1
|
Zhong YL, Hu RY, He YZ, Li XT, Li ZC, Huang X. White Matter Function and Network Abnormalities in Patients with Diabetic Retinopathy. Diabetes Metab Syndr Obes 2024; 17:4149-4166. [PMID: 39512603 PMCID: PMC11542478 DOI: 10.2147/dmso.s492099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Background This study aims to explore changes in white matter function and network connectivity in individuals with DR. Methods This study included 46 patients with DR and 43 age- and gender-matched healthy control (HC) participants were enrolled in the study. The aim was to investigate inter-group differences in white matter (WM) function and to analyze changes in the WM network among DR patients. Results Increased degree centrality (DC) values were observed in the middle cerebellar peduncle and genu of the corpus callosum, while higher fractional amplitude of low-frequency fluctuations (fALFF) values were found in the left superior corona radiata, right anterior corona radiata, and right superior longitudinal fasciculus. Conversely, reduced regional homogeneity (ReHo) values were noted in the left posterior thalamic radiation among patients with DR compared to HC, with statistical correction applied The SVM classification accuracy for distinguishing between DR and HC patients based on WM measures indicated values of 81.52%, 80.43%, and 89.13% for DC, fALFF, and ReHo, respectively, with respective area under the curve (AUC) values of 0.87, 0.85, and 0.93. Furthermore, alterations were detected within specific brain regions including the body of corpus callosum (BCC), splenium of corpus callosum (SCC), genu of corpus callosum (GCC), left posterior thalamic radiation (PTR), right anterior corona radiata (ACR), and right posterior corona radiata (PCR) in the DR group compared to HCs, with an intra-network decrease in connectivity. Interestingly, the left superior longitudinal fasciculus (SLF) within the DR group exhibited an intra-network increase compared to the HC group. Conclusion DR exhibited abnormal white matter functional alterations, particularly affecting the fiber pathways linking the visual network to the sensory-motor network.
Collapse
Affiliation(s)
- Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Rui-Yang Hu
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yuan-Zhi He
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xiao-Tong Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Zi-Cong Li
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
2
|
Gupta SS, Sriram R, Mulani S. Rest-fMRI-A Potential Substitute for Task-fMRI? Indian J Radiol Imaging 2024; 34:628-635. [PMID: 39318586 PMCID: PMC11419771 DOI: 10.1055/s-0044-1786723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Objective The aim of this study was to assess the reliability of resting-state functional magnetic resonance imaging (rest-fMRI) in mapping language areas for preoperative planning, versus standard task-based techniques, which are at times difficult to perform in clinical settings. Our study also aimed to evaluate the overlap between language areas identified through rest-fMRI and the standard task-fMRI, in neurosurgical cases. Materials and Methods Using a seed-based analysis of rest-fMRI with multiple template seeds, we identified functionally connected language regions in patients undergoing preoperative language mapping. Four language task paradigms (word, verb, picture, and semantics) were evaluated. We quantified the degree of overlap between language areas identified on rest-fMRI and task-fMRI, categorizing the results as more than 50% or less than 50% overlap. Results Seventy-seven percent of patients demonstrated an overlap exceeding 50% between rest- and task-fMRI maps, with the left Broca's area being the most frequently observed region of overlap. This finding was noted even in cases with lesions in Broca's or Wernicke's areas, highlighting the method's robustness. The verb task showed the best blood-oxygen-level dependent activity and overlap with rest-fMRI, highlighting its reliability. To identify a specific language area, the contralateral seed of the same area most commonly displayed connectivity with the area of interest. Conclusion Our findings demonstrate the potential of using rest-fMRI in accurately mapping eloquent language areas, in clinical settings The strong concordance observed, especially in the left Broca's area, underscores the reliability of this method. Further research and larger studies are essential to validate these results, potentially establishing the use of routine rest-fMRI, in clinical preoperative workup.
Collapse
Affiliation(s)
- Santosh S. Gupta
- Department of Radiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Rithika Sriram
- Department of Radiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - Smruti Mulani
- Department of Radiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Day TKM, Hermosillo R, Conan G, Randolph A, Perrone A, Earl E, Byington N, Hendrickson TJ, Elison JT, Fair DA, Feczko E. Multi-level fMRI analysis applied to hemispheric specialization in the language network, functional areas, and their behavioral correlations in the ABCD sample. Dev Cogn Neurosci 2024; 66:101355. [PMID: 38354531 PMCID: PMC10875197 DOI: 10.1016/j.dcn.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/06/2024] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Prior research suggests that the organization of the language network in the brain is left-dominant and becomes more lateralized with age and increasing language skill. The age at which specific components of the language network become adult-like varies depending on the abilities they subserve. So far, a large, developmental study has not included a language task paradigm, so we introduce a method to study resting-state laterality in the Adolescent Brain Cognitive Development (ABCD) study. Our approach mixes source timeseries between left and right homotopes of the (1) inferior frontal and (2) middle temporal gyri and (3) a region we term "Wernicke's area" near the supramarginal gyrus. Our large subset sample size of ABCD (n = 6153) allows improved reliability and validity compared to previous, smaller studies of brain-behavior associations. We show that behavioral metrics from the NIH Youth Toolbox and other resources are differentially related to tasks with a larger linguistic component over ones with less (e.g., executive function-dominant tasks). These baseline characteristics of hemispheric specialization in youth are critical for future work determining the correspondence of lateralization with language onset in earlier stages of development.
