1
|
Dieckmeyer M, Sollmann N, Kupfer K, Löffler MT, Paprottka KJ, Kirschke JS, Baum T. Computed Tomography of the Head : A Systematic Review on Acquisition and Reconstruction Techniques to Reduce Radiation Dose. Clin Neuroradiol 2023; 33:591-610. [PMID: 36862232 PMCID: PMC10449676 DOI: 10.1007/s00062-023-01271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/24/2023] [Indexed: 03/03/2023]
Abstract
In 1971, the first computed tomography (CT) scan was performed on a patient's brain. Clinical CT systems were introduced in 1974 and dedicated to head imaging only. New technological developments, broader availability, and the clinical success of CT led to a steady growth in examination numbers. Most frequent indications for non-contrast CT (NCCT) of the head include the assessment of ischemia and stroke, intracranial hemorrhage and trauma, while CT angiography (CTA) has become the standard for first-line cerebrovascular evaluation; however, resulting improvements in patient management and clinical outcomes come at the cost of radiation exposure, increasing the risk for secondary morbidity. Therefore, radiation dose optimization should always be part of technical advancements in CT imaging but how can the dose be optimized? What dose reduction can be achieved without compromising diagnostic value, and what is the potential of the upcoming technologies artificial intelligence and photon counting CT? In this article, we look for answers to these questions by reviewing dose reduction techniques with respect to the major clinical indications of NCCT and CTA of the head, including a brief perspective on what to expect from current and future developments in CT technology with respect to radiation dose optimization.
Collapse
Affiliation(s)
- Michael Dieckmeyer
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Karina Kupfer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian T. Löffler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Karolin J. Paprottka
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Umana GE, Tomasi SO, Palmisciano P, Scalia G, Da Ros V, Al-Schameri R, Priola SM, Brunasso L, Giammalva GR, Paolini F, Costanzo R, Bonosi L, Gerardi RM, Maugeri R, Strigari L, Stieg PE, Esposito G, Lawton MT, Griessenauer CJ, Winkler PA. Intracranial Venous Alteration in Patients With Aneurysmal Subarachnoid Hemorrhage: Protocol for the Prospective and Observational SAH Multicenter Study (SMS). Front Surg 2022; 9:847429. [PMID: 35449549 PMCID: PMC9018107 DOI: 10.3389/fsurg.2022.847429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundArterial vasospasm has been ascribed as the responsible etiology of delayed cerebral infarction in patients with aneurysmal subarachnoid hemorrhage (aSAH), but other neurovascular structures may be involved. We present the protocol for a multicenter, prospective, observational study focused on analyzing morphological changes in cerebral veins of patients with aSAH.Methods and AnalysisIn a retrospective arm, we will collect head arterial and venous CT angiograms (CTA) of 50 patients with aSAH and 50 matching healthy controls at days 0–2 and 7–10, comparing morphological venous changes. A multicenter prospective observational study will follow. Patients aged ≥18 years of any gender with aSAH will be enrolled at 9 participating centers based on the predetermined eligibility criteria. A sample size of 52 aSAH patients is expected, and 52 healthy controls matched per age, gender, and comorbidities will be identified. For each patient, sequential CTA will be conducted upon admission (day 0–2), at 7–10 days, and at 14–21 days after aSAH, evaluating volumes and morphology of the cerebral deep veins and main cortical veins. One specialized image collecting center will analyze all anonymized CTA scans, performing volumetric calculation of targeted veins. Morphological venous changes over time will be evaluated using the Dice coefficient and the Jaccard index and scored using the Boeckh–Behrens system. Morphological venous changes will be correlated to clinical outcomes and compared between patients with aSAH and healthy-controls, and among groups based on surgical/endovascular treatments for aSAH.Ethics and DisseminationThis protocol has been approved by the ethics committee and institutional review board of Ethikkommission, SALK, Salzburg, Austria, and will be approved at all participating sites. The study will comply with the Declaration of Helsinki. Written informed consent will be obtained from all enrolled patients or their legal tutors. We will present our findings at academic conferences and peer-reviewed journals.Approved Protocol Version and RegistrationVersion 2, 09 June 2021.
