1
|
Ament-Velásquez SL, Furneaux B, Dheur S, Granger-Farbos A, Stelkens R, Johannesson H, Saupe SJ. Reconstructing NOD-like receptor alleles with high internal conservation in Podospora anserina using long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632504. [PMID: 39868110 PMCID: PMC11761791 DOI: 10.1101/2025.01.13.632504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The het-d and het-e NLRs in Podospora anserina are highly polymorphic incompatibility genes (het genes) whose products recognize different alleles of the het-c gene via a sensor domain composed of WD40 repeats. These repeats display unusually high sequence identity maintained by concerted evolution. However, some sites within individual repeats are hypervariable and under diversifying selection. Despite extensive genetic studies, inconsistencies in the reported WD40 domain sequence have hindered functional and evolutionary analyses. Here we demonstrate that the WD40 domain can be accurately reconstructed from long-read sequencing (Oxford Nanopore and PacBio) data, but not from Illumina-based assemblies. Functional alleles are usually formed by 11 highly conserved repeats, with different repeat combinations underlying the same phenotypic het-d and het-e incompatibility reactions. Protein structure models suggest that their WD40 domain folds into two 7-blade β-propellers composed of the highly conserved repeats, as well as three cryptic divergent repeats at the C-terminus. We additionally show that one particular het-e allele does not have an incompatibility reaction with common het-c alleles, despite being 11-repeats long. Our findings provide a robust foundation for future research into the molecular mechanisms and evolutionary dynamics of het NLRs, while also highlighting both the fragility and the flexibility of β-propellers as immune sensor domains.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sonia Dheur
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
| | - Sven J Saupe
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| |
Collapse
|
2
|
The whole mitochondrial genome signature of Teressa goat, an indigenous goat germplasm of Andaman and Nicobar Islands, India. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Bora PK, Hazarika P, Baruah AK. Distance based amino acids network analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Levy H, Fiddaman SR, Vianna JA, Noll D, Clucas GV, Sidhu JKH, Polito MJ, Bost CA, Phillips RA, Crofts S, Miller GD, Pistorius P, Bonnadonna F, Le Bohec C, Barbosa A, Trathan P, Raya Rey A, Frantz LAF, Hart T, Smith AL. Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird. Mol Biol Evol 2020; 37:1708-1726. [PMID: 32096861 PMCID: PMC7253215 DOI: 10.1093/molbev/msaa040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.
Collapse
Affiliation(s)
- Hila Levy
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | - Juliana A Vianna
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | - Daly Noll
- Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
- Departamento de Ciencias Ecológicas, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Gemma V Clucas
- Cornell Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY
| | | | - Michael J Polito
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA
| | - Charles A Bost
- Centre d’Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS‐Université de La Rochelle, Villiers‐en‐Bois, France
| | | | - Sarah Crofts
- Falklands Conservation, Stanley, Falkland Islands, United Kingdom
| | - Gary D Miller
- Microbiology and Immunology, PALM, University of Western Australia, Crawley, Western Australia, Australia
| | - Pierre Pistorius
- DST/NRF Centre of Excellence at the Percy FitzPatrick Institute for African Ornithology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Francesco Bonnadonna
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Andrés Barbosa
- Museo Nacional de Ciencias Naturales, Departamento de Ecología Evolutiva, CSIC, Madrid, Spain
| | - Phil Trathan
- British Antarctic Survey, Cambridge, United Kingdom
| | - Andrea Raya Rey
- Centro Austral de Investigaciones Científicas – Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
- Wildlife Conservation Society, Buenos Aires, Argentina
| | - Laurent A F Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Adrian L Smith
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Higgs PG, Hao W, Golding GB. Identification of Conflicting Selective Effects on Highly Expressed Genes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many different selective effects on DNA and proteins influence the frequency of codons and amino acids in coding sequences. Selection is often stronger on highly expressed genes. Hence, by comparing high- and low-expression genes it is possible to distinguish the factors that are selected by evolution. It has been proposed that highly expressed genes should (i) preferentially use codons matching abundant tRNAs (translational efficiency), (ii) preferentially use amino acids with low cost of synthesis, (iii) be under stronger selection to maintain the required amino acid content, and (iv) be selected for translational robustness. These effects act simultaneously and can be contradictory. We develop a model that combines these factors, and use Akaike's Information Criterion for model selection. We consider pairs of paralogues that arose by whole-genome duplication in Saccharmyces cerevisiae. A codon-based model is used that includes asymmetric effects due to selection on highly expressed genes. The largest effect is translational efficiency, which is found to strongly influence synonymous, but not non-synonymous rates. Minimization of the cost of amino acid synthesis is implicated. However, when a more general measure of selection for amino acid usage is used, the cost minimization effect becomes redundant. Small effects that we attribute to selection for translational robustness can be identified as an improvement in the model fit on top of the effects of translational efficiency and amino acid usage.
