1
|
Rasmussen JA, Villumsen KR, Duchêne DA, Puetz LC, Delmont TO, Sveier H, Jørgensen LVG, Præbel K, Martin MD, Bojesen AM, Gilbert MTP, Kristiansen K, Limborg MT. Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts. Commun Biol 2021; 4:579. [PMID: 33990699 PMCID: PMC8121932 DOI: 10.1038/s42003-021-02105-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 11/08/2022] Open
Abstract
Salmonids are important sources of protein for a large proportion of the human population. Mycoplasma species are a major constituent of the gut microbiota of salmonids, often representing the majority of microbiota. Despite the frequent reported dominance of salmonid-related Mycoplasma species, little is known about the phylogenomic placement, functions and potential evolutionary relationships with their salmonid hosts. In this study, we utilise 2.9 billion metagenomic reads generated from 12 samples from three different salmonid host species to I) characterise and curate the first metagenome-assembled genomes (MAGs) of Mycoplasma dominating the intestines of three different salmonid species, II) establish the phylogeny of these salmonid candidate Mycoplasma species, III) perform a comprehensive pangenomic analysis of Mycoplasma, IV) decipher the putative functionalities of the salmonid MAGs and reveal specific functions expected to benefit the host. Our data provide a basis for future studies examining the composition and function of the salmonid microbiota.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Kasper R Villumsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - David A Duchêne
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lara C Puetz
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tom O Delmont
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Parasitology and Aquatic Pathobiology, Copenhagen, Denmark
| | - Kim Præbel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anders M Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Veterinary Clinical Microbiology, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Institute of Metagenomics, BGI-Shenzhen, Shenzhen, China
| | - Morten T Limborg
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Center for Evolutionary Hologenomics, GLOBE institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
A phylogenomic and molecular markers based taxonomic framework for members of the order Entomoplasmatales: proposal for an emended order Mycoplasmatales containing the family Spiroplasmataceae and emended family Mycoplasmataceae comprised of six genera. Antonie van Leeuwenhoek 2018; 112:561-588. [PMID: 30392177 DOI: 10.1007/s10482-018-1188-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
Abstract
The "Spiroplasma cluster" is a taxonomically heterogeneous assemblage within the phylum Tenericutes encompassing different Entomoplasmatales species as well as the genus Mycoplasma, type genus of the order Mycoplasmatales. Within this cluster, the family Entomoplasmataceae contains two non-cohesive genera Entomoplasma and Mesoplasma with their members exhibiting extensive polyphyletic branching; additionally, the genus Mycoplasma is also embedded within this family. Genome sequences are now available for all 19 Entomoplasmataceae species with validly published names, as well as 6 of the 7 species from the genus Mycoplasma. With the aim of developing a reliable phylogenetic and taxonomic framework for the family Entomoplasmataceae, exhaustive phylogenetic and comparative genomic studies were carried out on these genome sequences. Phylogenetic trees were constructed based on concatenated sequences of 121 core proteins for this cluster, 67 conserved proteins shared with the phylum Firmicutes, 40 ribosomal proteins, three major subunits of RNA polymerase (RpoA, B and C) by different means and also for the 16S rRNA gene sequences. The interspecies relationships as well as different species groups observed in these trees were identical and robustly resolved. In all of these trees, members of the genera Mesoplasma and Entomoplasma formed three and two distinct clades, respectively, which were interspersed among the members of the other genus. The observed species groupings in the phylogenetic trees are independently strongly supported by our identification of 103 novel molecular markers or synapomorphies in the forms of conserved signature indels and conserved signature proteins, which are uniquely shared by the members of different observed species clades. To account for the different observed species clades, we are proposing a division of the genus Mesoplasma into an emended genus Mesoplasma and two new genera Tullyiplasma gen. nov. and Edwardiiplasma gen. nov. Likewise, to recognize the distinct species groupings of Entomoplasma, we are proposing its division into an emended genus Entomoplasma and a new genus Williamsoniiplasma gen. nov. Lastly, to rectify the long-existing taxonomic anomaly caused by the presence of genus Mycoplasma (order Mycoplasmatales) within the Entomoplasmatales, we are proposing an emendation of the family Mycoplasmataceae to include both Entomoplasmataceae plus Mycoplasma species and an emendation of the order Mycoplasmatales, which now comprises of the emended family Mycoplasmataceae and the family Spiroplasmataceae. The taxonomic reclassifications proposed here accurately reflect the species relationships within this group of Tenericutes and they should lead to a better understanding of their biological and pathogenic characteristics.
