1
|
Hellmuth M, Hernandez-Rosales M, Long Y, Stadler PF. Inferring phylogenetic trees from the knowledge of rare evolutionary events. J Math Biol 2017; 76:1623-1653. [PMID: 29218395 DOI: 10.1007/s00285-017-1194-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 11/16/2017] [Indexed: 10/18/2022]
Abstract
Rare events have played an increasing role in molecular phylogenetics as potentially homoplasy-poor characters. In this contribution we analyze the phylogenetic information content from a combinatorial point of view by considering the binary relation on the set of taxa defined by the existence of a single event separating two taxa. We show that the graph-representation of this relation must be a tree. Moreover, we characterize completely the relationship between the tree of such relations and the underlying phylogenetic tree. With directed operations such as tandem-duplication-random-loss events in mind we demonstrate how non-symmetric information constrains the position of the root in the partially reconstructed phylogeny.
Collapse
Affiliation(s)
- Marc Hellmuth
- Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany.,Center for Bioinformatics, Saarland University, Building E 2.1, P.O. Box 151150, 66041, Saarbrücken, Germany
| | - Maribel Hernandez-Rosales
- CONACYT-Instituto de Matemáticas, UNAM Juriquilla, Blvd. Juriquilla 3001, 76230, Juriquilla, Querétaro, QRO, Mexico
| | - Yangjing Long
- Department of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Straße 47, 17487, Greifswald, Germany. .,School of Mathematical Sciences, Central China Normal University, Luoyu Road 152, Wuhan, 430079, Hubei, China.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center of Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany.,Max-Planck-Institute for Mathematics in the Sciences, Inselstraße 22, 04103, Leipzig, Germany.,Inst. f. Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090, Vienna, Austria.,Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM, 87501, USA
| |
Collapse
|
2
|
Kuraku S. Hox gene clusters of early vertebrates: do they serve as reliable markers for genome evolution? GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:97-103. [PMID: 21802046 PMCID: PMC5054437 DOI: 10.1016/s1672-0229(11)60012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/21/2011] [Indexed: 10/27/2022]
Abstract
Hox genes, responsible for regional specification along the anteroposterior axis in embryogenesis, are found as clusters in most eumetazoan genomes sequenced to date. Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters, derived from the so-called two-round whole genome duplications (2R-WGDs), are observed. Overall, the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans. A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast, existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization. For this group of species, whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates, therefore the number of Hox clusters may not serve as a good indicator of their ploidy level.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Laboratory for Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Germany.
| |
Collapse
|
3
|
Abstract
The increase of bodyplan complexity in early bilaterian evolution is correlates with the advent and diversification of microRNAs. These small RNAs guide animal development by regulating temporal transitions in gene expression involved in cell fate choices and transitions between pluripotency and differentiation. One of the two known microRNAs whose origins date back before the bilaterian ancestor is mir-100. In Bilateria, it appears stably associated in polycistronic transcripts with let-7 and mir-125, two key regulators of development. In vertebrates, these three microRNA families have expanded to form a complex system of developmental regulators. In this contribution, we disentangle the evolutionary history of the let-7 locus, which was restructured independently in nematodes, platyhelminths, and deuterostomes. The foundation of a second let-7 locus in the common ancestor of vertebrates and urochordates predates the vertebrate-specific genome duplications, which then caused a rapid expansion of the let-7 family.