Collapse
Affiliation(s)
- Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1
| | - Weilong Hao
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1
| | - G. Brian Golding
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1
| |
Collapse
|
6
|
Nikbakht H, Xia X, Hickey DA. The evolution of genomic GC content undergoes a rapid reversal within the genus Plasmodium. Genome 2015; 57:507-11. [PMID: 25633864 DOI: 10.1139/gen-2014-0158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of the malarial parasite Plasmodium falciparum is extremely AT rich. This bias toward a low GC content is a characteristic of several, but not all, species within the genus Plasmodium. We compared 4283 orthologous pairs of protein-coding sequences between Plasmodium falciparum and the less AT-biased Plasmodium vivax. Our results indicate that the common ancestor of these two species was also extremely AT rich. This means that, although there was a strong bias toward A+T during the early evolution of the ancestral Plasmodium lineage, there was a subsequent reversal of this trend during the more recent evolution of some species, such as P. vivax. Moreover, we show that not only is the P. vivax genome losing its AT richness, it is actually gaining a very significant degree of GC richness. This example illustrates the potential volatility of nucleotide content during the course of molecular evolution. Such reversible fluxes in nucleotide content within lineages could have important implications for phylogenetic reconstruction based on molecular sequence data.
Collapse
Affiliation(s)
- Hamid Nikbakht
- a Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | | | |
Collapse
|
7
|
Abstract
Studying phage codon adaptation is important not only for understanding the process of translation elongation, but also for reengineering phages for medical and industrial purposes. To evaluate the effect of mutation and selection on phage codon usage, we developed an index to measure selection imposed by host translation machinery, based on the difference in codon usage between all host genes and highly expressed host genes. We developed linear and nonlinear models to estimate the C→T mutation bias in different phage lineages and to evaluate the relative effect of mutation and host selection on phage codon usage. C→T-biased mutations occur more frequently in single-stranded DNA (ssDNA) phages than in double-stranded DNA (dsDNA) phages and affect not only synonymous codon usage, but also nonsynonymous substitutions at second codon positions, especially in ssDNA phages. The host translation machinery affects codon adaptation in both dsDNA and ssDNA phages, with a stronger effect on dsDNA phages than on ssDNA phages. Strand asymmetry with the associated local variation in mutation bias can significantly interfere with codon adaptation in both dsDNA and ssDNA phages.
Collapse
|
8
|
Chithambaram S, Prabhakaran R, Xia X. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. Mol Biol Evol 2014; 31:1606-17. [PMID: 24586046 PMCID: PMC4032129 DOI: 10.1093/molbev/msu087] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Because phages use their host translation machinery, their codon usage should evolve toward that of highly expressed host genes. We used two indices to measure codon adaptation of phages to their host, rRSCU (the correlation in relative synonymous codon usage [RSCU] between phages and their host) and Codon Adaptation Index (CAI) computed with highly expressed host genes as the reference set (because phage translation depends on host translation machinery). These indices used for this purpose are appropriate only when hosts exhibit little mutation bias, so only phages parasitizing Escherichia coli were included in the analysis. For double-stranded DNA (dsDNA) phages, both rRSCU and CAI decrease with increasing number of transfer RNA genes encoded by the phage genome. rRSCU is greater for dsDNA phages than for single-stranded DNA (ssDNA) phages, and the low rRSCU values are mainly due to poor concordance in RSCU values for Y-ending codons between ssDNA phages and the E. coli host, consistent with the predicted effect of C→T mutation bias in the ssDNA phages. Strong C→T mutation bias would improve codon adaptation in codon families (e.g., Gly) where U-ending codons are favored over C-ending codons (“U-friendly” codon families) by highly expressed host genes but decrease codon adaptation in other codon families where highly expressed host genes favor C-ending codons against U-ending codons (“U-hostile” codon families). It is remarkable that ssDNA phages with increasing C→T mutation bias also increased the usage of codons in the “U-friendly” codon families, thereby achieving CAI values almost as large as those of dsDNA phages. This represents a new type of codon adaptation.