Collapse
|
3
|
Gupta RS, Sawnani S, Adeolu M, Alnajar S, Oren A. Phylogenetic framework for the phylum Tenericutes based on genome sequence data: proposal for the creation of a new order Mycoplasmoidales ord. nov., containing two new families Mycoplasmoidaceae fam. nov. and Metamycoplasmataceae fam. nov. harbouring Eperythrozoon, Ureaplasma and five novel genera. Antonie van Leeuwenhoek 2018; 111:1583-1630. [PMID: 29556819 DOI: 10.1007/s10482-018-1047-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
The genus Mycoplasma, including species earlier classified in the genera Eperythrozoon and Haemobartonella, contains ~ 120 species and constitutes an extensively polyphyletic assemblage of bacteria within the phylum Tenericutes. Due to their small genome sizes and lack of unique characteristics, the relationships among the mycoplasmas/Tenericutes are not reliably discerned. Using genome sequences for 140 Tenericutes, their evolutionary relationships were examined using multiple independent approaches. Phylogenomic trees were constructed for 63 conserved proteins, 45 ribosomal proteins, three main subunits of RNA polymerase and 16S rRNA gene sequences. In all of these trees, Tenericutes species reliably grouped into four main clades designated as the "Acholeplasma", "Spiroplasma", "Pneumoniae" and "Hominis" clusters. These clades are also distinguished based on a similarity matrix constructed based on 16S rRNA gene sequences. Mycoplasma species were dispersed across 3 of these 4 clades highlighting their extensive polyphyly. In parallel, our comparative genomic analyses have identified > 100 conserved signature indels (CSIs) and 14 conserved signature proteins (CSPs), which are uniquely shared by the members of four identified clades, strongly supporting their monophyly and identifying them in molecular terms. Mycoplasma mycoides, the type species of the genus Mycoplasma, and a small number of other Mycoplasma species, formed a strongly supported clade within the "Spiroplasma" cluster. Nine CSIs and 14 CSPs reliably distinguish this clade from all other Mycoplasmatales species. The remainder of the Mycoplasmatales species are part of the "Pneumoniae" and "Hominis" clusters, which group together in phylogenetic trees. Here we are proposing that the order Mycoplasmatales should be emended to encompass only the Mycoplasma species within the "Spiroplasma" cluster and that a new order, Mycoplasmoidales ord. nov., should be created to encompass the other Mycoplasma species. The "Pneumoniae" and the "Hominis" clusters are proposed as two new families, Mycoplasmoidaceae fam. nov., which includes the genera Eperythrozoon, Ureaplasma, and the newly proposed genera Malacoplasma and Mycoplasmoides, and Metamycoplasmataceae fam. nov. to contain the newly proposed genera Metamycoplasma, Mycoplasmopsis, and Mesomycoplasma. The results presented here allow reliable discernment, both in phylogenetic and molecular terms, of the members of the two proposed families as well as different described genera within these families including members of the genus Eperythrozoon, which is comprised of uncultivable organisms. The taxonomic reclassifications proposed here, which more accurately portray the genetic diversity among the Tenericutes/Mycoplasma species, provide a new framework for understanding the biological and clinical aspects of these important microbes.