Collapse
Affiliation(s)
- Jana Hertel
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome. Proc Natl Acad Sci U S A 2010; 107:3622-7. [PMID: 20139301 DOI: 10.1073/pnas.0914312107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The living coelacanth is a lobe-finned fish that represents an early evolutionary departure from the lineage that led to land vertebrates, and is of extreme interest scientifically. It has changed very little in appearance from fossilized coelacanths of the Cretaceous (150 to 65 million years ago), and is often referred to as a "living fossil." An important general question is whether long-term stasis in morphological evolution is associated with stasis in genome evolution. To this end we have used targeted genome sequencing for acquiring 1,612,752 bp of high quality finished sequence encompassing the four HOX clusters of the Indonesian coelacanth Latimeria menadoensis. Detailed analyses were carried out on genomic structure, gene and repeat contents, conserved noncoding regions, and relative rates of sequence evolution in both coding and noncoding tracts. Our results demonstrate conclusively that the coelacanth HOX clusters are evolving comparatively slowly and that this taxon should serve as a viable outgroup for interpretation of the genomes of tetrapod species.
Collapse
|
5
|
Chambers KE, McDaniell R, Raincrow JD, Deshmukh M, Stadler PF, Chiu CH. Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory Biosci 2009; 128:109-20. [PMID: 19225820 PMCID: PMC2683926 DOI: 10.1007/s12064-009-0056-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
Abstract
Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD.
Collapse
Affiliation(s)
- Karen E Chambers
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Hoegg S, Boore JL, Kuehl JV, Meyer A. Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics 2007; 8:317. [PMID: 17845724 PMCID: PMC2080641 DOI: 10.1186/1471-2164-8-317] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/10/2007] [Indexed: 11/10/2022] Open
Abstract
Background Teleost fish have seven paralogous clusters of Hox genes stemming from two complete genome duplications early in vertebrate evolution, and an additional genome duplication during the evolution of ray-finned fish, followed by the secondary loss of one cluster. Gene duplications on the one hand, and the evolution of regulatory sequences on the other, are thought to be among the most important mechanisms for the evolution of new gene functions. Cichlid fish, the largest family of vertebrates with about 2500 species, are famous examples of speciation and morphological diversity. Since this diversity could be based on regulatory changes, we chose to study the coding as well as putative regulatory regions of their Hox clusters within a comparative genomic framework. Results We sequenced and characterized all seven Hox clusters of Astatotilapia burtoni, a haplochromine cichlid fish. Comparative analyses with data from other teleost fish such as zebrafish, two species of pufferfish, stickleback and medaka were performed. We traced losses of genes and microRNAs of Hox clusters, the medaka lineage seems to have lost more microRNAs than the other fish lineages. We found that each teleost genome studied so far has a unique set of Hox genes. The hoxb7a gene was lost independently several times during teleost evolution, the most recent event being within the radiation of East African cichlid fish. The conserved non-coding sequences (CNS) encompass a surprisingly large part of the clusters, especially in the HoxAa, HoxCa, and HoxDa clusters. Across all clusters, we observe a trend towards an increased content of CNS towards the anterior end. Conclusion The gene content of Hox clusters in teleost fishes is more variable than expected, with each species studied so far having a different set. Although the highest loss rate of Hox genes occurred immediately after whole genome duplications, our analyses showed that gene loss continued and is still ongoing in all teleost lineages. Along with the gene content, the CNS content also varies across clusters. The excess of CNS at the anterior end of clusters could imply a stronger conservation of anterior expression patters than those towards more posterior areas of the embryo.