Collapse
Affiliation(s)
- Shivapriya Chithambaram
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ramanandan Prabhakaran
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Palidwor GA, Perkins TJ, Xia X. A general model of codon bias due to GC mutational bias. PLoS One 2010; 5:e13431. [PMID: 21048949 PMCID: PMC2965080 DOI: 10.1371/journal.pone.0013431] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 09/10/2010] [Indexed: 12/04/2022] Open
Abstract
Background In spite of extensive research on the effect of mutation and selection on codon usage, a general model of codon usage bias due to mutational bias has been lacking. Because most amino acids allow synonymous GC content changing substitutions in the third codon position, the overall GC bias of a genome or genomic region is highly correlated with GC3, a measure of third position GC content. For individual amino acids as well, G/C ending codons usage generally increases with increasing GC bias and decreases with increasing AT bias. Arginine and leucine, amino acids that allow GC-changing synonymous substitutions in the first and third codon positions, have codons which may be expected to show different usage patterns. Principal Findings In analyzing codon usage bias in hundreds of prokaryotic and plant genomes and in human genes, we find that two G-ending codons, AGG (arginine) and TTG (leucine), unlike all other G/C-ending codons, show overall usage that decreases with increasing GC bias, contrary to the usual expectation that G/C-ending codon usage should increase with increasing genomic GC bias. Moreover, the usage of some codons appears nonlinear, even nonmonotone, as a function of GC bias. To explain these observations, we propose a continuous-time Markov chain model of GC-biased synonymous substitution. This model correctly predicts the qualitative usage patterns of all codons, including nonlinear codon usage in isoleucine, arginine and leucine. The model accounts for 72%, 64% and 52% of the observed variability of codon usage in prokaryotes, plants and human respectively. When codons are grouped based on common GC content, 87%, 80% and 68% of the variation in usage is explained for prokaryotes, plants and human respectively. Conclusions The model clarifies the sometimes-counterintuitive effects that GC mutational bias can have on codon usage, quantifies the influence of GC mutational bias and provides a natural null model relative to which other influences on codon bias may be measured.
Collapse
|
10
|
Albu M, Min XJ, Golding GB, Hickey D. Nucleotide substitution bias within the genus Drosophila affects the pattern of proteome evolution. Genome Biol Evol 2009; 1:288-93. [PMID: 20333198 PMCID: PMC2817423 DOI: 10.1093/gbe/evp028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2009] [Indexed: 11/14/2022] Open
Abstract
The availability of complete genome sequences for 12 Drosophila species provides an unprecedented resource for large-scale studies of genome evolution. In this study, we looked for correlated shifts in the patterns of genome and proteome evolution within the genus Drosophila. Specifically, we asked if the nucleotide composition of the Drosophila willistoni genome--which is significantly less GC rich than the other 11 sequenced Drosophila genomes--is reflected in an altered pattern of amino acid substitutions in the encoded proteins. Our results show that this is indeed the case: There are large and highly significant asymmetries in the patterns of amino acid substitution between D. willistoni and Drosophila melanogaster, and they are in the direction predicted by the nucleotide biases. The implication of this result, combined with previous studies on long-term proteome evolution, is that substitutional biases at the DNA level can be a major factor in determining both the long-term and the short-term directions of proteome evolution.
Collapse
Affiliation(s)
- Mihai Albu
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
11
|
Higgs PG, Pudritz RE. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. ASTROBIOLOGY 2009; 9:483-90. [PMID: 19566427 DOI: 10.1089/ast.2008.0280] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Of the 20 amino acids used in proteins, 10 were formed in Miller's atmospheric discharge experiments. The two other major proposed sources of prebiotic amino acid synthesis include formation in hydrothermal vents and delivery to Earth via meteorites. We combine observational and experimental data of amino acid frequencies formed by these diverse mechanisms and show that, regardless of the source, these 10 early amino acids can be ranked in order of decreasing abundance in prebiotic contexts. This order can be predicted by thermodynamics. The relative abundances of the early amino acids were most likely reflected in the composition of the first proteins at the time the genetic code originated. The remaining amino acids were incorporated into proteins after pathways for their biochemical synthesis evolved. This is consistent with theories of the evolution of the genetic code by stepwise addition of new amino acids. These are hints that key aspects of early biochemistry may be universal.