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | - Sahil Sawnani
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Seema Alnajar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401, Jerusalem, Israel
| |
Collapse
|
4
|
Wang Y, Huang JM, Wang SL, Gao ZM, Zhang AQ, Danchin A, He LS. Genomic characterization of symbiotic mycoplasmas from the stomach of deep-sea isopod bathynomus sp. Environ Microbiol 2016; 18:2646-59. [PMID: 27312602 DOI: 10.1111/1462-2920.13411] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/24/2023]
Abstract
Deep-sea isopod scavengers such as Bathynomus sp. are able to live in nutrient-poor environments, which is likely attributable to the presence of symbiotic microbes in their stomach. In this study we recovered two draft genomes of mycoplasmas, Bg1 and Bg2, from the metagenomes of the stomach contents and stomach sac of a Bathynomus sp. sample from the South China Sea (depth of 898 m). Phylogenetic trees revealed a considerable genetic distance to other mycoplasma species for Bg1 and Bg2. Compared with terrestrial symbiotic mycoplasmas, the Bg1 and Bg2 genomes were enriched with genes encoding phosphoenolpyruvate-dependent phosphotransferase systems (PTSs) and sodium-driven symporters responsible for the uptake of sugars, amino acids and other carbohydrates. The genome of mycoplasma Bg1 contained sialic acid lyase and transporter genes, potentially enabling the bacteria to attach to the stomach sac and obtain organic carbons from various cell walls. Both of the mycoplasma genomes contained multiple copies of genes related to proteolysis and oligosaccharide degradation, which may help the host survive in low-nutrient conditions. The discovery of the different types of mycoplasma bacteria in the stomach of this deep-sea isopod affords insights into symbiotic model of deep-sea animals and genomic plasticity of mycoplasma bacteria.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Jiao-Mei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Shao-Lu Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Zhao-Ming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Ai-Qun Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Antoine Danchin
- Hôpital de la Pitié-Salpêtrière, Institute of Cardiometabolism and Nutrition, 47 boulevard de l'Hôpital, Paris, 75013, France
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
5
|
Leclercq S, Dittmer J, Bouchon D, Cordaux R. Phylogenomics of "Candidatus Hepatoplasma crinochetorum," a lineage of mollicutes associated with noninsect arthropods. Genome Biol Evol 2015; 6:407-15. [PMID: 24482531 PMCID: PMC3942034 DOI: 10.1093/gbe/evu020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial gut communities of arthropods are highly diverse and tightly related to host feeding habits. However, our understanding of the origin and role of the symbionts is often hindered by the lack of genetic information. “Candidatus Hepatoplasma crinochetorum” is a Mollicutes symbiont found in the midgut glands of terrestrial isopods. The only available nucleotide sequence for this symbiont is a partial 16S rRNA gene sequence. Here, we present the 657,101 bp assembled genome of Candidatus Hepatoplasma crinochetorum isolated from the terrestrial isopod Armadillidium vulgare. While previous 16S rRNA gene-based analyses have provided inconclusive results regarding the phylogenetic position of Candidatus Hepatoplasma crinochetorum within Mollicutes, we performed a phylogenomic analysis of 127 Mollicutes orthologous genes which confidently branches the species as a sister group to the Hominis group of Mycoplasma. Several genome properties of Candidatus Hepatoplasma crinochetorum are also highlighted compared with other Mollicutes genomes, including adjacent tryptophan tRNA genes, which further our understanding of the evolutionary dynamics of these genes in Mollicutes, and the presence of a probably inactivated CRISPR/Cas system, which constitutes a testimony of past interactions between Candidatus Hepatoplasma crinochetorum and mobile genetic elements, despite their current lack in this streamlined genome. Overall, the availability of the complete genome sequence of Candidatus Hepatoplasma crinochetorum paves the way for further investigation of its ecology and evolution.
Collapse
Affiliation(s)
- Sébastien Leclercq
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | | | | | | |
Collapse
|
6
|
Trachtenberg S, Schuck P, Phillips TM, Andrews SB, Leapman RD. A structural framework for a near-minimal form of life: mass and compositional analysis of the helical mollicute Spiroplasma melliferum BC3. PLoS One 2014; 9:e87921. [PMID: 24586297 PMCID: PMC3931623 DOI: 10.1371/journal.pone.0087921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 01/01/2014] [Indexed: 12/31/2022] Open
Abstract
Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell's membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma's essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life.