Collapse
Affiliation(s)
- Giuseppe E. Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
- *Correspondence: Giuseppe E. Umana
| | - S. Ottavio Tomasi
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Laboratory for Microsurgical Neuroanatomy, Christian Doppler Klinik, Salzburg, Austria
| | - Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Gianluca Scalia
- Department of Neurosurgery, Highly Specialized Hospital of National Importance “Garibaldi”, Catania, Italy
| | - Valerio Da Ros
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Rahman Al-Schameri
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| | - Stefano M. Priola
- Division of Neurosurgery Health Sciences North, Northern Ontario School of Medicine, Sudbury, ON, Canada
| | - Lara Brunasso
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Giuseppe Roberto Giammalva
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Federica Paolini
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Roberta Costanzo
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Lapo Bonosi
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Rosa Maria Gerardi
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Rosario Maugeri
- Post-graduate Residency Programme in Neurological Surgery, Department of Experimental Biomedicine and Clinical Neuroscience, School of Medicine, Neurosurgical Clinic, AOUP “Paolo Giaccone”, Palermo, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS University Hospital of Bologna, Bologna, Italy
| | - Philip E. Stieg
- Department of Neurosurgery, Weill Cornell Medicine, New York, NY, United States
| | - Giuseppe Esposito
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael T. Lawton
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Christoph J. Griessenauer
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
- Laboratory for Microsurgical Neuroanatomy, Christian Doppler Klinik, Salzburg, Austria
| | - Peter A. Winkler
- Department of Neurological Surgery, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Impact of dose reduction and iterative model reconstruction on multi-detector CT imaging of the brain in patients with suspected ischemic stroke. Sci Rep 2021; 11:22271. [PMID: 34782654 PMCID: PMC8593148 DOI: 10.1038/s41598-021-01162-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023] Open
Abstract
Non-contrast cerebral computed tomography (CT) is frequently performed as a first-line diagnostic approach in patients with suspected ischemic stroke. The purpose of this study was to evaluate the performance of hybrid and model-based iterative image reconstruction for standard-dose (SD) and low-dose (LD) non-contrast cerebral imaging by multi-detector CT (MDCT). We retrospectively analyzed 131 patients with suspected ischemic stroke (mean age: 74.2 ± 14.3 years, 67 females) who underwent initial MDCT with a SD protocol (300 mAs) as well as follow-up MDCT after a maximum of 10 days with a LD protocol (200 mAs). Ischemic demarcation was detected in 26 patients for initial and in 64 patients for follow-up imaging, with diffusion-weighted magnetic resonance imaging (MRI) confirming ischemia in all of those patients. The non-contrast cerebral MDCT images were reconstructed using hybrid (Philips “iDose4”) and model-based iterative (Philips “IMR3”) reconstruction algorithms. Two readers assessed overall image quality, anatomic detail, differentiation of gray matter (GM)/white matter (WM), and conspicuity of ischemic demarcation, if any. Quantitative assessment included signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) calculations for WM, GM, and demarcated areas. Ischemic demarcation was detected in all MDCT images of affected patients by both readers, irrespective of the reconstruction method used. For LD imaging, anatomic detail and GM/WM differentiation was significantly better when using the model-based iterative compared to the hybrid reconstruction method. Furthermore, CNR of GM/WM as well as the SNR of WM and GM of healthy brain tissue were significantly higher for LD images with model-based iterative reconstruction when compared to SD or LD images reconstructed with the hybrid algorithm. For patients with ischemic demarcation, there was a significant difference between images using hybrid versus model-based iterative reconstruction for CNR of ischemic/contralateral unaffected areas (mean ± standard deviation: SD_IMR: 4.4 ± 3.1, SD_iDose: 3.5 ± 2.3, P < 0.0001; LD_IMR: 4.6 ± 2.9, LD_iDose: 3.2 ± 2.1, P < 0.0001). In conclusion, model-based iterative reconstruction provides higher CNR and SNR without significant loss of image quality for non-enhanced cerebral MDCT.