Collapse
Affiliation(s)
- Paul G Higgs
- Origins Institute and Department of Physics and Astronomy, McMaster University, Ontario, Canada.
| | | |
Collapse
|
12
|
Higgs PG. A four-column theory for the origin of the genetic code: tracing the evolutionary pathways that gave rise to an optimized code. Biol Direct 2009; 4:16. [PMID: 19393096 PMCID: PMC2689856 DOI: 10.1186/1745-6150-4-16] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022] Open
Abstract
Background The arrangement of the amino acids in the genetic code is such that neighbouring codons are assigned to amino acids with similar physical properties. Hence, the effects of translational error are minimized with respect to randomly reshuffled codes. Further inspection reveals that it is amino acids in the same column of the code (i.e. same second base) that are similar, whereas those in the same row show no particular similarity. We propose a 'four-column' theory for the origin of the code that explains how the action of selection during the build-up of the code leads to a final code that has the observed properties. Results The theory makes the following propositions. (i) The earliest amino acids in the code were those that are easiest to synthesize non-biologically, namely Gly, Ala, Asp, Glu and Val. (ii) These amino acids are assigned to codons with G at first position. Therefore the first code may have used only these codons. (iii) The code rapidly developed into a four-column code where all codons in the same column coded for the same amino acid: NUN = Val, NCN = Ala, NAN = Asp and/or Glu, and NGN = Gly. (iv) Later amino acids were added sequentially to the code by a process of subdivision of codon blocks in which a subset of the codons assigned to an early amino acid were reassigned to a later amino acid. (v) Later amino acids were added into positions formerly occupied by amino acids with similar properties because this can occur with minimal disruption to the proteins already encoded by the earlier code. As a result, the properties of the amino acids in the final code retain a four-column pattern that is a relic of the earliest stages of code evolution. Conclusion The driving force during this process is not the minimization of translational error, but positive selection for the increased diversity and functionality of the proteins that can be made with a larger amino acid alphabet. Nevertheless, the code that results is one in which translational error is minimized. We define a cost function with which we can compare the fitness of codes with varying numbers of amino acids, and a barrier function, which measures the change in cost immediately after addition of a new amino acid. We show that the barrier is positive if an amino acid is added into a column with dissimilar properties, but negative if an amino acid is added into a column with similar physical properties. Thus, natural selection favours the assignment of amino acids to the positions that they occupy in the final code. Reviewers This article was reviewed by David Ardell, Eugene Koonin and Stephen Freeland (nominated by Laurence Hurst)
Collapse
Affiliation(s)
- Paul G Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
13
|
Kryazhimskiy S, Bazykin GA, Plotkin JB, Plotkin J, Dushoff J. Directionality in the evolution of influenza A haemagglutinin. Proc Biol Sci 2008; 275:2455-64. [PMID: 18647721 PMCID: PMC2603193 DOI: 10.1098/rspb.2008.0521] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of haemagglutinin (HA), an important influenza virus antigen, has been the subject of intensive research for more than two decades. Many characteristics of HA's sequence evolution are captured by standard Markov chain substitution models. Such models assign equal fitness to all accessible amino acids at a site. We show, however, that such models strongly underestimate the number of homoplastic amino acid substitutions during the course of HA's evolution, i.e. substitutions that repeatedly give rise to the same amino acid at a site. We develop statistics to detect individual homoplastic events and find that they preferentially occur at positively selected epitopic sites. Our results suggest that the evolution of the influenza A HA, including evolution by positive selection, is strongly affected by the long-term site-specific preferences for individual amino acids.
Collapse
Affiliation(s)
- Sergey Kryazhimskiy
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
14
|
An evolutionary footprint of age-related natural selection in mitochondrial DNA. J Mol Evol 2008; 67:412-7. [PMID: 18810522 DOI: 10.1007/s00239-008-9163-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/18/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
By comparing mtDNA sequences between different orders of mammals, we show that both longevity and generation time are significantly correlated with the nucleotide content of the mtDNA. Specifically, there is a positive correlation between generation time and mt GC content. This correlation is repeated, at a finer evolutionary scale, within the primates. Moreover, a comparison of human and chimpanzee mtDNAs shows that the effect has been very pronounced during the short evolutionary period since the divergence of these two species, with human mtDNA showing a GC-biased pattern of substitution at the variable sites. In addition to these DNA sequence patterns, comparisons between the human and the chimp mt protein sequences also revealed a surprisingly high substitution rate for threonine residues, resulting in a reduction of threonine in the human mt proteome. These patterns of both DNA and protein evolution can be explained by a balance between AT-biased mutational pressure and age-related purifying selection.