Collapse
Affiliation(s)
- Shlomo Trachtenberg
- Dept of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| | - Peter Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terry M. Phillips
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - S. Brian Andrews
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard D. Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Iriarte A, Baraibar JD, Diana L, Castro-Sowinski S, Romero H, Musto H. Trends in amino acid usage across the class Mollicutes. J Biomol Struct Dyn 2014; 32:65-74. [DOI: 10.1080/07391102.2012.748636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum. PLoS Comput Biol 2013; 9:e1003208. [PMID: 24039564 PMCID: PMC3764002 DOI: 10.1371/journal.pcbi.1003208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12, closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum. Flux balance analysis (FBA) is a powerful approach for genome-scale metabolic modeling. It provides metabolic engineers with a tool for manipulating, predicting, and optimizing metabolism for biotechnological and biomedical purposes. However, we posit that it can also be used as tool for fundamental research in understanding and curating metabolic networks. Specifically, by using a genetic algorithm integrated with FBA, we developed a curation approach to identify missing reactions, incomplete reactions, and erroneous reactions. Additionally, it was possible to take advantage of the ensemble information from the genetic algorithm to identify the most critical reactions for curation. We tested our strategy using Mycoplasma gallisepticum as our model organism. Using the genome annotation as the basis, the preliminary genome-scale metabolic model consisted of 446 metabolites involved in 380 reactions. Carrying out our analysis, we found over 80 incorrect reactions and 16 missing reactions. Based upon the guidance of the algorithm, we were able to curate and resolve all discrepancies. The model predicted an average bacterial growth rate of 0.358±0.12 h−1 compared to the experimentally observed 0.244±0.03 h−1. Thus, our approach facilitated the curation of a genome-scale metabolic network and generated a high quality metabolic model.
Collapse
|
9
|
Oshima K, Maejima K, Namba S. Genomic and evolutionary aspects of phytoplasmas. Front Microbiol 2013; 4:230. [PMID: 23966988 PMCID: PMC3743221 DOI: 10.3389/fmicb.2013.00230] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 11/20/2022] Open
Abstract
Parasitic bacteria that infect eukaryotes, such as animals and plants, often have reduced genomes, having lost important metabolic genes as a result of their host-dependent life cycles. Genomic sequencing of these bacteria has revealed their survival strategies and adaptations to parasitism. Phytoplasmas (class Mollicutes, genus ‘Candidatus Phytoplasma’) are intracellular bacterial pathogens of plants and insects and cause devastating yield losses in diverse low- and high-value crops worldwide. The complete genomic sequences of four Candidatus Phytoplasma species have been reported. The genomes encode even fewer metabolic functions than other bacterial genomes do, which may be the result of reductive evolution as a consequence of their life as an intracellular parasite. This review summarizes current knowledge of the diversity and common features of phytoplasma genomes, including the factors responsible for pathogenicity.
Collapse
Affiliation(s)
- Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
10
|
Davis JJ, Xia F, Overbeek RA, Olsen GJ. Genomes of the class Erysipelotrichia clarify the firmicute origin of the class Mollicutes. Int J Syst Evol Microbiol 2013; 63:2727-2741. [PMID: 23606477 PMCID: PMC3749518 DOI: 10.1099/ijs.0.048983-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The tree of life is paramount for achieving an integrated understanding of microbial evolution and the relationships between physiology, genealogy and genomics. It provides the framework for interpreting environmental sequence data, whether applied to microbial ecology or to human health. However, there remain many instances where there is ambiguity in our understanding of the phylogeny of major lineages, and/or confounding nomenclature. Here we apply recent genomic sequence data to examine the evolutionary history of members of the classes Mollicutes (phylum Tenericutes) and Erysipelotrichia (phylum Firmicutes). Consistent with previous analyses, we find evidence of a specific relationship between them in molecular phylogenies and signatures of the 16S rRNA, 23S rRNA, ribosomal proteins and aminoacyl-tRNA synthetase proteins. Furthermore, by mapping functions over the phylogenetic tree we find that the erysipelotrichia lineages are involved in various stages of genomic reduction, having lost (often repeatedly) a variety of metabolic functions and the ability to form endospores. Although molecular phylogeny has driven numerous taxonomic revisions, we find it puzzling that the most recent taxonomic revision of the phyla Firmicutes and Tenericutes has further separated them into distinct phyla, rather than reflecting their common roots.
