1
|
Lavrador JP, Marchi F, Elhag A, Kalyal N, Mthunzi E, Awan M, Wroe-Wright O, Díaz-Baamonde A, Mirallave-Pescador A, Reisz Z, Gullan R, Vergani F, Ashkan K, Bhangoo R. In Situ Light-Source Delivery During 5-Aminulevulinic Acid-Guided High-Grade Glioma Resection: Spatial, Functional and Oncological Informed Surgery. Biomedicines 2024; 12:2748. [PMID: 39767656 PMCID: PMC11673840 DOI: 10.3390/biomedicines12122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES 5-aminulevulinic acid (5-ALA)-guided surgery for high-grade gliomas remains a challenge in neuro-oncological surgery. Inconsistent fluorescence visualisation, subjective quantification and false negatives due to blood, haemostatic agents or optical impediments from the external light source are some of the limitations of the present technology. METHODS The preliminary results from this single-centre retrospective study are presented from the first 35 patients operated upon with the novel Nico Myriad Spectra System©. The microdebrider (Myriad) with an additional in situ light system (Spectra) can alternately provide white and blue light (405 nm) to within 15 mm of the tissue surface to enhance the morphology of the anatomical structures and the fluorescence of the pathological tissues. RESULTS A total of 35 patients were operated upon with this new technology. Eight patients (22.85%) underwent tubular retractor-assisted minimally invasive parafascicular surgery (tr-MIPS). The majority had high-grade gliomas (68.57%). Fluorescence was identified in 30 cases (85.71%), with residual fluorescence in 11 (36.66%). The main applications were better white-blue light alternation and visualisation during tr-MIPS, increase in the extent of resection at the border of the cavity, identification of satellite lesions in multifocal pathology, the differentiation between radionecrosis and tumour recurrence in redo surgery and the demarcation between normal ependyma versus pathological ependyma in tumours infiltrating the subventricular zone. CONCLUSIONS This proof-of-concept study confirms that the novel in situ light-source delivery technology integrated with the usual intraoperative armamentarium provides a spatially, functionally and oncologically informed framework for glioblastoma surgery. It allows for the enhancement of the morphology of anatomical structures and the fluorescence of pathological tissues, increasing the extent of resection and, possibly, the prognosis for patients with high-grade gliomas.
Collapse
Affiliation(s)
- José Pedro Lavrador
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Francesco Marchi
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
- Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Ali Elhag
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Nida Kalyal
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Engelbert Mthunzi
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Mariam Awan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Oliver Wroe-Wright
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Alba Díaz-Baamonde
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Ana Mirallave-Pescador
- Department of Neurophysiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Zita Reisz
- Department of Clinical Neuropathology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Richard Gullan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK; (F.M.); (M.A.); (K.A.)
| |
Collapse
|
2
|
Pons-Escoda A, Naval-Baudin P, Viveros M, Flores-Casaperalta S, Martinez-Zalacaín I, Plans G, Vidal N, Cos M, Majos C. DSC-PWI presurgical differentiation of grade 4 astrocytoma and glioblastoma in young adults: rCBV percentile analysis across enhancing and non-enhancing regions. Neuroradiology 2024; 66:1267-1277. [PMID: 38834877 PMCID: PMC11246293 DOI: 10.1007/s00234-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE The presurgical discrimination of IDH-mutant astrocytoma grade 4 from IDH-wildtype glioblastoma is crucial for patient management, especially in younger adults, aiding in prognostic assessment, guiding molecular diagnostics and surgical planning, and identifying candidates for IDH-targeted trials. Despite its potential, the full capabilities of DSC-PWI remain underexplored. This research evaluates the differentiation ability of relative-cerebral-blood-volume (rCBV) percentile values for the enhancing and non-enhancing tumor regions compared to the more commonly used mean or maximum preselected rCBV values. METHODS This retrospective study, spanning 2016-2023, included patients under 55 years (age threshold based on World Health Organization recommendations) with grade 4 astrocytic tumors and known IDH status, who underwent presurgical MR with DSC-PWI. Enhancing and non-enhancing regions were 3D-segmented to calculate voxel-level rCBV, deriving mean, maximum, and percentile values. Statistical analyses were conducted using the Mann-Whitney U test and AUC-ROC. RESULTS The cohort consisted of 59 patients (mean age 46; 34 male): 11 astrocytoma-4 and 48 glioblastoma. While glioblastoma showed higher rCBV in enhancing regions, the differences were not significant. However, non-enhancing astrocytoma-4 regions displayed notably higher rCBV, particularly in lower percentiles. The 30th rCBV percentile for non-enhancing regions was 0.705 in astrocytoma-4, compared to 0.458 in glioblastoma (p = 0.001, AUC-ROC = 0.811), outperforming standard mean and maximum values. CONCLUSION Employing an automated percentile-based approach for rCBV selection enhances differentiation capabilities, with non-enhancing regions providing more insightful data. Elevated rCBV in lower percentiles of non-enhancing astrocytoma-4 is the most distinguishable characteristic and may indicate lowly vascularized infiltrated edema, contrasting with glioblastoma's pure edema.
