1
|
Lubośny M, Śmietanka B, Lasota R, Burzyński A. Confirmation of the first intronic sequence in the bivalvian mitochondrial genome of Macoma balthica (Linnaeus, 1758). Biol Lett 2022; 18:20220275. [PMID: 36196553 PMCID: PMC9532982 DOI: 10.1098/rsbl.2022.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022] Open
Abstract
In 2020, the first male-type mitochondrial genome from the clam Macoma balthica was published. Apart from the unusual doubly uniparental inheritance of mtDNA, scientists observed a unique (over 4k bp long) extension in the middle of the cox2 gene. We have attempted to replicate these data by NGS DNA sequencing and explore further the expression of the long cox2 gene. In our study, we report an even longer cox2 gene (over 5.5 kbp) with no stop codon separating conserved cox2 domains, as well as, based on the rtPCR, a lower relative gene expression pattern of the middle part of the gene (5' = 1; mid = 0.46; 3' = 0.89). Lastly, we sequenced the cox2 gene transcript proving the excision of the intronic sequence.
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| | - Rafał Lasota
- Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, University of Gdańsk, Gdynia 81-378, Poland
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot 81-712, Poland
| |
Collapse
|
2
|
Unprecedented frequency of mitochondrial introns in colonial bilaterians. Sci Rep 2022; 12:10889. [PMID: 35764672 PMCID: PMC9240083 DOI: 10.1038/s41598-022-14477-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Animal mitogenomes are typically devoid of introns. Here, we report the largest number of mitochondrial introns ever recorded from bilaterian animals. Mitochondrial introns were identified for the first time from the phylum Bryozoa. They were found in four species from three families (Order Cheilostomatida). A total of eight introns were found in the complete mitogenome of Exechonella vieirai, and five, 17 and 18 introns were found in the partial mitogenomes of Parantropora penelope, Discoporella cookae and Cupuladria biporosa, respectively. Intron-encoded protein domains reverse transcriptase and intron maturase (RVT-IM) were identified in all species. Introns in E. vieirai and P. penelope had conserved Group II intron ribozyme domains V and VI. Conserved domains were lacking from introns in D. cookae and C. biporosa, preventing their further categorization. Putative origins of metazoan introns were explored in a phylogenetic context, using an up-to-date alignment of mitochondrial RVT-IM domains. Results confirmed previous findings of multiple origins of annelid, placozoan and sponge RVT-IM domains and provided evidence for common intron donor sources across metazoan phyla. Our results corroborate growing evidence that some metazoans with regenerative abilities (i.e. placozoans, sponges, annelids and bryozoans) are susceptible to intron integration, most likely via horizontal gene transfer.
Collapse
|
3
|
Taboada S, Kenny NJ, Riesgo A, Wiklund H, Paterson GLJ, Dahlgren TG, Glover AG. Mitochondrial genome and polymorphic microsatellite markers from the abyssal sponge Plenaster craigi Lim & Wiklund, 2017: tools for understanding the impact of deep-sea mining. MARINE BIODIVERSITY : A JOURNAL OF THE SENCKENBERG RESEARCH INSTITUTE 2017; 48:621-630. [PMID: 31007772 PMCID: PMC6445405 DOI: 10.1007/s12526-017-0786-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/08/2017] [Accepted: 08/31/2017] [Indexed: 06/09/2023]
Abstract
The abyssal demosponge Plenaster craigi is endemic to the Clarion - Clipperton Zone (CCZ) in the NE Pacific, a region with abundant seafloor polymetallic nodules and of potential interest for mining. Plenaster craigi encrusts on these nodules and is an abundant component of the ecosystem. To assess the impact of mining operations, it is crucial to understand the genetics of this species, because its genetic diversity and connectivity across the area may be representative of other nodule-encrusting invertebrate epifauna. Here we describe and characterize 14 polymorphic microsatellite markers from this keystone species using Illumina MiSeq, tested for 75 individuals from three different areas across the CCZ, including an Area of Particular Environmental Interest (APEI-6) and two areas within the adjacent UK1 mining exploration area. The number of alleles per locus ranged from 3 to 30 (13.33 average alleles for all loci across areas). Observed and expected heterozygosity ranged from 0.909-0.048 and from 0.954-0.255, respectively. Several loci displayed significant deviation from the Hardy-Weinberg equilibrium, which appears to be common in other sponge studies. The microsatellite loci described here will be used to assess the genetic structure and connectivity on populations of the sponge across the CCZ, which will be invaluable for monitoring the impact of mining operations on its habitat. Also, we provide the annotated mitochondrial genome of P. craigi, compare its arrangement with other closely related species, and discuss the phylogenetic framework for the sponge after Maximum Likelihood and Bayesian Inference analyses using nucleotide and amino acid sequences data sets separately.