Collapse
Affiliation(s)
- James J Davis
- Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | | | - Ross A Overbeek
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | - Gary J Olsen
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, USA.,Department of Microbiology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
11
|
Abstract
This volume of "Methods in Molecular Biology" entitled "Phytoplasmas: Methods and Protocols" aims to provide a broad range of protocols for working with this group of plant pathogens. In this first chapter, we provide some background information about the phytoplasmas to put the protocols into context.
Collapse
Affiliation(s)
- Matt Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, UK.
| | | | | |
Collapse
|
12
|
Nishida H. Phylogenetic analyses of phytoplasmas based on whole-genome comparison. Methods Mol Biol 2013; 938:319-327. [PMID: 22987427 DOI: 10.1007/978-1-62703-089-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is no longer as difficult to determine genomic DNA sequences of uncultured bacteria as it once was, due to the development of DNA sequencing technology. It is likely that the number of whole-genome sequences of phytoplasmas will increase. In this chapter, two major strategies of whole-genome comparison studies, viz. gene content and orthologous protein sequence comparisons, are described. In general, horizontal gene transfer has greater influence on gene content-based phylogenetic analysis than orthologous protein sequence-based analysis. However, horizontal gene transfer has occurred rarely during the evolution of Mollicutes. Thus, the two phylogenetic topologies of the Mollicutes based on the two different strategies are similar.
Collapse
Affiliation(s)
- Hiromi Nishida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Phylogenetic position of aquificales based on the whole genome sequences of six aquificales species. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:859264. [PMID: 22844640 PMCID: PMC3403428 DOI: 10.1155/2012/859264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 12/03/2022]
Abstract
Species belonging to the order Aquificales are believed to be an early branching lineage within the Bacteria. However, the branching order of this group in single-gene phylogenetic trees is highly variable; for example, it has also been proposed that the Aquificales should be grouped with ε-proteobacteria. To investigate the phylogenetic position of Aquificales at the whole-genome level, here we reconstructed the phylogenetic trees of 18 bacteria including six Aquificales species based on the concatenated data of proteins shared by these bacteria. In the phylogenetic tree based on the whole-genome information, Aquificales was more closely related to Thermotogales than to Proteobacteria, suggesting that the Aquificales is a relatively early branching lineage within the Bacteria. Moreover, we classified the phylogenetic tree of each conserved orthologous protein by its topology. As a result, in the most major type of the phylogenetic trees, Aquificales was closely related to the Thermotogales. However, Aquificales was closely related to ε-proteobacteria in 21.0% of all phylogenetic trees, suggesting that many proteins phylogenetically related to the ε-proteobacteria may be encoded in the genomes of the members of the Aquificales. This unique feature may be responsible for the high variability in the branching order of Aquificales in single-gene phylogenetic trees.
Collapse
|
14
|
Wu HN, Kawaguchi C, Nakane D, Miyata M. "Mycoplasmal antigen modulation," a novel surface variation suggested for a lipoprotein specifically localized on Mycoplasma mobile. Curr Microbiol 2012; 64:433-40. [PMID: 22349955 DOI: 10.1007/s00284-012-0090-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022]
Abstract
Mycoplasma mobile, a pathogen of freshwater fish, glides easily across surfaces, colonizes on the fish gill, and causes necrosis. The cell surface is differentiated into three parts: the head, neck, and body. Mobile variable surface proteins (Mvsps) localizing at each of these parts may be involved in surface variation including phase variation and antigenic variation, although no proof exists. In this study, we examined this possibility by focusing on MvspI, the largest Mvsp. Immunofluorescence microscopy showed that MvspI is expressed on the surfaces of all cells. When anti-MvspI antibody was added at concentrations over 0.8 nM, MvspI was observed to decrease over time. After 72 h of cultivation with the antibody, the fluorescence intensity and amount of MvspI decreased up to 13 and 39%, respectively, compared to those of cells grown without antibody. These changes were reversed by the removal of the antibody. Such effects were not observed when another antibody targeting other Mvsps was used, suggesting that the decrease is specific to the relationship between MvspI and the antibody. Cell growth was also inhibited by the antibody, but the decrease in MvspI could not be explained by the selective growth of MvspI-negative variants or by the inhibition of growth with other conditions. The decrease in MvspI caused by the antibody binding may suggest a novel type of surface variation, designated here as "mycoplasmal antigen modulation."
