1
|
Optical Tweezers to Force Information out of Biological and Synthetic Systems One Molecule at a Time. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the last few decades, in vitro single-molecule manipulation techniques have enabled the use of force and displacement as controlled variables in biochemistry. Measuring the effect of mechanical force on the real-time kinetics of a biological process gives us access to the rates, equilibrium constants and free-energy landscapes of the mechanical steps of the reaction; this information is not accessible by ensemble assays. Optical tweezers are the current method of choice in single-molecule manipulation due to their versatility, high force and spatial and temporal resolutions. The aim of this review is to describe the contributions of our lab in the single-molecule manipulation field. We present here several optical tweezers assays refined in our laboratory to probe the dynamics and mechano-chemical properties of biological molecular motors and synthetic molecular devices at the single-molecule level.
Collapse
|
2
|
Chakraborty H, Sengupta D. Preface to Special Issue on Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:633-635. [PMID: 36367553 DOI: 10.1007/s00232-022-00273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hirak Chakraborty
- School of Chemistry, Sambalpur University, Burla, Odisha, 768019, India.
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| | - Durba Sengupta
- School of Chemistry, Sambalpur University, Burla, Odisha, 768019, India.
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|
3
|
Cheppali SK, Dharan R, Katzenelson R, Sorkin R. Supported Natural Membranes on Microspheres for Protein-Protein Interaction Studies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49532-49541. [PMID: 36306148 DOI: 10.1021/acsami.2c13095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiple biological and pathological processes, such as signaling, cell-cell communication, and infection by various viruses, occur at the plasma membrane. The eukaryotic plasma membrane is made up of thousands of different lipids, membrane proteins, and glycolipids, and its composition is dynamic and constantly changing. Due to the central importance of membranes on the one hand and their complexity on the other, membrane model systems are instrumental for interrogating membrane-related biological processes. Here, we develop a new tool for protein-membrane interaction studies. Our method is based on natural membranes obtained from extracellular vesicles. We form membrane bilayers supported on polystyrene microspheres that can be trapped and manipulated using optical tweezers. This method allows working with membrane proteins of interest within a background of native membrane components where their correct orientation is preserved. We demonstrate our method's applicability by successfully measuring the interaction forces between the Spike protein of SARS-CoV-2 and its human receptor, ACE2. We further show that these interactions are blocked by the addition of an antibody against the receptor binding domain of the Spike protein. Our approach is versatile and broadly applicable for various membrane biology and biophysics questions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Roni Katzenelson
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel6997801
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel6997801
| |
Collapse
|