Collapse
Affiliation(s)
- Trevor K M Day
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
| | - Robert Hermosillo
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Gregory Conan
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Anita Randolph
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Massot-Tarrús A, Mirsattari SM. Roles of fMRI and Wada tests in the presurgical evaluation of language functions in temporal lobe epilepsy. Front Neurol 2022; 13:884730. [PMID: 36247757 PMCID: PMC9562037 DOI: 10.3389/fneur.2022.884730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Surgical treatment of pharmacoresistant temporal lobe epilepsy (TLE) carries risks for language function that can significantly affect the quality of life. Predicting the risks of decline in language functions before surgery is, consequently, just as important as predicting the chances of becoming seizure-free. The intracarotid amobarbital test, generally known as the Wada test (WT), has been traditionally used to determine language lateralization and to estimate their potential decline after surgery. However, the test is invasive and it does not localize the language functions. Therefore, other noninvasive methods have been proposed, of which functional magnetic resonance (fMRI) has the greatest potential. Functional MRI allows localization of language areas. It has good concordance with the WT for language lateralization, and it is of predictive value for postsurgical naming outcomes. Consequently, fMRI has progressively replaced WT for presurgical language evaluation. The objective of this manuscript is to review the most relevant aspects of language functions in TLE and the current role of fMRI and WT in the presurgical evaluation of language. First, we will provide context by revising the language network distribution and the effects of TLE on them. Then, we will assess the functional outcomes following various forms of TLE surgery and measures to reduce postoperative language decline. Finally, we will discuss the current indications for WT and fMRI and the potential usefulness of the resting-state fMRI technique.
Collapse
Affiliation(s)
| | - Seyed M. Mirsattari
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| |
Collapse
|
5
|
Luo B, Dong W, Chang L, Qiu C, Lu Y, Liu D, Xue C, Zhang L, Liu W, Zhang W, Yan J. Altered Interhemispheric Functional Connectivity Associated With Early Verbal Fluency Decline After Deep Brain Stimulation in Parkinson’s Disease. Front Aging Neurosci 2022; 14:799545. [PMID: 35431904 PMCID: PMC9011328 DOI: 10.3389/fnagi.2022.799545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Patients with Parkinson’s disease (PD) experience a decline in verbal fluency (VF) immediately after undergoing deep brain stimulation (DBS) of the subthalamic nucleus (STN). This phenomenon is thought to be related to surgical microlesions. Purpose We investigated the alterations in interhemispheric functional connectivity after STN-DBS in PD patients. We also evaluated the correlation between these changes and decreased VF scores. Method Overall, 30 patients with PD were enrolled in the study. Resting-state functional magnetic resonance imaging scans were performed twice, once before and once after DBS, in PD patients. Voxel-mirrored homotopic connectivity (VMHC) was applied in order to evaluate the synchronicity of functional connectivity between the hemispheres. Result After undergoing STN-DBS, PD patients demonstrated reduced VMHC value in the posterior cerebellum lobe, angular gyrus, precuneus/posterior cingulate gyrus (PCC), supramarginal gyrus, superior frontal gyrus (SFG) (medial and dorsolateral) and middle frontal gyrus (MFG). In addition, we observed a significant positive correlation between the altered VMHC value in the SFG and MFG and the change of phonemic VF scores. Conclusion PD patients demonstrated an interhemispheric coordination disorder in the prefrontal cortex, cerebellum, supramarginal gyrus and DMN after undergoing STN-DBS. The positive correlation between reduced VMHC value in the SFG and MFG and the changes of VF scores provides a novel understanding with regard to the decline of VF after DBS.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Chang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wenbin Zhang,
| | - Jun Yan
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Jun Yan,
| |
Collapse
|
6
|
Berro DH, Lemée JM, Leiber LM, Emery E, Menei P, Ter Minassian A. Overt speech critically changes lateralization index and did not allow determination of hemispheric dominance for language: an fMRI study. BMC Neurosci 2021; 22:74. [PMID: 34852787 PMCID: PMC8638205 DOI: 10.1186/s12868-021-00671-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background Pre-surgical mapping of language using functional MRI aimed principally to determine the dominant hemisphere. This mapping is currently performed using covert linguistic task in way to avoid motion artefacts potentially biasing the results. However, overt task is closer to natural speaking, allows a control on the performance of the task, and may be easier to perform for stressed patients and children. However, overt task, by activating phonological areas on both hemispheres and areas involved in pitch prosody control in the non-dominant hemisphere, is expected to modify the determination of the dominant hemisphere by the calculation of the lateralization index (LI). Objective Here, we analyzed the modifications in the LI and the interactions between cognitive networks during covert and