Collapse
Affiliation(s)
- Heng Ning Wu
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | |
Collapse
|
15
|
RNA polymerase beta subunit (rpoB) gene and the 16S-23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Mol Phylogenet Evol 2011; 62:515-28. [PMID: 22115576 DOI: 10.1016/j.ympev.2011.11.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 10/30/2011] [Accepted: 11/03/2011] [Indexed: 12/20/2022]
Abstract
Conventional classification of the species in the family Mycoplasmataceae is mainly based on phenotypic criteria, which are complicated, can be difficult to measure, and have the potential to be hampered by phenotypic deviations among the isolates. The number of biochemical reactions suitable for phenotypic characterization of the Mycoplasmataceae is also very limited and therefore the strategy for the final identification of the Mycoplasmataceae species is based on comparative serological results. However, serological testing of the Mycoplasmataceae species requires a performance panel of hyperimmune sera which contains anti-serum to each known species of the family, a high level of technical expertise, and can only be properly performed by mycoplasma-reference laboratories. In addition, the existence of uncultivated and fastidious Mycoplasmataceae species/isolates in clinical materials significantly complicates, or even makes impossible, the application of conventional bacteriological tests. The analysis of available genetic markers is an additional approach for the primary identification and phylogenetic classification of cultivable species and uncultivable or fastidious organisms in standard microbiological laboratories. The partial nucleotide sequences of the RNA polymerase β-subunit gene (rpoB) and the 16S-23S rRNA intergenic transcribed spacer (ITS) were determined for all known type strains and the available non-type strains of the Mycoplasmataceae species. In addition to the available 16S rRNA gene data, the ITS and rpoB sequences were used to infer phylogenetic relationships among these species and to enable identification of the Mycoplasmataceae isolates to the species level. The comparison of the ITS and rpoB phylogenetic trees with the 16S rRNA reference phylogenetic tree revealed a similar clustering patterns for the Mycoplasmataceae species, with minor discrepancies for a few species that demonstrated higher divergence of their ITS and rpoB in comparison to their neighbor species. Overall, our results demonstrated that the ITS and rpoB gene could be useful complementary phylogenetic markers to infer phylogenetic relationships among the Mycoplasmataceae species and provide useful background information for the choice of appropriate metabolic and serological tests for the final classification of isolates. In summary, three-target sequence analysis, which includes the ITS, rpoB, and 16S rRNA genes, was demonstrated to be a reliable and useful taxonomic tool for the species differentiation within the family Mycoplasmataceae based on their phylogenetic relatedness and pairwise sequence similarities. We believe that this approach might also become a valuable tool for routine analysis and primary identification of new isolates in medical and veterinary microbiological laboratories.
Collapse
|
16
|
Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae. Genomics 2011; 98:370-5. [PMID: 21851855 DOI: 10.1016/j.ygeno.2011.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022]
Abstract
The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae.