Collapse
|
15
|
Di Giulio M. An extension of the coevolution theory of the origin of the genetic code. Biol Direct 2008; 3:37. [PMID: 18775066 PMCID: PMC2538516 DOI: 10.1186/1745-6150-3-37] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/05/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coevolution theory of the origin of the genetic code suggests that the genetic code is an imprint of the biosynthetic relationships between amino acids. However, this theory does not seem to attribute a role to the biosynthetic relationships between the earliest amino acids that evolved along the pathways of energetic metabolism. As a result, the coevolution theory is unable to clearly define the very earliest phases of genetic code origin. In order to remove this difficulty, I here suggest an extension of the coevolution theory that attributes a crucial role to the first amino acids that evolved along these biosynthetic pathways and to their biosynthetic relationships, even when defined by the non-amino acid molecules that are their precursors. RESULTS It is re-observed that the first amino acids to evolve along these biosynthetic pathways are predominantly those codified by codons of the type GNN, and this observation is found to be statistically significant. Furthermore, the close biosynthetic relationships between the sibling amino acids Ala-Ser, Ser-Gly, Asp-Glu, and Ala-Val are not random in the genetic code table and reinforce the hypothesis that the biosynthetic relationships between these six amino acids played a crucial role in defining the very earliest phases of genetic code origin. CONCLUSION All this leads to the hypothesis that there existed a code, GNS, reflecting the biosynthetic relationships between these six amino acids which, as it defines the very earliest phases of genetic code origin, removes the main difficulty of the coevolution theory. Furthermore, it is here discussed how this code might have naturally led to the code codifying only for the domains of the codons of precursor amino acids, as predicted by the coevolution theory. Finally, the hypothesis here suggested also removes other problems of the coevolution theory, such as the existence for certain pairs of amino acids with an unclear biosynthetic relationship between the precursor and product amino acids and the collocation of Ala between the amino acids Val and Leu belonging to the pyruvate biosynthetic family, which the coevolution theory considered as belonging to different biosyntheses. REVIEWERS This article was reviewed by Rob Knight, Paul Higgs (nominated by Laura Landweber), and Eugene Koonin.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Laboratory for Molecular Evolution, Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P. Castellino, 111, 80131 Naples, Napoli, Italy.
| |
Collapse
|
16
|
Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 2007; 64:662-88. [PMID: 17541678 PMCID: PMC1894752 DOI: 10.1007/s00239-006-0284-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.
Collapse
Affiliation(s)
- Supratim Sengupta
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 Canada
| | - Xiaoguang Yang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| | - Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| |
Collapse
|
17
|
Xu W, Jameson D, Tang B, Higgs PG. The relationship between the rate of molecular evolution and the rate of genome rearrangement in animal mitochondrial genomes. J Mol Evol 2006; 63:375-92. [PMID: 16838214 DOI: 10.1007/s00239-005-0246-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Evolution of mitochondrial genes is far from clock-like. The substitution rate varies considerably between species, and there are many species that have a significantly increased rate with respect to their close relatives. There is also considerable variation among species in the rate of gene order rearrangement. Using a set of 55 complete arthropod mitochondrial genomes, we estimate the evolutionary distance from the common ancestor to each species using protein sequences, tRNA sequences, and breakpoint distances (a measure of the degree of genome rearrangement). All these distance measures are correlated. We use relative rate tests to compare pairs of related species in several animal phyla. In the majority of cases, the species with the more highly rearranged genome also has a significantly higher rate of sequence evolution. Species with higher amino acid substitution rates in mitochondria also have more variable amino acid composition in response to mutation pressure. We discuss the possible causes of variation in rates of sequence evolution and gene rearrangement among species and the possible reasons for the observed correlation between the two rates.
Collapse
Affiliation(s)
- Wei Xu
- Department of Physics and Astronomy, McMaster University, Main St. West, Hamilton, Ontario, L8S 4M1, Canada
| | | | | | | |
Collapse
|