Collapse
Affiliation(s)
- Simone Hoegg
- Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jeffrey L Boore
- Program in Evolutionary Genomics, DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, and University of California, Berkeley, California 94720, USA
- SymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025, and University of California, Berkeley, California 94720, USA
| | - Jennifer V Kuehl
- Program in Evolutionary Genomics, DOE Joint Genome Institute and Lawrence Berkeley National Laboratory, and University of California, Berkeley, California 94720, USA
| | - Axel Meyer
- Lehrstuhl für Evolutionsbiologie und Zoologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Freitas R, Zhang G, Cohn MJ. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PLoS One 2007; 2:e754. [PMID: 17710153 PMCID: PMC1937022 DOI: 10.1371/journal.pone.0000754] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 07/24/2007] [Indexed: 01/10/2023] Open
Abstract
The evolutionary transition of fins to limbs involved development of a new suite of distal skeletal structures, the digits. During tetrapod limb development, genes at the 5' end of the HoxD cluster are expressed in two spatiotemporally distinct phases. In the first phase, Hoxd9-13 are activated sequentially and form nested domains along the anteroposterior axis of the limb. This initial phase patterns the limb from its proximal limit to the middle of the forearm. Later in development, a second wave of transcription results in 5' HoxD gene expression along the distal end of the limb bud, which regulates formation of digits. Studies of zebrafish fins showed that the second phase of Hox expression does not occur, leading to the idea that the origin of digits was driven by addition of the distal Hox expression domain in the earliest tetrapods. Here we test this hypothesis by investigating Hoxd gene expression during paired fin development in the shark Scyliorhinus canicula, a member of the most basal lineage of jawed vertebrates. We report that at early stages, 5'Hoxd genes are expressed in anteroposteriorly nested patterns, consistent with the initial wave of Hoxd transcription in teleost and tetrapod paired appendages. Unexpectedly, a second phase of expression occurs at later stages of shark fin development, in which Hoxd12 and Hoxd13 are re-expressed along the distal margin of the fin buds. This second phase is similar to that observed in tetrapod limbs. The results indicate that a second, distal phase of Hoxd gene expression is not uniquely associated with tetrapod digit development, but is more likely a plesiomorphic condition present the common ancestor of chondrichthyans and osteichthyans. We propose that a temporal extension, rather than de novo activation, of Hoxd expression in the distal part of the fin may have led to the evolution of digits.
Collapse
Affiliation(s)
- Renata Freitas
- Department of Zoology, Cancer/Genetics Research Complex, University of Florida, Gainesville, Florida, United Sates of America
| | - GuangJun Zhang
- Department of Zoology, Cancer/Genetics Research Complex, University of Florida, Gainesville, Florida, United Sates of America
| | - Martin J. Cohn
- Department of Zoology, Cancer/Genetics Research Complex, University of Florida, Gainesville, Florida, United Sates of America
- Department of Anatomy and Cell Biology, Cancer/Genetics Research Complex, University of Florida, Gainesville, Florida, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Hoegg S, Meyer A. Hox clusters as models for vertebrate genome evolution. Trends Genet 2005; 21:421-4. [PMID: 15967537 DOI: 10.1016/j.tig.2005.06.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/11/2005] [Accepted: 06/06/2005] [Indexed: 11/21/2022]
Abstract
The surprising variation in the number of Hox clusters and the genomic architecture within vertebrate lineages, especially within the ray-finned fish, reflects a history of duplications and subsequent lineage-specific gene loss. Recent research on the evolution of conserved non-coding sequences (CNS) in Hox clusters promises to reveal interesting results for functional and phenotypic diversification.
Collapse
Affiliation(s)
- Simone Hoegg
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
9
|
Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP. Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 2005; 32:686-94. [PMID: 15288047 DOI: 10.1016/j.ympev.2004.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 02/13/2004] [Indexed: 11/22/2022]
Abstract
Hox genes code for transcription factors that play a major role in the development of all animal phyla. In invertebrates these genes usually occur as tightly linked cluster, with a few exceptions where the clusters have been dissolved. Only in vertebrates multiple clusters have been demonstrated which arose by duplication from a single ancestral cluster. This history of Hox cluster duplications, in particular during the early elaboration of the vertebrate body plan, is still poorly understood. In this paper we report the results of a PCR survey on genomic DNA of the pacific hagfish Eptatretus stoutii. Hagfishes are one of two clades of recent jawless fishes that are an offshoot of the early radiation of jawless vertebrates. Our data provide evidence for at least 33 distinct Hox genes in the hagfish genome, which is most compatible with the hypothesis of multiple Hox clusters. The largest number, seven, of distinct homeobox fragments could be assigned to paralog group 9, which could imply that the hagfish has more than four clusters. Quartet mapping reveals that within each paralog group the hagfish sequences are statistically more closely related to gnathostome Hox genes than with either amphioxus or lamprey genes. These results support two assumptions about the history of Hox genes: (1) The association of hagfish homeobox sequences with gnathostome sequences suggests that at least one Hox cluster duplication event happened in the stem of vertebrates, i.e., prior to the most recent common ancestor of jawed and jawless vertebrates. (2) The high number of paralog group 9 sequences in hagfish and the phylogenetic position of hagfish suggests that the hagfish lineage underwent additional independent Hox cluster/-gene duplication events.