Collapse
|
17
|
Oshima K, Ueda K, Beppu T, Nishida H. Unique Evolution of Symbiobacterium thermophilum Suggested from Gene Content and Orthologous Protein Sequence Comparisons. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2010; 2011:376831. [PMID: 21350630 PMCID: PMC3039458 DOI: 10.4061/2011/376831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/27/2010] [Indexed: 11/20/2022]
Abstract
Comparisons of gene content and orthologous protein sequence constitute a major strategy in whole-genome comparison studies. It is expected that horizontal gene transfer between phylogenetically distant organisms and lineage-specific gene loss have greater influence on gene content-based phylogenetic analysis than orthologous protein sequence-based phylogenetic analysis. To determine the evolution of the syntrophic bacterium Symbiobacterium thermophilum, we analyzed phylogenetic relationships among Clostridia on the basis of gene content and orthologous protein sequence comparisons. These comparisons revealed that these 2 phylogenetic relationships are topologically different. Our results suggest that each Clostridia has a species-specific gene content because frequent genetic exchanges or gene losses have occurred during evolution. Specifically, the phylogenetic positions of syntrophic Clostridia were different between these 2 phylogenetic analyses, suggesting that large diversity in the living environments may cause the observed species-specific gene content. S. thermophilum occupied the most distant position from the other syntrophic Clostridia in the gene content-based phylogenetic tree. We identified 32 genes (14 under relaxed selection and 18 under functional constraint) evolving under Symbiobacterium-specific selection on the basis of synonymous-to-nonsynonymous substitution ratios. Five of the 14 genes under relaxed selection are related to transcription. In contrast, none of the 18 genes under functional constraint is related to transcription.
Collapse
Affiliation(s)
- Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
18
|
Selected codon usage bias in members of the class Mollicutes. Gene 2010; 473:110-8. [PMID: 21147204 DOI: 10.1016/j.gene.2010.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 11/24/2022]
Abstract
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.
Collapse
|
19
|
Abstract
Mycoplasma, a genus of pathogenic bacteria, forms a membrane protrusion at a cell pole. It binds to solid surfaces with this protrusion and then glides. The mechanism is not related to known bacterial motility systems, such as flagella or pili, or to conventional motor proteins, including myosin. We have studied the fastest species, Mycoplasma mobile, and have proposed a working model as follows. The gliding machinery is composed of four huge proteins at the base of the membrane protrusion and supported by a cytoskeletal architecture from the cell inside. Many flexible legs approximately 50 nm long are sticking out from the machinery. The movements generated by the ATP hydrolysis cell inside are transmitted to the "leg" protein through a "gear" protein, resulting in repeated binding, pull, and release of the sialylgalactose fixed on the surface by the legs. The gliding of Mycoplasma pneumoniae, a species distantly related to M. mobile, is also discussed.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
20
|
Park HK, Yoon JW, Shin JW, Kim JY, Kim W. rpoA is a useful gene for identification and classification of Streptococcus pneumoniae from the closely related viridans group streptococci. FEMS Microbiol Lett 2010; 305:58-64. [DOI: 10.1111/j.1574-6968.2010.01913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Machado CX, Pinto PM, Zaha A, Ferreira HB. A peroxiredoxin from Mycoplasma hyopneumoniae with a possible role in H2O2 detoxification. MICROBIOLOGY-SGM 2009; 155:3411-3419. [PMID: 19589831 DOI: 10.1099/mic.0.030643-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia, which affects pig farms worldwide, causing heavy economic losses. In the infection process, this bacterium is exposed to reactive oxygen species (ROS) from its own metabolism or generated by the host as one of the strategies used to neutralize the pathogen. Although the presence of classical antioxidant enzymes would be expected in M. hyopneumoniae, important genes directly related to protection against ROS, such as superoxide dismutase, catalases and glutathione peroxidase, have not been identified by sequence homology in the genome sequence annotation. Among the few identified M. hyopneumoniae genes coding for proteins possibly involved with suppression of ROS-mediated damage, one (tpx) coding for a peroxiredoxin (MhPrx) has been recognized. The sequence and phylogenetic analyses perfomed in this study indicate that MhPrx is closely related to the atypical 2-Cys peroxiredoxin subfamily, although it has only one cysteine in its sequence. The MhPrx coding DNA sequence was cloned and expressed in Escherichia coli to produce a recombinant MhPrx (rMhPrx), which was purified and used to immunize mice and produce an anti-MhPrx polyclonal antiserum. Probing of M. hyopneumoniae extracts with this antiserum demonstrated that MhPrx is expressed in all three tested strains (J, 7422 and 7448). Cross-linking assays and size-exclusion chromatography indicate that rMhPrx forms dimers, as has been established for atypical 2-Cys peroxiredoxins. Furthermore, a metal-catalysed oxidation system was used to assay the activity of rMhPrx, showing that it can protect DNA from ROS-mediated damage and may play an essential role during infection.