Collapse
|
4
|
Soumah M, Brami J, Simonato D, Chousterman B, Guillonnet A, Bernat AL, Houdart E, Labeyrie MA. Computed tomography angiography for quantification of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Diagn Interv Imaging 2021; 103:161-169. [PMID: 34742674 DOI: 10.1016/j.diii.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE The purpose of this study was to assess the accuracy of computed tomography angiography (CTA) for quantification of cerebral vasospasm following aneurysmal subarachnoid hemorrhage in proximal and middle segments of intracranial arteries. MATERIALS AND METHODS Twenty consecutive patients (7 men, 13 women; mean age, 47 ± 7 [SD] years; age range: 27-78 years) with aneurysmal subarachnoid hemorrhage who underwent CTA and digital subtracted angiography (DSA) with a 6-hour window at baseline and during vasospasm period were included. Twelve artery segments were analyzed in each patient. Vasospasm was blindly quantified on CTA and digital subtracted angiography (DSA) by two independent readers with discordance > 10% resolved by open data consensus. Inter-reader and inter-test correlations with DSA as reference, and causes of discordant readings were analyzed. The best sensitivity and specificity of CTA for determination of vasospasm ≥ 50% on DSA was determined using receiver operating curve analysis. RESULTS Two-hundred-and-ten arterial segments were analyzed after exclusion of 30 segments with missing data or metallic artifacts. An inter-reader discordance >10% was observed in 82 segments (82/210; 39% [95% CI: 32-46]). Inter-test discordances >10% were observed respectively in 115 segments (115/210; 55% [95% CI: 49-62]) with the junior reader and in 73 segments (73/210; 35% [95% CI: 29-42]) with the senior reader. They were related to reader error in 55 (55/210; 26% [95% CI: 20-32]) with the junior reader and 13 (13/210; 6% [95% CI: 3-9]) with the senior reader, as well systematic biases in 8 (8/210; 4% [95% CI: 1-6]), and intrinsic limitation in 52 (52/210; 25% [95% CI: 19-31]). Best sensitivity and specificity of CTA were observed for a threshold value of 30% (sensitivity = 88% [95% CI: 78-97%]; specificity = 84% [95% CI: 77-90%]; area under curve = 0.92 [95% CI: 0.86-0.97]). On a patient basis, sensitivity was 100% (specificity = 60% [95% CI: 38-81%]; area under curve = 0.97 [95% CI: 89-100%] for this same threshold. CONCLUSION Our study shows a moderate accuracy of CTA for the quantification of cerebral vasospasm, mostly related to challenging interpretation and intrinsic limitations. CTA may rule-out angiographic vasospasm ≥ 50% when no segment has vasospasm over than 30%.
Collapse
Affiliation(s)
- Mariam Soumah
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France; Faculté de Médecine, Université de Paris, Paris 75010, France
| | - Jonathan Brami
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France; Faculté de Médecine, Université de Paris, Paris 75010, France
| | - Davide Simonato
- Department of Neuroradiology, John Radcliffe Hospital, Oxford National Health Care, Oxford University, Oxford OX3 9DU, UK
| | - Benjamin Chousterman
- Faculté de Médecine, Université de Paris, Paris 75010, France; Intensive Care Unit, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France
| | - Antoine Guillonnet
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France; Faculté de Médecine, Université de Paris, Paris 75010, France
| | - Anne-Laure Bernat
- Faculté de Médecine, Université de Paris, Paris 75010, France; Department of Neurosurgery, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France
| | - Emmanuel Houdart
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France; Faculté de Médecine, Université de Paris, Paris 75010, France
| | - Marc-Antoine Labeyrie
- Department of Neuroradiology, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris 75010, France; Faculté de Médecine, Université de Paris, Paris 75010, France.