Collapse
Affiliation(s)
- Peter F Stadler
- Lehrstuhl für Bioinformatik, Institut für Informatik, Universität Leipzig, Kreuzstrasse 7b, D-04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tanzer A, Amemiya CT, Kim CB, Stadler PF. Evolution of microRNAs located withinHox gene clusters. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:75-85. [PMID: 15643628 DOI: 10.1002/jez.b.21021] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MicroRNAs (miRNAs) form an abundant class of non-coding RNA genes that have an important function in post-transcriptional gene regulation and in particular modulate the expression of developmentally important transcription factors including Hox genes. Two families of microRNAs are genomically located in intergenic regions in the Hox clusters of vertebrates. Here we describe their evolution in detail. We show that the micro RNAs closely follow the patterns of protein evolution in the Hox clusters, which is characterized by cluster duplications followed by differential gene loss.
Collapse
Affiliation(s)
- Andrea Tanzer
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Kreuzstrasse 7b, D 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
11
|
Prohaska SJ, Fried C, Flamm C, Wagner GP, Stadler PF. Surveying phylogenetic footprints in large gene clusters: applications to Hox cluster duplications. Mol Phylogenet Evol 2004; 31:581-604. [PMID: 15062796 DOI: 10.1016/j.ympev.2003.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 08/07/2003] [Indexed: 11/23/2022]
Abstract
Evolutionarily conserved non-coding genomic sequences represent a potentially rich source for the discovery of gene regulatory regions. Since these elements are subject to stabilizing selection they evolve much more slowly than adjacent non-functional DNA. These so-called phylogenetic footprints can be detected by comparison of the sequences surrounding orthologous genes in different species. Therefore the loss of phylogenetic footprints as well as the acquisition of conserved non-coding sequences in some lineages, but not in others, can provide evidence for the evolutionary modification of cis-regulatory elements. We introduce here a statistical model of footprint evolution that allows us to estimate the loss of sequence conservation that can be attributed to gene loss and other structural reasons. This approach to studying the pattern of cis-regulatory element evolution, however, requires the comparison of relatively long sequences from many species. We have therefore developed an efficient software tool for the identification of corresponding footprints in long sequences from multiple species. We apply this novel method to the published sequences of HoxA clusters of shark, human, and the duplicated zebrafish and Takifugu clusters as well as the published HoxB cluster sequences. We find that there is a massive loss of sequence conservation in the intergenic region of the HoxA clusters, consistent with the finding in [Chiu et al., PNAS 99 (2002) 5492]. The loss of conservation after cluster duplication is more extensive than expected from structural reasons. This suggests that binding site turnover and/or adaptive modification may also contribute to the loss of sequence conservation.
Collapse
Affiliation(s)
- Sonja J Prohaska
- Lehrstuhl für Bioinformatik, Institut für Informatik, Uniersitäat Leipzig, Germany.
| | | | | | | | | |
Collapse
|
12
|
Force A, Shashikant C, Stadler P, Amemiya CT. Comparative Genomics, cis-Regulatory Elements, and Gene Duplication. Methods Cell Biol 2004; 77:545-61. [PMID: 15602931 DOI: 10.1016/s0091-679x(04)77029-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Allan Force
- Molecular Genetics Program, Benaroya Research Institute, Seattle, Washington 98101, USA
| | | | | | | |
Collapse
|