Persi E, Horn D. Systematic analysis of compositional order of proteins reveals new characteristics of biological functions and a universal correlate of macroevolution.
PLoS Comput Biol 2013;
9:e1003346. [PMID:
24278003 PMCID:
PMC3836704 DOI:
10.1371/journal.pcbi.1003346]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 10/03/2013] [Indexed: 01/01/2023] Open
Abstract
We present a novel analysis of compositional order (CO) based on the occurrence of Frequent amino-acid Triplets (FTs) that appear much more than random in protein sequences. The method captures all types of proteomic compositional order including single amino-acid runs, tandem repeats, periodic structure of motifs and otherwise low complexity amino-acid regions. We introduce new order measures, distinguishing between ‘regularity’, ‘periodicity’ and ‘vocabulary’, to quantify these phenomena and to facilitate the identification of evolutionary effects. Detailed analysis of representative species across the tree-of-life demonstrates that CO proteins exhibit numerous functional enrichments, including a wide repertoire of particular patterns of dependencies on regularity and periodicity. Comparison between human and mouse proteomes further reveals the interplay of CO with evolutionary trends, such as faster substitution rate in mouse leading to decrease of periodicity, while innovation along the human lineage leads to larger regularity. Large-scale analysis of 94 proteomes leads to systematic ordering of all major taxonomic groups according to FT-vocabulary size. This is measured by the count of Different Frequent Triplets (DFT) in proteomes. The latter provides a clear hierarchical delineation of vertebrates, invertebrates, plants, fungi and prokaryotes, with thermophiles showing the lowest level of FT-vocabulary. Among eukaryotes, this ordering correlates with phylogenetic proximity. Interestingly, in all kingdoms CO accumulation in the proteome has universal characteristics. We suggest that CO is a genomic-information correlate of both macroevolution and various protein functions. The results indicate a mechanism of genomic ‘innovation’ at the peptide level, involved in protein elongation, shaped in a universal manner by mutational and selective forces.
Variations in compositionally ordered (CO) sections of proteins, such as amino acid runs, tandem repeats and low complexity regions, are often considered as a third type of genomic variation along with SNP and CNV. At the microevolutionary scale, they are involved in the rapid evolution of numerous biological functions and the development of novel phenotypic complex traits, including disease in human, in particular neurodegeneration and cancer. At the macroevolutionary scale, the best discriminating proteomic factor between super-kingdoms is the prevalence of CO proteins in eukaryotes. The analysis of CO structures has so far been quite eclectic. Here we introduce a novel unifying methodology, accounting for all types of low-complexity regions and repetitive phenomena, including the existence of large periodic structures in protein sequences. We define new CO measures providing insights into the correlation of CO with protein function and with evolution. In particular, a large-scale analysis of 94 proteomes shows that the CO vocabulary of frequently appearing amino acid triplets serves as a measure of taxonomic ordering separating major clades from each other. It unravels a missing genomic correlate of macroevolution and serves as a novel phylogenetic tool. This suggests that major CO generation occurs during the creation of a completely new species, i.e. during macroevolutionary events.
Collapse