Collapse
Affiliation(s)
- Sergi Taboada
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Nathan J. Kenny
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Helena Wiklund
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Gordon L. J. Paterson
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Thomas G. Dahlgren
- Uni Research, PO Box 7810, 5020 Bergen, Norway
- Department of Marine Sciences, University of Gothenburg, Box 463, 40530 Gothenburg, Sweden
| | - Adrian G. Glover
- Life Sciences Department, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| |
Collapse
|
4
|
Abstract
BACKGROUND Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals. RESULTS We characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5' and/or 3' untranslated regions of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, the mtMutS, was found to undergo alternative polyadenylation, and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected. CONCLUSIONS Mt-mRNA processing in octocorals possessing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represent a first step towards understanding its functional and evolutionary implications.
Collapse
|
5
|
Schuster A, Lopez JV, Becking LE, Kelly M, Pomponi SA, Wörheide G, Erpenbeck D, Cárdenas P. Evolution of group I introns in Porifera: new evidence for intron mobility and implications for DNA barcoding. BMC Evol Biol 2017; 17:82. [PMID: 28320321 PMCID: PMC5360047 DOI: 10.1186/s12862-017-0928-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mitochondrial introns intermit coding regions of genes and feature characteristic secondary structures and splicing mechanisms. In metazoans, mitochondrial introns have only been detected in sponges, cnidarians, placozoans and one annelid species. Within demosponges, group I and group II introns are present in six families. Based on different insertion sites within the cox1 gene and secondary structures, four types of group I and two types of group II introns are known, which can harbor up to three encoding homing endonuclease genes (HEG) of the LAGLIDADG family (group I) and/or reverse transcriptase (group II). However, only little is known about sponge intron mobility, transmission, and origin due to the lack of a comprehensive dataset. We analyzed the largest dataset on sponge mitochondrial group I introns to date: 95 specimens, from 11 different sponge genera which provided novel insights into the evolution of group I introns. RESULTS For the first time group I introns were detected in four genera of the sponge family Scleritodermidae (Scleritoderma, Microscleroderma, Aciculites, Setidium). We demonstrated that group I introns in sponges aggregate in the most conserved regions of cox1. We showed that co-occurrence of two introns in cox1 is unique among metazoans, but not uncommon in sponges. However, this combination always associates an active intron with a degenerating one. Earlier hypotheses of HGT were confirmed and for the first time VGT and secondary losses of introns conclusively demonstrated. CONCLUSION This study validates the subclass Spirophorina (Tetractinellida) as an intron hotspot in sponges. Our analyses confirm that most sponge group I introns probably originated from fungi. DNA barcoding is discussed and the application of alternative primers suggested.