| |
Collapse
|
5
|
Smith NM, Sweeney EM, Gupta A, Patsalides A, Sanelli P, Ivanidze J. Diagnostic accuracy of shuttle CT angiography (CTA) and helical CTA in the diagnosis of vasospasm. Clin Imaging 2021; 81:37-42. [PMID: 34598002 DOI: 10.1016/j.clinimag.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/14/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the diagnostic accuracy of computed tomography angiography (CTA) acquired with shuttle technique (CTAs) and helical CTA (CTAh) for vasospasm, using digital subtraction angiography (DSA) obtained within 24 h as reference standard. METHODS Thirty-six patients with suspected vasospasm in the setting of aneurysmal subarachnoid hemorrhage (ASAH, 30/36) or acute inflammatory/infectious conditions (6/36) who underwent CTAs (17/36) or CTAh (19/36) followed by DSA within 24 h were identified retrospectively. Presence of vasospasm in the proximal cerebral arterial segments was assessed qualitatively and semi-quantitatively on CTA and subsequent DSA. Sensitivity, specificity, and receiver operating characteristic (ROC) curves were calculated. Inter-rater variability was assessed using Cohen's kappa. RESULTS On CTAs, 35% of patients had low and 65% had high vasospasm burden. On CTAh, 37% had low and 63% had high vasospasm burden. ROC analysis demonstrated an AUC of 0.87 for CTAs (95%CI 0.67-1.00, p = 0.015) and 0.88 for CTAh (0.72-1.00, p = 0.028). Cohen's kappa was 0.843 (95%CI 0.548-1.000). Thresholding with Youden's J index, CTAs had a sensitivity of 85.71% (95%CI 48.69 to 99.27) and specificity of 66.67% (35.42 to 87.94). CTAh had sensitivity of 100% (56.55 to 100.00) and specificity of 78.57% (52.41 to 92.43). CONCLUSION CTAs and CTAh yielded similar sensitivity, specificity, and AUC values on ROC analysis for the detection of vasospasm using DSA as reference standard. Our findings suggest that CTAs is a promising alternative to CTAh especially in patients requiring serial imaging, given its potential advantages of decreased radiation exposure, contrast dose, and cost-effectiveness.
Collapse
Affiliation(s)
- Natasha M Smith
- Department of Radiology, New York Presbyterian, Weill Cornell Medical College, 525 East 68th Street New York, NY 10065, USA.
| | - Elizabeth M Sweeney
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, New York Presbyterian, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA.
| | - Ajay Gupta
- Department of Radiology, New York Presbyterian, Weill Cornell Medical College, 525 East 68th Street New York, NY 10065, USA.
| | - Athos Patsalides
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, 300 Community Drive, Manhasset, NY 11030, USA.
| | - Pina Sanelli
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, 300 Community Drive, Manhasset, NY 11030, USA.
| | - Jana Ivanidze
- Department of Radiology, New York Presbyterian, Weill Cornell Medical College, 525 East 68th Street New York, NY 10065, USA.
| |
Collapse
|
6
|
Veldeman M, Albanna W, Weiss M, Conzen C, Schmidt TP, Schulze-Steinen H, Wiesmann M, Clusmann H, Schubert GA. Invasive neuromonitoring with an extended definition of delayed cerebral ischemia is associated with improved outcome after poor-grade subarachnoid hemorrhage. J Neurosurg 2021; 134:1527-1534. [PMID: 32413866 DOI: 10.3171/2020.3.jns20375] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The current definition of delayed cerebral ischemia (DCI) is based on clinical characteristics precluding its use in patients with poor-grade subarachnoid hemorrhage (SAH). Additional concepts to evaluate the unconscious patient are required. Invasive neuromonitoring (INM) may allow timely detection of metabolic and oxygenation crises before irreversible damage has occurred. METHODS The authors present a cohort analysis of all consecutive SAH patients referred to a single tertiary care center between 2010 and 2018. The cohort (n = 190) was split into two groups: one before (n = 96) and one after (n = 94) the introduction of INM in 2014. A total of 55 poor-grade SAH patients were prospectively monitored using parenchymal oxygen saturation measurement and cerebral microdialysis. The primary outcome was the Glasgow Outcome Scale-Extended (GOSE) score after 12 months. RESULTS With neuromonitoring, the first DCI event was detected earlier (mean 2.2 days, p = 0.002). The overall rate of DCI-related infarctions decreased significantly (from 44.8% to 22.3%; p = 0.001) after the introduction of invasive monitoring. After 12 months, a higher rate of favorable outcome was observed in the post-INM group, compared to the pre-INM group (53.8% vs 39.8%), with a significant difference in the GOSE score distribution (OR 4.86, 95% CI -1.17 to -0.07, p = 0.028). CONCLUSIONS In this cohort analysis of poor-grade SAH patients, the introduction of INM and the extension of the classic DCI definition toward a functional dimension resulted in an earlier detection and treatment of DCI events. This led to an overall decrease in DCI-related infarctions and an improvement in outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Martin Wiesmann