Collapse
Affiliation(s)
- Albert Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain.
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain.
- Facultat de Medicina i Ciències de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Pablo Naval-Baudin
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Facultat de Medicina i Ciències de La Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| | - Mildred Viveros
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | - Ignacio Martinez-Zalacaín
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| | - Gerard Plans
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
- Neurosurgery Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Noemi Vidal
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
- Pathology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Monica Cos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Carles Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| |
Collapse
|
3
|
Dagher SA, Lochner RH, Ozkara BB, Schomer DF, Wintermark M, Fuller GN, Ucisik FE. The T2-FLAIR mismatch sign in oncologic neuroradiology: History, current use, emerging data, and future directions. Neuroradiol J 2024; 37:441-453. [PMID: 37924213 PMCID: PMC11366202 DOI: 10.1177/19714009231212375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
The T2-Fluid-Attenuated Inversion Recovery (T2-FLAIR) mismatch sign is a radiogenomic marker that is easily discernible on preoperative conventional MR imaging. Application of strict criteria (adult population, cerebral hemisphere location, and classic imaging morphology) permits the noninvasive preoperative diagnosis of isocitrate dehydrogenase (IDH)-mutant 1p/19q-non-codeleted diffuse astrocytoma with near-perfect specificity, albeit with variably low sensitivity. This leads to improved preoperative planning and patient counseling. More recent research has shown that the application of less strict criteria compromises the near-perfect specificity of the sign but remains adequate for ruling out IDH-wildtype (glioblastoma) phenotype, which bears a far grimmer prognosis compared to IDH-mutant diffuse astrocytic disease. In this review, we elaborate on the various definitions of the T2-FLAIR mismatch sign present in the literature, illustrate these with images obtained at a comprehensive cancer center, discuss the potential of the mismatch sign for application to certain pediatric-type brain tumors, namely dysembryoplastic neuroepithelial tumor and diffuse midline glioma, and elaborate upon the clinical, histologic, and molecular associations of the T2-FLAIR mismatch sign as recognized to date. Finally, the sign's correlates in diffusion- and perfusion-weighted imaging are presented, and opportunities to further maximize the diagnostic and prognostic applications of the sign in the context of the 2021 revision of the WHO Classification of Central Nervous System Tumors are discussed.