Collapse
Affiliation(s)
- Cláudio X Machado
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo M Pinto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Arnaldo Zaha
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre-RS, Brazil.,Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique B Ferreira
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre-RS, Brazil.,Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Merkl R, Wiezer A. GO4genome: a prokaryotic phylogeny based on genome organization. J Mol Evol 2009; 68:550-62. [PMID: 19436929 PMCID: PMC3085772 DOI: 10.1007/s00239-009-9233-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 03/10/2009] [Accepted: 04/03/2009] [Indexed: 11/24/2022]
Abstract
Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replacement of genes via horizontal gene transfer may give misleading results. GO4genome is a new paradigm, which is based on a detailed analysis of gene function and the location of the respective genes. For characterization of genes, the algorithm uses gene ontology enabling a comparison of function independent of evolutionary relationship. After the identification of locally optimal series of gene functions, their length distribution is utilized to compute a phylogenetic distance. The outcome is a classification of genomes based on metabolic capabilities and their organization. Thus, the impact of effects on genome organization that are not covered by methods of molecular phylogeny can be studied. Genomes of strains belonging to Escherichia coli, Shigella, Streptococcus, Methanosarcina, and Yersinia were analyzed. Differences from the findings of classical methods are discussed.
Collapse
Affiliation(s)
- Rainer Merkl
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, 93040, Regensburg, Germany.
| | | |
Collapse
|
23
|
Nishida H, Beppu T, Ueda K. Symbiobacterium Lost Carbonic Anhydrase in the Course of Evolution. J Mol Evol 2009; 68:90-6. [DOI: 10.1007/s00239-008-9191-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 12/03/2008] [Accepted: 12/03/2008] [Indexed: 11/30/2022]
|
24
|
Oshima K, Nishida H. Detection of the genes evolving under Ureaplasma-specific selection. J Mol Evol 2008; 66:529-32. [PMID: 18414924 DOI: 10.1007/s00239-008-9106-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/09/2008] [Accepted: 03/19/2008] [Indexed: 11/30/2022]
Abstract
Mycoplasmas are parasitic bacteria with small genomes. Since parasitic bacteria need to adapt themselves to their hosts, there is a possibility that some genes evolved under species-specific constraint. We assume that Ureaplasma parvum has candidate genes that evolved in a species-specific manner in its genome. Here we examined synonymous-to-nonsynonymous substitution ratios (omega) of the 143 mycoplasma-orthologous genes of Ureaplasma and other mycoplasmas using branch models. As a result, the model allowing for Ureaplasma branch-specific omega in addition to omega of other mycoplasmas was significantly supported in 16 genes. First, the Ureaplasma-specific model was significantly supported in the genes encoding a transcription elongation factor and a transcription terminator factor, suggesting that transcription-related genes of Ureaplasma have evolved in a unique manner compared to those of other mycoplasmas. Second, the Ureaplasma-specific model was significantly supported in the gene encoding uracil-DNA glycosylase. In addition, the omega value of the gene in the Ureaplasma lineage was approximately 30-fold lower than those of other lineages, suggesting that uracil-DNA glycosylase of Ureaplasma evolved under stronger functional constraint than those of other mycoplasmas. Finally, three glycolytic genes of Ureaplasma were suggested to have evolved under relaxed selection. Among mycoplasmas, only Ureaplasma has urease and synthesizes ATPs via hydrolysis of urea. This raises the possibility that Ureaplasma does not need a glycolysis pathway for ATP synthesis. This unique energy-producing system may be related to the Ureaplasma-specific evolution of the glycolytic genes.
Collapse
Affiliation(s)
- Kenro Oshima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|