- 3Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
7
|
Wu D, Wang G, Bian B, Liu Z, Li D. Benefits of Low-Dose CT Scan of Head for Patients With Intracranial Hemorrhage. Dose Response 2020; 19:1559325820909778. [PMID: 32214915 PMCID: PMC7065437 DOI: 10.1177/1559325820909778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
Objectives: For patients with intracranial hemorrhage (ICH), routine follow-up computed tomography (CT) scans are typically required to monitor the progression of intracranial pathology. Remarkable levels of radiation exposure are accumulated during repeated CT scan. However, the effects and associated risks have still remained elusive. This study presented an effective approach to quantify organ-specific radiation dose of repeated CT scans of head for patients with ICH. We also indicated whether a low-dose CT scan may reduce radiation exposure and keep the image quality highly acceptable for diagnosis. Methods: Herein, 72 patients with a history of ICH were recruited. The patients were divided into 4 groups and underwent CT scan of head with different tube current–time products (250, 200, 150, and 100 mAs). Two experienced radiologists visually rated scores of quality of images according to objective image noise, sharpness, diagnostic acceptability, and artifacts due to physiological noise on the same workstation. Organ-/tissue-specific radiation doses were analyzed using Radimetrics. Results: In conventional CT scan group, signal to noise ratio (SNR) and contrast to noise ratio (CNR) of ICH images were significantly higher than those in normal brain structures. Reducing the tube current–time product may decrease the image quality. However, the predilection sites for ICH could be clearly identified. The SNR and CNR in the predilection sites for ICH were notably higher than other areas. The brain, eye lenses, and salivary glands received the highest radiation dose. Reducing tube current–time product from 250 to 100 mA can significantly reduce the radiation dose. Discussion: We demonstrated that low-dose CT scan of head can still provide reasonable images for diagnosing ICH. The radiation dose can be reduced to ∼45% of the conventional CT scan group.
Collapse
Affiliation(s)
- Dan Wu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Gang Wang
- Department of Orthopedics, The Third Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingyang Bian
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhuohang Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Dan Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
8
|
Ren C, Gao J, Xu GJ, Xu H, Liu G, Liu L, Zhang L, Cao JL, Zhang Z. The Nimodipine-Sparing Effect of Perioperative Dexmedetomidine Infusion During Aneurysmal Subarachnoid Hemorrhage: A Prospective, Randomized, Controlled Trial. Front Pharmacol 2019; 10:858. [PMID: 31427968 PMCID: PMC6688624 DOI: 10.3389/fphar.2019.00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Nimodipine can block the influx of calcium into the vascular smooth muscle cell and prevent secondary ischemia in patients with aneurysmal subarachnoid hemorrhage. However, the reduction of blood pressure after long-term intravenous administration of nimodipine has been associated with neurological deterioration. Yet, no effective solutions have been suggested to address this phenomenon. The use of neuroprotective drug combinations may reduce the risk of sudden blood pressure loss. This prospective, randomized, controlled trial was performed to evaluate the nimodipine-sparing effect of perioperative dexmedetomidine infusion during aneurysmal subarachnoid hemorrhage. Methods: One hundred nine patients who underwent aneurysm embolization were divided into three groups: group C (n = 35, infused with 0.9% sodium chloride at the same rate as other two groups), group D1 (n = 38, dexmedetomidine infusion at 0.5 µg·kg–1 for 10 min, then adjusted to 0.2 µg·kg–1·h–1), and group D2 (n = 36, dexmedetomidine infusion at 0.5 µg·kg–1 for 10 min, then adjusted to 0.4 µg·kg–1·h–1). Patient-controlled analgesia was given for 48 h after surgery. The primary outcome measure was the total consumption of nimodipine during the first 48 h after surgery. The secondary outcome measures were recovery time at post-anesthesia care unit (PACU), postoperative