1
|
He J, Zhang F, Pan Y, Feng Y, Rushmore J, Torio E, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Hum Brain Mapp 2023; 44:6055-6073. [PMID: 37792280 PMCID: PMC10619402 DOI: 10.1002/hbm.26497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.
Collapse
Affiliation(s)
- Jianzhong He
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Fan Zhang
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yiang Pan
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Yuanjing Feng
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Jarrett Rushmore
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Erickson Torio
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra J. Golby
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
2
|
Tam EWY, Kamino D, Shatil AS, Chau V, Moore AM, Brant R, Widjaja E. Hyperglycemia associated with acute brain injury in neonatal encephalopathy. Neuroimage Clin 2021; 32:102835. [PMID: 34601311 PMCID: PMC8496301 DOI: 10.1016/j.nicl.2021.102835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To identify how alterations in glucose levels are associated with regional brain injury in neonatal encephalopathy. METHODS This was a prospective cohort study of 102 newborns with neonatal encephalopathy, with continuous glucose monitoring for 72 h. 97 (95%) completed 72 h of therapeutic hypothermia. Brain imaging around day 5 of life included diffusion tensor imaging and MR spectroscopy. Regions of interest were placed for both DTI and MR spectroscopy, and tractography of the optic radiation and corticospinal tract were evaluated. Linear regression models related each MR metric with minimum and maximum glucose values during each day of life, adjusting for 5-minute Apgar scores and umbilical artery pH. RESULTS Higher maximum glucose levels on the first day of life were associated with widespread changes in mean diffusivity in the anterior and posterior white matter, splenium of the corpus callosum, lentiform nucleus, pulvinar nucleus of the thalamus, posterior limb of the internal capsule, and optic radiations, thus including regions traditionally associated with hypoxia-ischemia or hypoglycemia. No associations were found between lower minimum glucose levels and DTI changes in any regions tested, or between glucose levels and MR spectroscopy. CONCLUSIONS In this cohort of neonatal encephalopathy with therapeutic hypothermia, higher maximal glucose on the first day of life was associated with widespread microstructural changes, but lower minimum glucose levels were not associated with changes in any of the regions tested. Long-term follow-up will determine if imaging findings translate to long-term outcomes.
Collapse
Affiliation(s)
- Emily W Y Tam
- Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.
| | - Daphne Kamino
- Neurosciences and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anwar S Shatil
- Neurosciences and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Vann Chau
- Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Aideen M Moore
- Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Rollin Brant
- Department of Statistics, The University of British Columbia, Vancouver, BC, Canada
| | - Elysa Widjaja
- Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada; Neurosciences and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Radiology, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Peng H, Cirstea CM, Kaufman CL, Frey SH. Microstructural integrity of corticospinal and medial lemniscus tracts: insights from diffusion tensor tractography of right-hand amputees. J Neurophysiol 2019; 122:316-324. [PMID: 31116678 DOI: 10.1152/jn.00316.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reductions in sensory and motor activity following unilateral upper limb amputation during adulthood are associated with widespread, activity-dependent reorganization of the gray matter and white matter through the central nervous system. Likewise, in cases of congenital limb absence there is evidence that limited afferent or efferent activity affects the structural integrity of white matter pathways serving the affected side. Evidence that the structural integrity of mature sensory and motor tracts controlling the lost upper limb exhibits similar activity dependence is, however, sparse and inconsistent. Here we used diffusion tensor tractography to test whether amputation of the dominant right hand during adulthood (n = 16) alters the microstructural integrity of the major sensory (medial lemniscus, ML) and motor (corticospinal tract, CST) pathways controlling missing hand function. Consistent with prior findings, healthy control subjects (n = 27) exhibited higher fractional anisotropy (FA), an index of white matter microstructural integrity, within dominant left CST and nondominant right ML. Critically, in contrast to what might be expected if the microstructural organization of these tracts is activity dependent, these asymmetries persisted in amputees. Moreover, we failed to detect any differences in dominant left ML or CST between healthy control subjects and amputees. Our results are consistent with these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (in a compensatory fashion or with prosthesis) provides stimulation sufficient to maintain tract integrity. NEW & NOTEWORTHY We report that unilateral hand amputation in adults has no significant effects on the structure of major sensory or motor pathways contralateral to the amputation. Our results are consistent with the organization of these white matter tracts being robust to changes in activity once mature or that continued use of the residual limb (with or without a prosthesis) provides stimulation sufficient to maintain tract integrity.