Collapse
Affiliation(s)
- Samir A Dagher
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riley Hideo Lochner
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burak Berksu Ozkara
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donald F Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory N Fuller
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Section of Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Ikeda S, Sakata A, Arakawa Y, Mineharu Y, Makino Y, Takeuchi Y, Fushimi Y, Okuchi S, Nakajima S, Otani S, Nakamoto Y. Clinical and imaging characteristics of supratentorial glioma with IDH2 mutation. Neuroradiology 2024; 66:973-981. [PMID: 38653782 DOI: 10.1007/s00234-024-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The rarity of IDH2 mutations in supratentorial gliomas has led to gaps in understanding their radiological characteristics, potentially resulting in misdiagnosis based solely on negative IDH1 immunohistochemical staining. We aimed to investigate the clinical and imaging characteristics of IDH2-mutant gliomas. METHODS We analyzed imaging data from adult patients with pathologically confirmed diffuse lower-grade gliomas and known IDH1/2 alteration and 1p/19q codeletion statuses obtained from the records of our institute (January 2011 to August 2022, Cohort 1) and The Cancer Imaging Archive (TCIA, Cohort 2). Two radiologists evaluated clinical information and radiological findings using standardized methods. Furthermore, we compared the data for IDH2-mutant and IDH-wildtype gliomas. Multivariate logistic regression was used to identify the predictors of IDH2 mutation status, and receiver operating characteristic curve analysis was employed to assess the predictive performance of the model. RESULTS Of the 20 IDH2-mutant supratentorial gliomas, 95% were in the frontal lobes, with 75% classified as oligodendrogliomas. Age and the T2-FLAIR discordance were independent predictors of IDH2 mutations. Receiver operating characteristic curve analysis for the model using age and T2-FLAIR discordance demonstrated a strong potential for discriminating between IDH2-mutant and IDH-wildtype gliomas, with an area under the curve of 0.96 (95% CI, 0.91-0.98, P = .02). CONCLUSION A high frequency of oligodendrogliomas with 1p/19q codeletion was observed in IDH2-mutated gliomas. Younger age and the presence of the T2-FLAIR discordance were associated with IDH2 mutations and these findings may help with precise diagnoses and treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Satoshi Ikeda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Pons-Escoda A, Majos C, Smits M, Oleaga L. Presurgical diagnosis of diffuse gliomas in adults: Post-WHO 2021 practical perspectives from radiologists in neuro-oncology units. RADIOLOGIA 2024; 66:260-277. [PMID: 38908887 DOI: 10.1016/j.rxeng.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 06/24/2024]
Abstract
The 2021 World Health Organization classification of CNS tumours was greeted with enthusiasm as well as an initial potential overwhelm. However, with time and experience, our understanding of its key aspects has notably improved. Using our collective expertise gained in neuro-oncology units in hospitals in different countries, we have compiled a practical guide for radiologists that clarifies the classification criteria for diffuse gliomas in adults. Its format is clear and concise to facilitate its incorporation into everyday clinical practice. The document includes a historical overview of the classifications and highlights the most important recent additions. It describes the main types in detail with an emphasis on their appearance on imaging. The authors also address the most debated issues in recent years. It will better prepare radiologists to conduct accurate presurgical diagnoses and collaborate effectively in clinical decision making, thus impacting decisions on treatment, prognosis, and overall patient care.
Collapse
Affiliation(s)
- A Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Facultat de Medicina i Ciencies de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - C Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - L Oleaga
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Gómez Vecchio T, Neimantaite A, Thurin E, Furtner J, Solheim O, Pallud J, Berger M, Widhalm G, Bartek J, Häggström I, Gu IYH, Jakola AS. Clinical application of machine-based deep learning in patients with radiologically presumed adult-type diffuse glioma grades 2 or 3. Neurooncol Adv 2024; 6:vdae192. [PMID: 39659833 PMCID: PMC11631182 DOI: 10.1093/noajnl/vdae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Background Radiologically presumed diffuse lower-grade glioma (dLGG) are typically non or minimal enhancing tumors, with hyperintensity in T2w-images. The aim of this study was to test the clinical usefulness of deep learning (DL) in IDH mutation prediction in patients with radiologically presumed dLGG. Methods Three hundred and fourteen patients were retrospectively recruited from 6 neurosurgical departments in Sweden, Norway, France, Austria, and the United States. Collected data included patients' age, sex, tumor molecular characteristics (IDH, and 1p19q), and routine preoperative radiological images. A clinical model was built using multivariable logistic regression with the variables age and tumor location. DL models were built using MRI data only, and 4 DL architectures used in glioma research. In the final validation test, the clinical model and the best DL model were scored on an external validation cohort with 155 patients from the Erasmus Glioma Dataset. Results The mean age in the recruited and external cohorts was 45.0 (SD 14.3) and 44.3 years (SD 14.6). The cohorts were rather similar, except for sex distribution (53.5% vs 64.5% males, P-value = .03) and IDH status (30.9% vs 12.9% IDH wild-type, P-value <.01). Overall, the area under the curve for the prediction of IDH mutations in the external validation cohort was 0.86, 0.82, and 0.87 for the clinical model, the DL model, and the model combining both models' probabilities. Conclusions In their current state, when these complex models were applied to our clinical scenario, they did not seem to provide a net gain compared to our baseline clinical model.