pain intensity scores, dexmedetomidine and sufentanil consumption, hemodynamic, satisfaction of patients and neurosurgeon, neurologic examination (Glasgow Coma Scale, GCS), Bruggemann comfort scale, and adverse effects. Intraoperative hemodynamics were recorded at the following time-points: arrival at the operating room (T1); before intubation (T2); intubation (T3); 5 min (T4), 10 min (T5), and 15 min (T6) after intubation; suturing of femoral artery (T7); end of surgery (T8); extubation (T9); and 5 min (T10), 10 min (T11), and 15 min (T12) after arrival at the PACU. The level of sedation was recorded at 15 min, 30 min, 1 h, and 2 h after extubation. We also recorded the incidence of symptomatic cerebral vasospasm during 7 days after surgery, Glasgow Outcome Score (GOS) at 3 months, and incidence of cerebral infarction 30 days after surgery. Results: The consumption of nimodipine during the first 48 h after surgery was significantly lower in group D2 (P < 0.05). Compared with group C, HR and MAP were significantly decreased from T2 to T12 in group D1 and D2 (P < 0.05). Patients in group D2 showed a significantly decreased MAP from T5 to T9 compared with group D1 (P < 0.05). The consumption of sevoflurane, remifentanil, dexmedetomidine, and nimodipine were all significantly reduced in groups D1 and D2 during surgery (P < 0.05). Compared with group C, MAP was significantly decreased in groups D1 and D2 during the first 48 h after surgery (P < 0.05). Compared with group C, consumption of sufentanil and dexmedetomidine at 1 h, pain intensity at 1 h, and 8 h after surgery were significantly decreased in groups D1 and D2 (P < 0.05). FAS was significantly higher in group D2 at 8 h, 16 h, and 24 h after surgery. LOS was significantly lower only in group D2 at 0.5 h after surgery (P < 0.05). Compared with group C, BCS was significantly higher group D2 at 4 h and 8 h after surgery (P < 0.05). There were no significant differences among the three groups in consumption of propofol, cisatracurium, fentanyl, and vasoactive drugs during operation, recovery time at PACU, satisfaction of patients and neurosurgeon, and number of applied urapidil and GCS during the first 48 h after surgery. The incidence of symptomatic cerebral vasospasm during 7 days after surgery, GOS of 3 months, and cerebral infarction after 30 days were also comparable among the three groups. Conclusions: Dexmedetomidine (infusion at 0.5 µg·kg–1 for 10 min, then adjusted to 0.4 µg·kg–1·h–1 during the surgery) significantly reduced the total consumption of nimodipine during the first 48 h after surgery and promoted early rehabilitation of patients although the incidences of symptomatic cerebral vasospasm, GOS, and cerebral infarction were not reduced.
Collapse
Affiliation(s)
- Chunguang Ren
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Jian Gao
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Guang Jun Xu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Huiying Xu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Guoying Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Lei Liu
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Jun-Li Cao
- Department of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zongwang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
9
|
Messaris GAT, Georgakopoulos DN, Zampakis P, Kalogeropoulou CP, Petsas TG, Panayiotakis GS. Patient dose in brain perfusion imaging using an 80-slice CT system. J Neuroradiol 2018; 46:243-247. [PMID: 30030061 DOI: 10.1016/j.neurad.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Brain CT Perfusion (CTP) is an X-ray imaging technique for the assessment of brain tissue perfusion, which can be used in several different entities. The aim of this study is the evaluation of the radiation dose to patients during a comprehensive brain CT prescription protocol (CPP) consisting of an unenhanced brain CT, a brain CT angiography and a CTP scan. MATERIALS AND METHODS Eighteen patients were studied using an 80-slice CT system, with an iterative reconstruction algorithm. The volume Computed Tomography Dose Index (CTDIvol) and dose length product (DLP) were recorded from the dose report of the system. The calculation of effective dose (ED) was accomplished using the DLP values. RESULTS For the CTP examinations, the CTDIvol ranged from 116.0 to 134.8mGy, with the mean value 119.5mGy. The DLP ranged from 463.9 to 539.2mGy·cm, with the mean value 478mGy·cm. For the CPP, the total ED ranged from 3.31 to 5.07mSv, with the mean value 4.37mSv. CONCLUSIONS These values are lower than the values reported in corresponding studies, including studies utilizing CT systems with more slices.