Collapse
Affiliation(s)
- Astrid Schuster
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
| | - Jose V. Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004 USA
| | - Leontine E. Becking
- Marine Animal Ecology, Wageningen University & Research Centre, P.O. Box 3700, AH, Wageningen, The Netherlands
- Naturalis Biodiversity Center, Marine Zoology Department, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - Michelle Kelly
- National Centre for Aquatic Biodiversity and Biosecurity, National Institute of Water and Atmospheric Research, P.O. Box 109–695, Newmarket, Auckland, New Zealand
| | - Shirley A. Pomponi
- Harbor Branch Oceanographic Institute-Florida Atlantic University, 5600 U.S. 1 North, Ft Pierce, FL 34946 USA
| | - Gert Wörheide
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- SNSB - Bavarian State Collections of Palaeontology and Geology, Richard-Wagner Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- & Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany
- GeoBio-CenterLMU, Ludwig-Maximilians-Universität München, Richard-Wagner Str. 10, 80333 Munich, Germany
| | - Paco Cárdenas
- Department of Medicinal Chemistry, Division of Pharmacognosy, BioMedical Center, Uppsala University, Husargatan 3, 75123 Uppsala, Sweden
| |
Collapse
|
6
|
Lavrov DV, Pett W. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages. Genome Biol Evol 2016; 8:2896-2913. [PMID: 27557826 PMCID: PMC5633667 DOI: 10.1093/gbe/evw195] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2016] [Indexed: 12/11/2022] Open
Abstract
Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.
Collapse
Affiliation(s)
- Dennis V Lavrov
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - Walker Pett
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Kelly M, Cárdenas P. An unprecedented new genus and family of Tetractinellida (Porifera, Demospongiae) from New Zealand's Colville Ridge, with a new type of mitochondrial group I intron. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michelle Kelly
- Coasts and Oceans National Centre; National Institute of Water & Atmospheric Research Ltd; Private Bag 99940 Newmarket Auckland New Zealand
| | - Paco Cárdenas
- Department of Medicinal Chemistry; Division of Pharmacognosy; BioMedical Centre; Husargatan 3; Uppsala University; 751 23 Uppsala Sweden
- Department of Systematic Biology; Evolutionary Biology Centre; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
| |
Collapse
|
8
|
Huchon D, Szitenberg A, Shefer S, Ilan M, Feldstein T. Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida. BMC Evol Biol 2015; 15:278. [PMID: 26653218 PMCID: PMC4676843 DOI: 10.1186/s12862-015-0556-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/03/2015] [Indexed: 11/21/2022] Open
Abstract
Background Self-splicing introns are present in the mitochondria of members of most eukaryotic lineages. They are divided into Group I and Group II introns, according to their secondary structure and splicing mechanism. Being rare in animals, self-splicing introns were only described in a few sponges, cnidarians, placozoans and one annelid species. In sponges, three types of mitochondrial Group I introns were previously described in two demosponge families (Tetillidae, and Aplysinellidae) and in the homoscleromorph family Plakinidae. These three introns differ in their insertion site, secondary structure and in the sequence of the LAGLIDADG gene they encode. Notably, no group II introns have been previously described in sponges. Results We report here the presence of mitochondrial introns in the cytochrome oxidase subunit 1 (COI) gene of three additional sponge species from three different families: Agelas oroides (Agelasidae, Agelasida), Cymbaxinellapverrucosa (Hymerhabdiidae, Agelasida) and Axinella polypoides (Axinellidae, Axinellida). We show, for the first time, that sponges can also harbour Group II introns in their COI gene, whose presence in animals’ mitochondria has so far been described in only two phyla, Placozoa and Annelida. Surprisingly, two different Group II introns were discovered in the COI gene of C. verrucosa. Phylogenetic analysis indicates that the Group II introns present in C. verrucosa are related to red algae (Rhodophyta) introns. Conclusions The differences found among intron secondary structures and the phylogenetic inferences support the hypothesis that the introns originated from independent horizontal gene transfer events. Our results thus suggest that self-splicing introns are more diverse in the mitochondrial genome of sponges than previously anticipated. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0556-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dorothée Huchon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Amir Szitenberg
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,Current address: School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK.
| | - Sigal Shefer
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Micha Ilan
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Tamar Feldstein
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. .,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|