Collapse
Affiliation(s)
- Tomás Gómez Vecchio
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alice Neimantaite
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Thurin
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Julia Furtner
- Medical Image Analysis and Artificial Intelligence, Danube Private University, Krems an der Donau, Austria
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris Psychiatrie & Neurosciences, Paris, France
| | - Mitchel Berger
- Department of Neurosurgery, University of California, San Francisco, San Francisco, California, USA
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Jiri Bartek
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ida Häggström
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Irene Y H Gu
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Asgeir Store Jakola
- Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Karlberg A, Pedersen LK, Vindstad BE, Skjulsvik AJ, Johansen H, Solheim O, Skogen K, Kvistad KA, Bogsrud TV, Myrmel KS, Giskeødegård GF, Ingebrigtsen T, Berntsen EM, Eikenes L. Diagnostic accuracy of anti-3-[ 18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging 2024; 51:496-509. [PMID: 37776502 PMCID: PMC10774221 DOI: 10.1007/s00259-023-06437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE The primary aim was to evaluate whether anti-3-[18F]FACBC PET combined with conventional MRI correlated better with histomolecular diagnosis (reference standard) than MRI alone in glioma diagnostics. The ability of anti-3-[18F]FACBC to differentiate between molecular and histopathological entities in gliomas was also evaluated. METHODS In this prospective study, patients with suspected primary or recurrent gliomas were recruited from two sites in Norway and examined with PET/MRI prior to surgery. Anti-3-[18F]FACBC uptake (TBRpeak) was compared to histomolecular features in 36 patients. PET results were then added to clinical MRI readings (performed by two neuroradiologists, blinded for histomolecular results and PET data) to assess the predicted tumor characteristics with and without PET. RESULTS Histomolecular analyses revealed two CNS WHO grade 1, nine grade 2, eight grade 3, and 17 grade 4 gliomas. All tumors were visible on MRI FLAIR. The sensitivity of contrast-enhanced MRI and anti-3-[18F]FACBC PET was 61% (95%CI [45, 77]) and 72% (95%CI [58, 87]), respectively, in the detection of gliomas. Median TBRpeak was 7.1 (range: 1.4-19.2) for PET positive tumors. All CNS WHO grade 1 pilocytic astrocytomas/gangliogliomas, grade 3 oligodendrogliomas, and grade 4 glioblastomas/astrocytomas were PET positive, while 25% of grade 2-3 astrocytomas and 56% of grade 2-3 oligodendrogliomas were PET positive. Generally, TBRpeak increased with malignancy grade for diffuse gliomas. A significant difference in PET uptake between CNS WHO grade 2 and 4 gliomas (p < 0.001) and between grade 3 and 4 gliomas (p = 0.002) was observed. Diffuse IDH wildtype gliomas had significantly higher TBRpeak compared to IDH1/2 mutated gliomas (p < 0.001). Adding anti-3-[18F]FACBC PET to MRI improved the accuracy of predicted glioma grades, types, and IDH status, and yielded 13.9 and 16.7 percentage point improvement in the overall diagnoses for both readers, respectively. CONCLUSION Anti-3-[18F]FACBC PET demonstrated high uptake in the majority of gliomas, especially in IDH wildtype gliomas, and improved the accuracy of preoperatively predicted glioma diagnoses. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04111588, URL: https://clinicaltrials.gov/study/NCT04111588.
Collapse
Affiliation(s)
- Anna Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway.
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medical and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Skogen
- Department of Radiology and Nuclear Medicine, Oslo University Hospitals, Oslo, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Trond Velde Bogsrud
- PET-Centre, University Hospital of North Norway, Tromsø, Norway
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Guro F Giskeødegård
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|