Collapse
Affiliation(s)
- Gerasimos A T Messaris
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Petros Zampakis
- Department of Radiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | - Theodoros G Petsas
- Department of Radiology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - George S Panayiotakis
- Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Subarachnoid hemorrhage from a ruptured aneurysm (aSAH) is a complex disorder with the potential to have devastating effects on the brain as well as other organ systems. After more than 3 decades of research, the underlying pathophysiologic mechanisms remain incompletely understood and important questions remain regarding the evaluation and management of these patients. The purpose of this review is to analyze the recent literature and improve our understanding of certain key clinical aspects. RECENT FINDINGS Growing body of evidence highlights the usefulness of CT perfusion scans in the diagnosis of vasospasm and delayed cerebral ischemia (DCI). Hypervolemia leads to worse cardiopulmonary outcomes and does not improve DCI. The traditional triple H therapy is falling out of favor with hemodynamic augmentation alone now considered the mainstay of medical management. Randomized controlled trials have shown that simvastatin and intravenous magnesium do not prevent DCI or improve functional outcomes after aneurysmal subarachnoid hemorrhage (aSAH). Emerging data using multimodality monitoring has further advanced our understanding of the pathophysiology of DCI in poor grade aSAH. SUMMARY The brief review will focus on the postinterventional care of aSAH patients outlining the recent advances over the past few years.
Collapse
|
11
|
Gawlitza J, Haubenreisser H, Meyer M, Hagelstein C, Sudarski S, Schoenberg SO, Henzler T. Comparison of organ-specific-radiation dose levels between 70 kVp perfusion CT and standard tri-phasic liver CT in patients with hepatocellular carcinoma using a Monte-Carlo-Simulation-based analysis platform. Eur J Radiol Open 2016; 3:95-9. [PMID: 27200404 PMCID: PMC4864374 DOI: 10.1016/j.ejro.2016.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 04/25/2016] [Indexed: 02/02/2023] Open
Abstract
Purpose The aim of this study was to systematically compare organ-specific-radiation dose levels between a radiation dose optimized perfusion CT (dVPCT) protocol of the liver and a tri-phasic standard CT protocol of the liver using a Monte-Carlo-Simulation-based analysis platform. Methods and materials The complete CT data of 52 patients (41 males; mean age 65 ± 12) with suspected HCC that underwent dVPCT examinations on a 3rd generation dual-source CT (Somatom Force, Siemens) with a dose optimized tube voltage of 70 kVp or 80 kVp were exported to an analysis platform (Radimetrics, Bayer). The dVPCT studies were matched with a reference group of 50 patients (35 males; mean age 65 ± 14) that underwent standard tri-phasic CT (sCT) examinations of the liver with 130 kVp using the calculated water-equivalent-diameter of the patients. The analysis platform was used for the calculation of the organ-specific effective dose (ED) as well as global radiation-dose parameters (ICRP103). Results The organ-specific ED of the dVPCT protocol was statistically significantly lower when compared to the sCT in 14 of 21, and noninferior in a total of 18 of 21 examined items (all p < 0.05). The EDs of the dVPCT examinations were especially in the dose sensitive organs such as the red marrow (17.3 mSv vs 24.6 mSv, p = < 0.0001) and the liver (33.3 mSv vs 46.9 mSv, p = 0.0003) lower when compared to the sCT. Conclusion Our results suggest that dVPCT performed at 70 or 80 kVp compares favorably to sCT performed with 130 kVp with regard to effective organ dose levels, especially in dose sensitive organs, while providing additional functional information which is of paramount importance in patients undergoing novel targeted therapies.
Collapse
Affiliation(s)
- J Gawlitza
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - H Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - M Meyer
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - C Hagelstein
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - S Sudarski
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - S O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - T Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|