overt speech task. Methods Thirty-three volunteers participated in this study, all but four were right-handed. They performed three functional sessions consisting of (1) covert and (2) overt generation of a short sentence semantically linked with an audibly presented word, from which we estimated the “Covert” and “Overt” contrasts, and a (3) resting-state session. The resting-state session was submitted to spatial independent component analysis to identify language network at rest (LANG), cingulo-opercular network (CO), and ventral attention network (VAN). The LI was calculated using the bootstrapping method. Results The LI of the LANG was the most left-lateralized (0.66 ± 0.38). The LI shifted from a moderate leftward lateralization for the Covert contrast (0.32 ± 0.38) to a right lateralization for the Overt contrast (− 0.13 ± 0.30). The LI significantly differed from each other. This rightward shift was due to the recruitment of right hemispheric temporal areas together with the nodes of the CO. Conclusion Analyzing the overt speech by fMRI allowed improvement in the physiological knowledge regarding the coordinated activity of the intrinsic connectivity networks. However, the rightward shift of the LI in this condition did not provide the basic information on the hemispheric language dominance. Overt linguistic task cannot be recommended for clinical purpose when determining hemispheric dominance for language. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-021-00671-y.
Collapse
Affiliation(s)
- David Hassanein Berro
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France. .,Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France. .,INSERM, CRCINA, Team 17, IRIS building, Angers, France.
| | - Jean-Michel Lemée
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | | | - Evelyne Emery
- Department of Neurosurgery, University Hospital of Caen Normandy, Avenue de la Côte de Nacre, 14000, Caen, France.,INSERM, UMR-S U1237, PhIND group, GIP Cyceron, Caen, France
| | - Philippe Menei
- INSERM, CRCINA, Team 17, IRIS building, Angers, France.,Department of Neurosurgery, University Hospital of Angers, Angers, France
| | - Aram Ter Minassian
- Department of Anesthesiology, University Hospital of Angers, Angers, France.,LARIS, ISISV team, University of Angers, Angers, France
| |
Collapse
|
7
|
Luo B, Lu Y, Qiu C, Dong W, Xue C, Zhang L, Liu W, Zhang W. Altered Spontaneous Neural Activity and Functional Connectivity in Parkinson's Disease With Subthalamic Microlesion. Front Neurosci 2021; 15:699010. [PMID: 34354566 PMCID: PMC8329380 DOI: 10.3389/fnins.2021.699010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transient improvement in motor symptoms are immediately observed in patients with Parkinson's disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood. Purpose We utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS. Method Overall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients. Result Relative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN). Conclusion The subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.
Collapse
Affiliation(s)
- Bei Luo
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Lu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Qiu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Dong
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Phillips NL, Shatil AS, Go C, Robertson A, Widjaja E. Resting-State Functional MRI for Determining Language Lateralization in Children with Drug-Resistant Epilepsy. AJNR Am J Neuroradiol 2021; 42:1299-1304. [PMID: 33832955 DOI: 10.3174/ajnr.a7110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/16/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Task-based fMRI is a noninvasive method of determining language dominance; however, not all children can complete language tasks due to age, cognitive/intellectual, or language barriers. Task-free approaches such as resting-state fMRI offer an alternative method. This study evaluated resting-state fMRI for predicting language laterality in children with drug-resistant epilepsy. MATERIALS AND METHODS A retrospective review of 43 children with drug-resistant epilepsy who had undergone resting-state fMRI and task-based fMRI during presurgical evaluation was conducted. Independent component analysis of resting-state fMRI was used to identify language networks by comparing the independent components with a language network template. Concordance rates in language laterality between resting-state fMRI and each of the 4 task-based fMRI language paradigms (auditory description decision, auditory category, verbal fluency, and silent word generation tasks) were calculated. RESULTS Concordance ranged from 0.64 (95% CI, 0.48-0.65) to 0.73 (95% CI, 0.58-0.87), depending on the language paradigm, with the highest concordance found for the auditory description decision task. Most (78%-83%) patients identified as left-lateralized on task-based fMRI were correctly classified as left-lateralized on resting-state fMRI. No patients classified as right-lateralized or bilateral on task-based fMRI were correctly classified by resting-state fMRI. CONCLUSIONS While resting-state fMRI correctly classified most patients who had typical (left) language dominance, its ability to correctly classify patients with atypical (right or bilateral) language dominance was poor. Further study is required before resting-state fMRI can be used clinically for language mapping in the context of epilepsy surgery evaluation in children with drug-resistant epilepsy.
