a connection between the external applied field and the observed biological event required to establish related biomedical applications. Here, authors present a microdosimetric study based on a 2D realistic model of a cell and its endoplasmic reticulum. The microdosimetric analysis of the cell and endoplasmic reticulum was quantified in terms of electric field and transmembrane potential induced by an externally applied high amplitude 10-ns pulsed electric field. In addition, electroporated local membrane sites and pore densities were also evaluated. This study opens the way to numerically assist experimental applications of nanosecond pulsed electric fields for controlled bio-manipulation of cells and subcellular organelles.
Collapse
|
9
|
García-Sánchez T, Merla C, Fontaine J, Muscat A, Mir LM. Sine wave electropermeabilization reveals the frequency-dependent response of the biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1022-1034. [PMID: 29410049 DOI: 10.1016/j.bbamem.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 01/25/2023]
Abstract
The permeabilization of biological membranes by electric fields, known as electroporation, has been traditionally performed with square electric pulses. These signals distribute the energy applied to cells in a wide frequency band. This paper investigates the use of sine waves, which are narrow band signals, to provoke electropermeabilization and the frequency dependence of this phenomenon. Single bursts of sine waves at different frequencies in the range from 8 kHz-130 kHz were applied to cells in vitro. Electroporation was studied in the plasma membrane and the internal organelles membrane using calcium as a permeabilization marker. Additionally, a double-shell electrical model was simulated to give a theoretical framework to our results. The electroporation efficiency shows a low pass filter frequency dependence for both the plasma membrane and the internal organelles membrane. The mismatch between the theoretical response and the observed behavior for the internal organelles membrane is explained by a two-step permeabilization process: first the permeabilization of the external membrane and afterwards that of the internal membranes. The simulations in the model confirm this two-step hypothesis when a variable plasma membrane conductivity is considered in the analysis. This study demonstrates how the use of narrow-band signals as sine waves is a suitable method to perform electroporation in a controlled manner. We suggest that the use of this type of signals could bring a simplification in the investigations of the very complex phenomenon of electroporation, thus representing an interesting option in future fundamental studies.
Collapse
Affiliation(s)
- Tomás García-Sánchez
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France.
| | - Caterina Merla
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Jessica Fontaine
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Adeline Muscat
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Lluis M Mir
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| |
Collapse
|
10
|
Mercadal B, Arena CB, Davalos RV, Ivorra A. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study. Phys Med Biol 2017; 62:8060-8079. [PMID: 28901954 DOI: 10.1088/1361-6560/aa8c53] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.
Collapse
Affiliation(s)
- Borja Mercadal
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat, 138, 08018 Barcelona, Spain
| | | | | | | |
Collapse
|