Collapse
Affiliation(s)
- Huiling Peng
- Department of Psychology, Temple University , Philadelphia, Pennsylvania
| | - Carmen M Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri , Columbia, Missouri
| | | | - Scott H Frey
- Department of Physical Medicine and Rehabilitation, University of Missouri , Columbia, Missouri.,Department of Psychological Sciences, University of Missouri , Columbia, Missouri
| |
Collapse
|
4
|
Hyde C, Fuelscher I, Enticott PG, Jones DK, Farquharson S, Silk TJ, Williams J, Caeyenberghs K. White matter organization in developmental coordination disorder: A pilot study exploring the added value of constrained spherical deconvolution. NEUROIMAGE-CLINICAL 2018; 21:101625. [PMID: 30552074 PMCID: PMC6411781 DOI: 10.1016/j.nicl.2018.101625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022]
Abstract
Previous studies of white matter organization in sensorimotor tracts in developmental coordination disorder (DCD) have adopted diffusion tensor imaging (DTI), a method unable to reconcile pathways with ‘crossing fibres’. In response to limitations of the commonly adopted DTI approach, the present study employed a framework that can reconcile the ‘crossing fibre’ problem (i.e., constrained spherical deconvolution- CSD) to characterize white matter tissue organization of sensorimotor tracts in young adults with DCD. Participants were 19 healthy adults aged 18–46: 7 met diagnostic criteria for DCD (4 females) and 12 were controls (3 females). All underwent high angular diffusion MRI. After preprocessing, the left and right corticospinal tracts (CST) and superior longitudinal fasciculi (SLF) were delineated and all tracts were then generated using both CSD and DTI tractography respectively. Based on the CSD model, individuals with DCD demonstrated significantly decreased mean apparent fibre density (AFD) in the left SLF relative to controls (with large effect size, Cohen's d = 1.32) and a trend for decreased tract volume of the right SLF (with medium-large effect size, Cohen's d = 0.73). No differences in SLF microstructure were found between groups using DTI, nor were differences in CST microstructure observed across groups regardless of hemisphere or diffusion model. Our data are consistent with the view that motor impairment characteristic of DCD may be subserved by white matter abnormalities in sensorimotor tracts, specifically the left and right SLF. Our data further highlight the benefits of higher order diffusion MRI (e.g. CSD) relative to DTI for clarifying earlier inconsistencies in reports speaking to white matter organization in DCD, and its contribution to poor motor skill in DCD. All previous diffusion studies of white matter in DCD have employed a tensor model We employed a non-tensor model to characterize microstructure in adults with DCD The non-tensor model showed atypical white matter organization in the SLF in DCD The tensor model failed to detect microstructural group differences for any tract Motor impairment characteristic of DCD may be subserved by white matter abnormalities
We need to move beyond the tensor model in characterizing white matter in DCD
Collapse
Affiliation(s)
- Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Shawna Farquharson
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia; Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia
| | - Tim J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Toselli B, Tortora D, Severino M, Arnulfo G, Canessa A, Morana G, Rossi A, Fato MM. Improvement in White Matter Tract Reconstruction with Constrained Spherical Deconvolution and Track Density Mapping in Low Angular Resolution Data: A Pediatric Study and Literature Review. Front Pediatr 2017; 5:182. [PMID: 28913326 PMCID: PMC5582070 DOI: 10.3389/fped.2017.00182] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Diffusion-weighted magnetic resonance imaging (DW-MRI) allows noninvasive investigation of brain structure in vivo. Diffusion tensor imaging (DTI) is a frequently used application of DW-MRI that assumes a single main diffusion direction per voxel, and is therefore not well suited for reconstructing crossing fiber tracts. Among the solutions developed to overcome this problem, constrained spherical deconvolution with probabilistic tractography (CSD-PT) has provided superior quality results in clinical settings on adult subjects; however, it requires particular acquisition parameters and long sequences, which may limit clinical usage in the pediatric age group. The aim of this work was to compare the results of DTI with those of track density imaging (TDI) maps and CSD-PT on data from neonates and children, acquired with low angular resolution and low b-value diffusion sequences commonly used in pediatric clinical MRI examinations. MATERIALS AND METHODS We analyzed DW-MRI studies of 50 children (eight neonates aged 3-28 days, 20 infants aged 1-8 months, and 22 children aged 2-17 years) acquired on a 1.5 T Philips scanner using 34 gradient directions and a b-value of 1,000 s/mm2. Other sequence parameters included 60 axial slices; acquisition matrix, 128 × 128; average scan time, 5:34 min; voxel size, 1.75 mm × 1.75 mm × 2 mm; one b = 0 image. For each subject, we computed principal eigenvector (EV) maps and directionally encoded color TDI maps (DEC-TDI maps) from whole-brain tractograms obtained with CSD-PT; the cerebellar-thalamic, corticopontocerebellar, and corticospinal tracts were reconstructed using both CSD-PT and DTI. Results were compared by two neuroradiologists using a 5-point qualitative score. RESULTS The DEC-TDI maps obtained presented higher anatomical detail than EV maps, as assessed by visual inspection. In all subjects, white matter (WM) tracts were successfully reconstructed using both tractography methodologies. The mean qualitative scores of all tracts obtained with CSD-PT were significantly higher than those obtained with DTI (p-value < 0.05 for all comparisons). CONCLUSION CSD-PT can be successfully applied to DW-MRI studies acquired at 1.5 T with acquisition parameters adapted for pediatric subjects, thus providing TDI maps with greater anatomical detail. This methodology yields satisfactory results for clinical purposes in the pediatric age group.
Collapse
Affiliation(s)
- Benedetta Toselli
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | | | | | - Gabriele Arnulfo
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Andrea Canessa
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Giovanni Morana
- Neuroradiology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Rossi
- Neuroradiology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Massimo Fato
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genoa, Genoa, Italy
| |
Collapse
|