Collapse
Affiliation(s)
- N L Phillips
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Department of Psychology (N.L.P.)
| | - A S Shatil
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - C Go
- Division of Neurology (C.G., E.W.)
| | - A Robertson
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - E Widjaja
- From the Neurosciences and Mental Health Program (N.L.P., A.S.S., A.R., E.W.), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
- Division of Neurology (C.G., E.W.)
- Department of Diagnostic Imaging (E.W.), The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Clinical applications of neurolinguistics in neurosurgery. Front Med 2021; 15:562-574. [PMID: 33983605 DOI: 10.1007/s11684-020-0771-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/05/2020] [Indexed: 11/27/2022]
Abstract
The protection of language function is one of the major challenges of brain surgery. Over the past century, neurosurgeons have attempted to seek the optimal strategy for the preoperative and intraoperative identification of language-related brain regions. Neurosurgeons have investigated the neural mechanism of language, developed neurolinguistics theory, and provided unique evidence to further understand the neural basis of language functions by using intraoperative cortical and subcortical electrical stimulation. With the emergence of modern neuroscience techniques and dramatic advances in language models over the last 25 years, novel language mapping methods have been applied in the neurosurgical practice to help neurosurgeons protect the brain and reduce morbidity. The rapid advancements in brain-computer interface have provided the perfect platform for the combination of neurosurgery and neurolinguistics. In this review, the history of neurolinguistics models, advancements in modern technology, role of neurosurgery in language mapping, and modern language mapping methods (including noninvasive neuroimaging techniques and invasive cortical electroencephalogram) are presented.
Collapse
|
10
|
Whitten A, Jacobs ML, Englot DJ, Rogers BP, Levine KK, González HFJ, Morgan VL. Resting-state hippocampal networks related to language processing reveal unique patterns in temporal lobe epilepsy. Epilepsy Behav 2021; 117:107834. [PMID: 33610102 PMCID: PMC8035309 DOI: 10.1016/j.yebeh.2021.107834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Patients with temporal lobe epilepsy (TLE) commonly experience a broad range of language impairments. These deficits are thought to arise from repeated seizure activity that damages language regions. However, connectivity between the seizure onset region in the hippocampus and regions related to language processing has rarely been studied, and could also have a strong impact on language function. The purpose of this study was to use resting-state functional connectivity (FC) measures to assess hippocampal network patterns and their relation to language abilities in patients with right TLE (RLTE), left TLE (LTLE), and healthy controls. METHODS Presurgical resting-state 3T functional MRI data were acquired from 40 patients with mesial TLE (27 RTLE, 13 LTLE) and 54 controls. The regions of interest were the anterior and posterior bilateral hippocampi and eleven regions grouped by frontal or temporo-parietal locations, including large areas of language-related cortex. FC values were computed with the right/left anterior and posterior hippocampi as the seeds and frontal and temporo-parietal regions as targets. Resting-state lateralization indices were also calculated (LI-Rest), and all FC measures were correlated to neuropsychological language scores and measures related to manifestation of epilepsy including age of onset, duration of disease, monthly seizure frequency, and hippocampal volume. RESULTS We found significant group differences between the anterior hippocampi and temporo-parietal regions closest to the seizure focus, in which RTLE and LTLE showed stronger connectivity to their contralateral hippocampus, while controls showed similar connectivity to both hippocampi. In addition, LI-Rest demonstrated significantly more right lateralization in LTLE compared to RTLE for temporo-parietal regions only. In LTLE, we found significant associations between stronger hippocampal network resting-state FC and later age of onset and decreased left anterior hippocampal volume. SIGNIFICANCE The results of our study indicate that the presence of TLE impacts hippocampal-temporo-parietal networks relevant to language processing.
Collapse
Affiliation(s)
- Allison Whitten
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA
| | - Monica L Jacobs
- Department of Neurological Surgery, Vanderbilt University Medical Center, USA
| | - Dario J Englot
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, USA
| | - Baxter P Rogers
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, USA
| | - Kaela K Levine
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA
| | - Hernán F J González
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, USA
| | - Victoria L Morgan
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, USA.
| |
Collapse
|